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Packing without some pieces

Raphael Yuster∗

Erdős and Hanani proved that for every fixed integer k ≥ 2, the
complete graph Kn can be almost completely packed with copies
of Kk; that is, Kn contains pairwise edge-disjoint copies of Kk that
cover all but an on(1) fraction of its edges. Equivalently, elements
of the set C(k) of all red-blue edge colorings of Kk can be used to
almost completely pack every red-blue edge coloring of Kn.

The following strengthening of the result of Erdős and Hanani is
considered. Suppose C′ ⊂ C(k). Is it true that we can use elements
only from C′ and almost completely pack every red-blue edge col-
oring of Kn? An element C ∈ C(k) is avoidable if C′ = C(k)\C has
this property and a subset F ⊂ C(k) is avoidable if C′ = C(k) \ F
has this property.

It seems difficult to determine all avoidable graphs as well as all
avoidable families. We prove some nontrivial sufficient conditions
for avoidability. Our proofs imply, in particular, that (i) almost all
elements of C(k) are avoidable (ii) all Eulerian elements of C(k) are
avoidable and, in fact, the set of all Eulerian elements of C(k) is
avoidable.

MSC codes: 05C70, 05C35
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1. Introduction

Throughout this paper a red-blue edge coloring of Kk is synonymous with a
graph H on k vertices where E(H) are the blue edges and E(Hc) are the red
edges. We usually omit the word “edge” and just refer to red-blue colorings.
Let C(k) be the set of all red-blue colorings of Kk. Equivalently, we can view
C(k) as the set of all graphs on k vertices.

If F1, F2, . . . , Ft are pairwise edge-disjoint cliques of size k forming a
packing of Kn, then given any red-blue coloring of Kn with color classes
Gblue and Gred, we can view the Fi’s as red-blue colorings of Kk where the
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coloring of Fi is given by Fi ∩Gblue and Fi ∩Gred for i = 1, . . . , t. The main

question of the paper is what possible 2-colorings Fi ∩ Gblue and Fi ∩ Gred
are forced to arise in asymptotic packings (packings that cover almost all of

the edges of Kn).

More formally, for X ⊆ C(k) an X-packing of a red-blue coloring of Kn

is a set P of pairwise edge-disjoint subgraphs of this colored Kn, where each

subgraph is isomorphic to an element of X. The size of the packing is |P|.
Obviously, |P| ≤ n(n−1)

k(k−1) .

We say that X has the asymptotic packing property if every red-blue

coloring of Kn has an X-packing of size at least n(n−1)
k(k−1) (1 − on(1)). More

formally, for every ε > 0 and all sufficiently large n, there is an X packing

of every red-blue coloring of Kn of size at least n(n−1)
k(k−1) (1− ε). The following

was proved by Erdős and Hanani [2]:

Theorem 1. C(k) has the asymptotic packing property.

In other words, they proved that Kn can be packed with edge-disjoint

copies of Kk so that only o(n2) edges remain unpacked. This result has many

applications and was generalized in several ways, most notably by Rödl for

hypergraphs [10], by Wilson for exact graph decompositions [12] and by

Keevash for exact hypergraph decompositions [8]. See also Glock et al. [5]

for another, more general proof.

It is therefore interesting to determine to what extent can Theorem 1

be strengthened by requiring less than C(k) in its statement. Namely, which

subsets of C(k) have the asymptotic packing property.

Problem 1. For every fixed k, determine the subsets of C(k) that have the

asymptotic packing property.

An element C ∈ C(k) is avoidable if C′ = C(k) \ C has the asymptotic

packing property and a subset F ⊂ C(k) is avoidable if C′ = C(k) \ F
has the asymptotic packing property. Non-avoidable graphs or subsets are

unavoidable. So Problem 1 can be reformulated as asking to determine all

avoidable subsets and in particular all avoidable graphs.

For k = 2 we trivially have that every nonempty subset of C(2) is un-

avoidable. It is also easy to verify that every nonempty subset of C(3) is

unavoidable. In fact:

Proposition 1.1. For all k ≥ 2, the graphs Kk, K1,k−1 and their comple-

ments are unavoidable. Also, K2,3, K3,4 and K−4 and their complements are

unavoidable.
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Already for k = 4 we do not know the complete solution for Problem 1.
Let U(k) ⊆ C(k) denote the set of all unavoidable graphs on k vertices.

Our first main result is that almost all elements of C(k) are avoidable.

Theorem 2. |U(k)| = o(|C(k)|).

Theorem 2 is a consequence of a result that gives a more general sufficient
condition for avoidability in terms of the asymmetry of a graph (Lemma 3.6).
It is natural to use random k-vertex graphs as it is not difficult to prove that
these are almost surely highly asymmetric (in a well-defined sense made
later). The main technical issue is proving that this asymmetry property
suffices for avoidability.

While Theorem 2 shows that graphs that are sufficiently asymmetric are
avoidable, our second main result proves that a certain large class of graphs
which contains some highly symmetric graphs is avoidable. This class of
graphs, whose definition follows, includes all Eulerian elements of C(k).

The degree set of a graph G is the set {d(v) | v ∈ V (G)}. For a set of
integers S ⊆ {0, . . . , k − 1} let F(S, k) be the set of all graphs on k vertices
whose degree set is contained in S. So, F({t}, k) is the set of all t-regular
graphs on k vertices. Equivalently, F(S, k) is the set of all red-blue colorings
of Kk where the degree set of each blue graph is contained in S. When k
is odd, a red-blue coloring of Kk is Eulerian if the blue graph is Eulerian
and the red graph is Eulerian. For example, a coloring of K5 with a blue C5

(and hence a red C5) is Eulerian. Notice that all Eulerian red-blue colorings
are contained in F(S, k) where S = {2, 4, . . . , k − 3}, but the latter is more
general already for k = 7. An immediate corollary of the following theorem
is that the family of all Eulerian red-blue edge-colorings of Kk is avoidable.

Theorem 3. For all odd positive integers k, F({2, 4, . . . , k−3}, k) is avoid-
able.

Theorem 3 is a nontrivial consequence of a more general statement (The-
orem 4) that gives a sufficient condition for the avoidability of F(S, k) in
terms of the solvability of a certain parametric linear program. For rela-
tively small k we can determine if a solution exists and hence determine
many additional S such that F(S, k) is avoidable.

The tool of fractional packings will be useful in proving Theorem 2,
Theorem 3, and their more generalized statements. We describe this tool in
Section 2. Sections 3 and 4 prove Theorem 2 and Theorem 3 respectively.
Section 5 contains the proof of Proposition 1.1. The final section contains
some concluding remarks, most notably addressing the analogous problem
where instead of an asymptotic packing we ask for an exact decomposition
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and consider the seemingly stronger property of decomposition avoidability.
In particular, we prove there that C4 is not decomposition avoidable.

2. Fractional packings

Let R be a set of graphs of order k. Let G be a graph with V (G) = [n]. Let(G
R
)

denote the set of all induced copies of R in a graph G (by induced copy
we mean an induced subgraph of G on k vertices which is isomorphic to an
element of R). Notice that in the special case that R contains all induced
k-subgraphs of G, then |

(G
R
)
| =

(n
k

)
.

A function φ from
(G
R
)

to [0, 1] is a fractional R-packing of G if for each
pair of distinct vertices {x, y} ⊂ [n] we have

(1)
∑

H∈(GR) : {x,y}⊂V (H)

φ(H) ≤ 1 .

For a fractional R-packing φ, let

|φ| =
∑

H∈(GR)

φ(H) .

The fractional R-packing number, denoted by ν∗R(G), is the maximum value
of |φ| ranging over all fractional R-packings φ. One observes that computing
ν∗R(G) amounts to solving a linear programming maximization problem with(n
2

)
+ |
(G
R
)
| constraints and |

(G
R
)
| variables. It can therefore be solved in

polynomial time for fixed k.
An R-packing of G is a fractional R-packing whose image is {0, 1}. In

other words, it is a set of induced copies of elements of R in G where any two
copies do not share a pair of vertices (they are either disjoint or have a single
vertex in common). Let νR(G) denote the maximum size of an R-packing
of G. As we restrict the values of φ in the definition of an R-packing of G,
we have ν∗R(G) ≥ νR(G).

An important result of Haxell and Rödl [7] and later a slightly more
general form (allowing for a “set of graphs” definition) by the author [13],
both of which rely on Szemerédi’s regularity lemma [11], shows that the
converse inequality is also asymptotically true, up to an additive error term
which is negligible for dense graphs.

Lemma 2.1. For every ε > 0 and for every positive integer k ≥ 2 there
exists N = N(k, ε) such that the following holds. For any set R of graphs of
order k and any graph G with n > N vertices, ν∗R(G)− νR(G) ≤ εn2.
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One can observe that Lemma 2.1 is extremely useful already by the
following trivial use of it which implies the (nontrivial) result of Erdős and
Hanani. Indeed, merely notice that if R = {Kk} and G = Kn, then clearly
ν∗R(Kn) =

(n
2

)
/
(k
2

)
. Thus, νR(G) =

(n
2

)
/
(k
2

)
− o(n2).

3. Avoidable graphs

3.1. Decompositions and fractional decompositions

We say that X ⊆ C(k) has the decomposition property for n if every red-

blue coloring of Kn has an X-packing of size n(n−1)
k(k−1) . Notice that having

the decomposition property for n is the same as having νX(G) = n(n−1)
k(k−1)

for every graph G with n vertices. Analogously, we say that X has the
fractional decomposition property for n if ν∗X(G) = n(n−1)

k(k−1) . Trivially, C(k)
has the fractional decomposition property for all n ≥ k, and a seminal
result of Wilson [12] asserts that C(k) has the decomposition property for
all n sufficiently large that satisfy the necessary divisibility condition n ≡
1, k mod k(k − 1).

Let H be a graph with h vertices. For 1 ≤ k ≤ h, let C(H, k) be the set
of all induced subgraphs of H on k vertices. So, for example, if H = C6 and
k = 4, then C(C6, 4) = {P4, P3 ∪K1, 2K2}.

Lemma 3.1. Let H be a graph with h vertices. Suppose that X = C(k) \
C(H, k) has the decomposition property for some q. Then H is avoidable.

Proof. Let k ≤ h be maximal such that X = C(k) \ C(H, k) has the
decomposition property for some q. Let q be minimal subject to this, so
q = q(H) only depends on H.

Consider first the easy case where k = h. In this case already X =
C(h) \ H has the decomposition property for q. Then we can decompose
every red-blue coloring of Kq into pairwise edge-disjoint copies of Kh where
in each copy, the blue edges do not induce H. By Theorem 1 (the Erdős-
Hanani Theorem), C(q) has the asymptotic packing property. Thus, Kn can
be packed with edge-disjoint copies of Kq so that only o(n2) edges remain
unpacked. This, in turn, implies that any red-blue coloring of Kn can be
packed with edge-disjoint copies of Kh so that only o(n2) edges remain
unpacked, and in each copy, the blue edges do not induce H. Thus, C(h)\H
has the asymptotic packing property, which means that H is avoidable.

Now consider the case where k < h. By the result of Wilson mentioned
earlier, there exists n0 = n0(q) = n0(H) such that for all n > n0, if n ≡
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1 mod q(q − 1), then Kn has a decomposition into n(n−1)
q(q−1) pairwise edge-

disjoint copies of Kq, and as in the previous paragraph, each such Kq can

be decomposed into q(q−1)
k(k−1) pairwise edge-disjoint copies of Kk, such that

in each copy of Kk, the blue edges are isomorphic to an element of X.
Altogether, any red-blue coloring of Kn has a decomposition into n(n−1)

k(k−1)
pairwise edge-disjoint copies of Kk, such that in each copy of Kk, the blue
edges are isomorphic to an element of X. Let D denote the elements of this
decomposition.

But recall that we want to prove that H is avoidable (and not merely
that C(H, k) is avoidable). To this end, let us design some fractional packing
of Kn. Consider some K ∈ D and recall that K ∈ X. There are n − k
vertices of Kn that do not belong to K. For any set T of h − k of these
vertices (there are

(n−k
h−k

)
choices for T ) consider the Kh-subgraph of Kn

induced by the vertices of K and the vertices of T , call it Y . Notice that
Y is a red-blue coloring of Kh where the blue edges of Y do not induce a
subgraph that is isomorphic to H. Indeed, this is because K is an induced
k-vertex subgraph of Y , so if Y were isomorphic to H, then K would have
been a member of C(H, k) while by definition K ∈ X = C(k) \ C(H, k). We
give Y the weight x (x to be chosen later). We do this for every choice of
K ∈ D and for every choice of T , and they all get the same weight x. So,
altogether we obtain a fractional packing of Kn consisting of

n(n− 1)

k(k − 1)
·
(
n− k
h− k

)

elements, each one having weight x, and each one being a red-blue coloring of
Kh with the blue edges not forming anH. Since, by symmetry, the sum of the
weights of each edge of Kn is the same, we can choose the weight x such that
the total weight of this fractional packing is precisely n(n−1)

h(h−1) (a fractional

decomposition). In other words, ν∗R(G) = n(n−1)
h(h−1) where R = C(h) \H and

G is any graph on n vertices.

There are still two small issues to take care of. First observe that the
argument above assumed that n ≡ 1 mod q(q−1) (and recall that q = q(H)).
If n > n0 is not of this form, that let n′ < n be the largest integer such that
n′ ≡ 1 mod q(q − 1). As n − n′ ≤ q(q − 1) = o(n), we can just ignore

n− n′ vertices (which touch o(n2) edges) and thus ν∗R(G) = n(n−1)
h(h−1) − o(n

2)

where R = C(h) \H and G is any graph on n vertices. Finally, we can use

Lemma 2.1 to obtain that νR(G) = n(n−1)
h(h−1) − o(n

2). But this means that H
is avoidable, as required.
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In the proof of Theorem 2 it would be very important to use Lemma 3.1
for k which is very close to h and for q which is not too large. Quantitatively,
this will be guaranteed by the following lemma.

Lemma 3.2. For every h ≥ 2, there is h−o(h) ≤ k ≤ h such that Kq has a
decomposition into q pairwise edge-disjoint copies of Kk where q = k2−k+1.

Proof. Assume first that p = h − 1 is a prime power. It is well-known
that there is a finite projective plane of order p, which means that Kp2+p+1

decomposes into p2 + p + 1 pairwise edge-disjoint copies of Kh. So, in this
case, the lemma holds for k = h. In the case where h−1 is not a prime power,
we can use the result of Baker, Harman, and Pintz [1] which states that there
is always a prime strictly between x and x+O(x21/40) = x+o(x) (this result
is a significant extension of Chebyshev’s Theorem of Bertrand’s postulate).
So, let k ≤ h be the largest integer such that k − 1 is a prime power. Since
k ≥ h − o(h), using the same argument of existence of projective plane of
order k−1, we have that Kq decomposes into q pairwise edge-disjoint copies
of Kk where q = k2 − k + 1.

It is important to note that if we wouldn’t have cared about the fact
that q is small (only a polynomial in h), then Lemma 3.2 would have worked
already with k = h since Wilson’s Theorem mentioned earlier guarantees
that for some large q, Kq has a decomposition into Kh. However, the bound
in Wilson’s proof for such a q does not suffice for our proof.

3.2. Graphs whose large subgraphs are asymmetric

Let H be a graph on the vertex set [h] = {1, . . . , h}. A permutation π :
[h]→ [h] is an automorphism of H if (π(i), π(j)) is an edge of H if and only
if (i, j) is an edge of H. The group of all automorphisms of H is denoted by
aut(H). We say that H is asymmetric if aut(H) consists only of the identity
permutation. Otherwise, we say that H is symmetric. The smallest graph
(with more than one vertex) which is asymmetric is obtained from the path
on vertices 1, 2, 3, 4, 5 (in this order) by adding vertex 6 and connecting it
to vertices 3 and 4. Erdős and Rényi [3] proved that almost all graphs are
asymmetric.

For a graph H, let k(H) be the smallest integer k such that any two
induced subgraphs of H on at least k vertices each, are non-isomorphic and
further, any induced subgraph of H on at least k vertices is asymmetric. If
H is symmetric then define k(H) =∞.

It is not difficult to prove that k(H) ≥ d(h + 1)/2e as it is well-known
(Goodman [6]) that for any graph, there are two vertices that agree on
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at least d(h − 3)/2e other vertices, where u and v agree on w if both are
neighbors of w or both are non-neighbors of w. Asymmetric graphs are
natural candidates for a graph with relatively small k(H), but this is clearly
not a sufficient condition, as it is easy to construct asymmetric graphs with
k(H) = h − o(h). We will need graphs H with relatively small k(H) as it
would be possible to prove that such H are avoidable.

Our next lemma proves that a randomly chosen graph H on h vertices
has relatively small k(H), with probability tending to one as h increases.
Recall that G(h, 12) is the probability space of all graphs on h vertices where
each pair of vertices are connected with an edge with probability 1

2 , and the(h
2

)
choices are independent.

Lemma 3.3. Let β ≥ 0.94 be fixed and let H ∼ G(h, 12). Then,

Pr [k(H) ≤ βh] = 1− oh(1) .

Proof. Recall that V (H) = [h]. For a subset K ⊆ [h] let H[K] be the
subgraph of H induced by K. We will prove the following two claims.

C1. For every K ⊆ [h] with |K| ≥ βh, the probability that K[H] is sym-
metric is at most (1.3)−h.

C2. For any two distinct subsets J,K ⊆ [h] with |J | = |K| ≥ βh such that
|J4K| = 2t, the probability that K[H] and J [H] are isomorphic is at
most (1.3)−ht.

There are less than h
( h
βh

)
subsets K ⊆ [h] of size at least βh. For any such

K, the number of subsets J with |J | = |K| such that |J4K| = 2t is less
than h2t. Also notice that 2 ≤ |J4K| ≤ 2h − 2|K| ≤ 0.12h so t ≤ 0.06h.
Thus, if both claims hold we obtain by the union bound that

Pr [k(H) ≤ βh] ≥ 1−h
(
h

βh

)
(1.3)−h−h

(
h

βh

)d0.06he∑
t=1

h2t(1.3)−ht

 ≥ 1−oh(1)

where in the last inequality we have used the fact that β ≥ 0.94 which
implies that

( h
βh

)
= o((1.26)h).

We next prove Claim C1. Let K ⊆ [h] with |K| = k ≥ βh. Let π be a
permutation of K which is not the identity. We would like to upper bound
the probability that π ∈ aut(H[K]). As in the proof of Kim, Sudakov, and
Vu [9], it would be useful to compute such a bound by considering the
number of non-stationary points of π. Let this number be s. Notice that for
any given s, the number of possible π with s non-stationary points is less
than ks.
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Let S ⊆ K be the set of non-stationary points of π, so |S| = s ≥ 2.
Observe that we can always find r = ds/3e pairs {v1, u1}, . . . , {vr, ur} such
that v1, . . . , vr, u1, . . . , ur are distinct elements of S and further π(vi) = ui
for i = 1, . . . , r. Indeed, in each nontrivial orbit of π of length ` we can
obviously find b`/2c such pairs. The worst case is when all nontrivial orbits
are of length 3 so we can only find one pair in each orbit, resulting in only
s/3 pairs. Let S∗ = {v1, . . . , vr, u1, . . . , ur} ⊆ S.

For each i = 1, . . . , r and for each point w ∈ K\S∗ consider the two pairs
{vi, w} and {ui, π(w)}. Since π(vi) = ui, in order for π to be in aut(H[K])
we must have that {vi, w} and {ui, π(w)} agree (both are edges or both
are non-edges). Since agreement occurs with probability 1

2 and since all the
r · (k − 2r) choices of i and w are independent with respect to the event of
agreement (since they correspond to distinct pairs), we obtain that

(2) Pr[π ∈ aut(H[K])] ≤ 2−r(k−2r) = 2−ds/3e(k−2ds/3e) .

Now, since k ≥ βh ≥ 0.94h, we obtain that for all s = 2, . . . , k,

2−ds/3e(k−2ds/3e)ks <
1

k(1.3)h
.

Notice that for h sufficiently large, the left hand side is maximized when
s = 3 and already in this case the inequality holds since 20.94 > 1.3.

As there are less than ks permutations π with s non-stationary points
we obtain by the union bound, the last inequality, and (2) that

Pr[H[K] is symmetric] ≤
k∑
s=2

ks2−ds/3e(k−2ds/3e) <
k∑
s=2

1

k(1.3)h
<

1

(1.3)h
.

This completes the proof of Claim C1.
We next prove Claim C2 which is quite similar. Let J,K ⊆ [h] with

|J | = |K| ≥ βh such that |J4K| = 2t. Let π be a bijection from K to
J . We would like to upper bound the probability that π is an isomorphism
between H[K] and H[J ]. Let s be the number of non-stationary points of
π. Observe that s ≥ |K \ J | = t and that the number of possible π with s
non-stationary points is at most ks.

We claim that we can always find r = min{bk/4c, t+ d(s− t)/3e} pairs
{v1, u1}, . . . , {vr, ur} such that all the 2r vertices are distinct, vi ∈ K, ui ∈ J
and π(vi) = ui. Indeed, the vertices of K \J are all non-stationary, so we let
them be v1, . . . , vt and let their images be u1, . . . , ut, respectively. Each ui
may be either in J \K or in J ∩K. suppose m of them are in J \K. Then
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there are t −m additional vertices vt+1, . . . , v2t−m in J ∩K having images

in J \K. Denote the images by ut+1, . . . , u2t−m respectively. This still leaves

s−2t+m non-stationary vertices of J∩K having images also in J∩K, so as

in the proof of Claim C1, we can pick at least d(s−2t+m)/3e additional pairs

{vi, ui} such that π(vi) = ui for i = 2t−m+1, . . . , 2t−m+d(s−2t+m)/3e
and such they are all distinct from the vertices in previously selected pairs.

So, the least amount of selected pairs occurs when m = t in which case we

can still pick at least t+ d(s− t)/3e pairs. This proves the claim about the

existence of r. The reason we take r to be the minimum between t+d(s−t)/3e
and bk/4c is that we still want to leave sufficiently many vertices of K that

are not in these r pairs. Let S∗ = {v1, . . . , vr, u1, . . . , ur} and observe that

|K \ S∗| ≥ k − 2r.

For each i = 1, . . . , r and for each point w ∈ K\S∗ consider the two pairs

{vi, w} and {ui, π(w)}. Since π(vi) = ui, in order for π to be an isomorphism

we must have that {vi, w} and {ui, π(w)} agree (both are edges or both are

non-edges). Since agreement occurs with probability 1
2 and since all the

r|K \ S∗| ≥ r(k − 2r) choices of i and w result in independent events (since

they correspond to distinct pairs), we obtain that

(3) Pr[π is an isomorphism] ≤ 2−r(k−2r) ≤ 2−rk/2

where in the last inequality we have used the fact that r ≤ k/4.

Consider first the case where r = bk/4c. In this case we have for all h

sufficiently large that

2−rk/2ks ≤ 2−k
2/9ks ≤ 2−(0.94h)

2/9kh <
1

k(1.3)0.06h2 <
1

k(1.3)ht

where we have used here the fact that k ≥ 0.94h and t ≤ 0.06h.

Consider next the remaining case where r = t + d(s − t)/3e} ≤ bk/4c.
Let b = d(s− t)/3e so r = t+ b and s ≤ 3b+ t. We now have that

2−rk/2ks = 2−(t+b)k/2ks

≤ 2−(t+b)0.47hk3b+t

= 2−0.47ht2−b(0.47h−3 log2 k)2t log k

≤ 2−0.47ht2t log k

≤ 2−0.46ht

<
1

k(1.3)ht
.
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As there are less than ks bijections π with s non-stationary points we obtain
by the union bound, the last two inequalities, and (3) that

Pr[H[K] , H[J ] are isomorphic] ≤
k∑
s=2

2−rk/2ks <
k∑
s=2

1

k(1.3)ht
<

1

(1.3)ht
.

This completes the proof of Claim C2.

Let H be a graph on h vertices. The number of induced copies of H in
a graph G is denoted by cH(G). Let cH(n) denote the maximum of cH(G)
taken over all graphs G with n vertices. It is easy to observe that for h ≤
n ≤ 2h we have cH(n) ≥ 2n−h. Indeed, let G be a graph obtained from H
by selecting n − h vertices of H and duplicating them. Namely, selecting
the vertices one by one, if v is a selected vertex, then add another vertex
v′ and connect it precisely to all the neighbors of v in the current graph.
This creates a graph G on n vertices and a copy of H in G can be obtained
by selecting each non-duplicated vertex, and one of the two copies of each
duplicated vertex. The number of distinct copies of H chosen in this way is
2n−h. The following lemma shows that for graphs H with k(H) < αh where
α < 1 we in fact have cH(n) = 2n−h at least when n is not too large.

Lemma 3.4. Suppose k(H) ≤ αh where 0.5 < α < 1. Then for all h ≤ n ≤
(2− α)h we have cH(n) = 2n−h.

Proof. Let G be any graph on n vertices. We prove that cH(G) ≤ 2n−h. We
will assume that the vertices of H are labeled by {1, . . . , h}. The vertices of
G are labeled by {v1, . . . , vn}. We may associate a copy of H in G with an
injection f : [h]→ V (G). Let F denote the set of all copies of H in G. Now,
if f, f ′ ∈ F , then |Im(f)| = h and |Im(f ′)| = h, thus |Im(f) ∩ Im(f ′)| ≥
2h − n ≥ αh. But since k(H) ≤ αh we have that if v ∈ Im(f) ∩ Im(f ′),
then f−1(v) = f ′−1(v).

Let V ∗ = ∪f∈FIm(f). So, V ∗ ⊆ V (G). We may therefore assign a role
to each v ∈ V ∗, where the role of v is i if f−1(v) = i for some f ∈ F . By
the above paragraph, roles are well-defined.

Hence V ∗ may be partitioned into V ∗1 , . . . , V
∗
h where all the vertices in V ∗j

have role j. Now, every copy of H in G (i.e. every member of F) is formed
by selecting one vertex from each V ∗j for j = 1, . . . , h. So, the number of

copies of H in G is at most πhj=1|V ∗j | ≤ 2n−h.

Finally, we need the following simple lemma.

Lemma 3.5. Suppose that K is a subgraph of H on at least k(H) vertices.
Then, k(K) ≤ k(H).
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Proof. Every subgraph of K on at least k(H) vertices is also a subgraph

of H and hence is asymmetric. Any two subgraphs of K on at least k(H)

vertices are also two subgraphs of H and hence are non-isomorphic.

Theorem 2 follows immediately from the following lemma and from

Lemma 3.3.

Lemma 3.6. Let γ > 0 be a constant. For all H sufficiently large, if k(H) ≤
(1− γ)h, then H is avoidable.

Proof. Applying Lemma 3.2, let h − o(h) ≤ k ≤ h be such that Kq has a

decomposition into q pairwise edge-disjoint copies ofKk, where q = k2−k+1.

Next, recall that C(H, k) is the set of all induced subgraphs of H on

k vertices. We will prove that X = C(k) \ C(H, k) has the decomposition

property for q. Once we establish that, we are done since Lemma 3.1 implies

that H is avoidable.

Hence, it remains to prove that any red-blue coloring of Kq can be de-

composed into edge disjoint copies of Kk (the fact that it can is already

stated in the first paragraph of this proof) but with the additional require-

ment that in each copy of Kk of this decomposition, the blue edges induce

a subgraph which is not in C(H, k).

Suppose now that K ∈ C(H, k). First observe that since |K| = k ≥
h − o(h) ≥ (1 − γ)h ≥ k(H), we have that K is asymmetric. Furthermore,

by Lemma 3.5,

k(K) ≤ k(H) ≤ (1− γ)h ≤ (1− γ

2
)k .

Using α = 1− γ/2 in Lemma 3.4 we obtain that for all k ≤ n ≤ (1 + γ/2)k

we have cK(n) = 2n−k.

Let Q be any graph on q vertices (equivalently, a red-blue coloring of

Kq). We next prove that the density of K in Q, namely cK(Q)/
(q
k

)
satisfies

cK(Q)(q
k

) <
1

q
(h
k

) .
Assume the contrary. Then, for any n such that k ≤ n ≤ q, we would have

a subgraph G of Q on n vertices such that the density of K in G is at least
1

q(hk)
, namely

cK(G) ≥
(n
k

)
q
(h
k

) .
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We shall use n = b(1 + γ/2)kc. But then, cK(G) ≤ cK(n) = 2n−k. To arrive

at the desired contradiction we only need to show that

2n−k <

(n
k

)
q
(h
k

) .
Now, (

n

k

)
=

(
b(1 + γ/2)kc

k

)
>

(
(1 + γ

2 )1+
γ

2

(γ2 )
γ

2

− o(1)

)k
and

q

(
h

k

)
≤ q

(
k + o(k)

k

)
< (1 + o(1))k .

Thus indeed,

(n
k

)
q
(h
k

) > ((1 + γ
2 )1+

γ

2

(γ2 )
γ

2

− o(1)

)k
> 2

γ

2
k ≥ 2n−k .

Suppose the vertices of Q are {1, . . . , q}. Let D be some Kk-decomposition

of Kq. Hence |D| = q and any R ∈ D is an induced k-vertex subgraph

of Q. If each R ∈ D is an element of C(k) \ C(H, k) we are done, but the

problem is that some R might be isomorphic to some element of C(H, k). For

a permutation π of [q], let Dπ be the Kk-decomposition of Kq corresponding

to the permutation. That is, each R ∈ D now corresponds to Rπ ∈ Dπ where

V (Rπ) = {π(v) | v ∈ V (R)}. We will prove that there exists π such that each

Rπ ∈ Dπ is an element of C(k) \ C(H, k). As usual, it would be convenient

to prove this counting argument using probabilistic language.

Suppose that π is chosen uniformly among all permutations of [q]. For

a fixed K ∈ C(H, k), recall that the density of K in Q is less than 1
q(hk)

.

As D (and thus Dπ) have q elements, the probability that some element of

Dπ is isomorphic to K is less than 1

(hk)
. As there are at most

(h
k

)
elements

in C(H, k), we have that the expected number of elements of Dπ that are

isomorphic to some element of C(H, k) is less than 1. Hence, there exists

π such that each Rπ ∈ Dπ is an element of C(k) \ C(H, k). As Q was an

arbitrary graph of q vertices, we have proved that X = C(k) \ C(H, k) has

the decomposition property for q.



14 R. Yuster

4. Proof of Theorem 3

4.1. A sufficient condition for the avoidability of F(S, k)

We now prove our main theorem of this section, from which Theorem 3
can be obtained as a (nontrivial) corollary. Recall that for a set of integers
S ⊆ {0, . . . , k−1} we let F(S, k) be the set of all graphs on k vertices whose
degree set is contained in S. The next theorem gives a sufficient condition
for F(S, k) to be avoidable.

Theorem 4. Suppose that for every real parameter x ∈ (0, 1), the following
linear system of three equations in the variables {pi | i ∈ {0, . . . , k− 1} \ S}
has a nonnegative solution1:

∑
i∈{0,...,k−1}\S

xi−2

(i− 2)!

(1− x)k−1−i

(k − 1− i)!
pi = 1 ,

∑
i∈{0,...,k−1}\S

xi

i!

(1− x)k−3−i

(k − 3− i)!
pi = 1 ,

∑
i∈{0,...,k−1}\S

xi−1

(i− 1)!

(1− x)k−2−i

(k − 2− i)!
pi = 1 .

Then F(S, k) is avoidable.

The proof of Theorem 4 is based on the following lemma.

Lemma 4.1. Let R(S, k) be the complement of F(S, k), namely the set of
all graphs on k vertices whose degree set is not contained in S. If the linear
system of Theorem 4 has a nonnegative solution for every real parameter
x ∈ (0, 1), then for any graph G we have ν∗R(S,k)(G) ≥

(n
2

)
/
(k
2

)
− o(n2).

Notice that Lemma 4.1 together with Lemma 2.1 immediately implies
Theorem 4, since we get that νR(S,k)(G) ≥

(n
2

)
/
(k
2

)
−o(n2) which means that

F(S, k) is avoidable.

Proof of Lemma 4.1. Let k ≥ 3 and S ⊆ {0, . . . , k − 1} be fixed. As
stated earlier, F(S, k) is the set of all graphs on k vertices whose degree set
is contained in S and R(S, k) is the complement of F(S, k).

Let G be a graph with V (G) = [n]. Our goal is to design a fractional
packing φ from

( G
R(S,k)

)
to [0, 1] such that |φ| =

(n
2

)
/
(k
2

)
− o(n2). This will

prove that ν∗R(S,k)(G) ≥
(n
2

)
/
(k
2

)
− o(n2) and yield a proof of Lemma 4.1.

1A nonnegative solution is a solution where each coordinate is nonnegative.
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We will construct φ as a sum of smaller fractional packings φv from( G
R(S,k)

)
to [0, 1], one for each v ∈ V (G) = [n]. So,

φ =
n∑
v=1

φv .

We next define each φv and prove that φ satisfies the definition of a fractional
packing, i.e. that (1) is satisfied for each pair of distinct vertices {x, y} ⊂ [n].

We first state a few properties that we require φv to have.

P1. φv(H) > 0 only if H ∈
( G
R(S,k)

)
and v ∈ V (H).

P2. |φv| = n−1
k(k−1) − o(n) .

P3. For any x ∈ [n] \ v, the sum of the values of φv(H) over all H that
contain the pair {x, v} is 1/k − on(1). In other words,

∑
H∈( G

R(S,k)) : {v,x}⊂V (H)

φv(H) =
1

k
− on(1) .

P4. For any pair {x, y} ⊂ [n] \ v, the sum of the values of φv(H) over all
H that contain the pair {x, y} is (k− 2)/(k(n− 2))− o(1/n). In other
words,

∑
H∈( G

R(S,k)) : {x,y}⊂V (H)

φv(H) =
k − 2

k(n− 2)
− o

(
1

n

)
.

Let us see that if properties P2, P3, and P4 hold for each φv where v ∈ [n],
then indeed |φ| =

(n
2

)
/
(k
2

)
− o(n2) and φ is a valid fractional packing. First

observe that by property P2, |φ| = n( n−1
k(k−1) −o(n)) =

(n
2

)
/
(k
2

)
−o(n2). Next,

consider some pair {x, y} ⊂ [n]. By P3, the sum of the values of φx over the
elements that contain the pair is 1

k − on(1). Likewise, the sum of the values
of φy over the elements that contain the pair is 1

k − on(1). By P4, for any
v /∈ {x, y}, the sum of the values of φv over the elements that contain the
pair is (k − 2)/(k(n − 2)) − o(1/n). So, the overall sum of values of φ over
all elements that contain the pair is at most

2

(
1

k
− on(1)

)
+ (n− 2)

(
k − 2

k(n− 2)
− o

(
1

n

))
= 1− on(1) .

Hence, φ is a valid fractional packing with the claimed value.
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We proceed to define φv. Let us first set φv(H) = 0 for every H ∈ R(S, k)
with v /∈ V (H). This guarantees P1. For each i ∈ {0, . . . , k−1}\S let qv,i be
a nonnegative real to be chosen later. Now, consider any subset W of k − 1
vertices of [n] \ {v}. Clearly W ∪ {v} induces a subgraph of G on k vertices
which may or may not be in R(S, k). Denote this subgraph by G[v,W ]. If
G[v,W ] ∈ R(S, k) we must define φv(G[v,W ]). Recall that N(v) denotes
the set of neighbors of v in G. Let i = |W ∩N(v)| and clearly 0 ≤ i ≤ k− 1.
Set

φv(G[v,W ]) =

{
0 if i ∈ S
qv,i otherwise .

Notice that we do need to consider the case i ∈ S since it is possible that
i ∈ S while G[v,W ] ∈ R(S, k).

We next define the values of the qv,i. These values will depend on Prop-
erties P2,P3,P4, on i, and on d(v), the degree of v in G. The number of
elements G[v,W ] that received the weight qv,i is the number of subsets W
of k − 1 vertices of [n] \ {v} such that i = |W ∩N(v)|, which is(

d(v)

i

)(
n− 1− d(v)

k − 1− i

)
.

So, to satisfy P2 we must have

(4)
∑

i∈{0,...,k−1}\S

(
d(v)

i

)(
n− 1− d(v)

k − 1− i

)
qv,i =

n− 1

k(k − 1)
− o(n) .

Consider some edge (v, x) ∈ E(G). How many elements G[v,W ] that contain
the edge (v, x) received the weight qv,i? For this to occur, W must contain i
neighbors of v, while x is one of those neighbors. Hence, the number of such
elements is (

d(v)− 1

i− 1

)(
n− 1− d(v)

k − 1− i

)
.

To satisfy P3 we must therefore have that

(5)
∑

i∈{0,...,k−1}\S

(
d(v)− 1

i− 1

)(
n− 1− d(v)

k − 1− i

)
qv,i =

1

k
− on(1) .

Similarly, consider a non-edge (v, x) /∈ E(G). How many elements G[v,W ]
that contain this non-edge received the weight qv,i? For this to occur, W
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must contain i neighbors of v, while x ∈ W is not one of those neighbors.
Hence, the number of such elements is(

d(v)

i

)(
n− 2− d(v)

k − 2− i

)
.

To satisfy P3 we must therefore have that

(6)
∑

i∈{0,...,k−1}\S

(
d(v)

i

)(
n− 2− d(v)

k − 2− i

)
qv,i =

1

k
− on(1) .

Consider some pair {x, y} ⊂ [n]\v such that both (x, v) ∈ E(G) and (y, v) ∈
E(G). The number of elements G[v,W ] that contain this pair and received
the weight qv,i is (

d(v)− 2

i− 2

)(
n− 1− d(v)

k − 1− i

)
.

To satisfy P4 we must therefore have that

(7)
∑

i∈{0,...,k−1}\S

(
d(v)− 2

i− 2

)(
n− 1− d(v)

k − 1− i

)
qv,i =

k − 2

k(n− 2)
− o

(
1

n

)
.

By similarly considering pairs {x, y} ⊂ [n] \ v such that both x, y are non-
neighbors of v we get that in order to satisfy P4 we must have

(8)
∑

i∈{0,...,k−1}\S

(
d(v)

i

)(
n− 3− d(v)

k − 3− i

)
qv,i =

k − 2

k(n− 2)
− o

(
1

n

)
.

Finally, by considering pairs {x, y} ⊂ [n] \ v such that exactly one of x, y is
a neighbor of v we get that in order to satisfy P4 we must have

(9)
∑

i∈{0,...,k−1}\S

(
d(v)− 1

i− 1

)(
n− 2− d(v)

k − 2− i

)
qv,i =

k − 2

k(n− 2)
− o

(
1

n

)
.

So, the question we remain with is whether we can find nonnegative reals
qv,i such that equations (4-9) hold. To simplify notation, let us set x =
d(v)/(n−1) and hence (1−x) = (n−1−d(v))/(n−1). Also let pv,i = nk−2qv,i.
Thus, in these terms, (4-9) become:

(e1)
∑

i∈{0,...,k−1}\S

xi

i!

(1− x)k−1−i

(k − 1− i)!
pv,i =

1

k(k − 1)
− on(1) .
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(e2)
∑

i∈{0,...,k−1}\S

xi−1

(i− 1)!

(1− x)k−1−i

(k − 1− i)!
pv,i =

1

k
− on(1) .

(e3)
∑

i∈{0,...,k−1}\S

xi

i!

(1− x)k−2−i

(k − 2− i)!
pv,i =

1

k
− on(1) .

(e4)
∑

i∈{0,...,k−1}\S

xi−2

(i− 2)!

(1− x)k−1−i

(k − 1− i)!
pv,i =

k − 2

k
− on(1) .

(e5)
∑

i∈{0,...,k−1}\S

xi

i!

(1− x)k−3−i

(k − 3− i)!
pv,i =

k − 2

k
− on(1) .

(e6)
∑

i∈{0,...,k−1}\S

xi−1

(i− 1)!

(1− x)k−2−i

(k − 2− i)!
pv,i =

k − 2

k
− on(1) .

It is not difficult to see that the six equalities (e1-e6) are linearly dependent
and have rank at most 3 even without the on(1) allowed error term. Indeed,

(e3) =
k − 1

1− x
· (e1)− x

1− x
· (e2) ,(10)

(e5) =
(k − 1)(k − 2)

(1− x)2
· (e1)− 2x(k − 2)

(1− x)2
· (e2) +

x2

(1− x)2
· (e4) ,(11)

(e6) =
k − 2

1− x
· (e2)− x

1− x
· (e4)(12)

So, (e1), (e2), (e4) span the system of six equations. It will be slightly more
convenient to work with (e4), (e5), (e6) as they all have the same right hand
side. They also span the six equations since (12) shows that (e2) is spanned
by (e4), (e6) and thus (11) shows that (e1) is also spanned by (e4), (e5),
(e6) and thus (10) shows that (e3) is spanned by (e4), (e5), (e6) as well.

Finally, notice that the coefficients of the left hand side of each of (e4),
(e5), (e6) are exactly the coefficients of the left hand sides of the equations
stated in Theorem 4. Since equations (e4), (e5), (e6) have the same right
hand side, solvability is maintained if we normalize to require that each
right hand side is 1, as in the equations stated in Theorem 4. Finally, as we
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q S
5 {2}
6 {2} {3}
7 {3} {2, 4}
8 {2, 4} {2, 5} {3, 5}
9 {3, 5} {2, 4, 5} {2, 4, 6} {3, 4, 6}
10 {2, 4, 6} {2, 5, 6} {3, 4, 6} {3, 4, 7} {3, 5, 6} {3, 5, 7} {2, 4, 5, 7}
11 {3, 5, 7} {2, 4, 5, 7} {2, 4, 5, 8} {2, 4, 6, 7} {2, 4, 6, 8}

{2, 5, 6, 8} {3, 4, 6, 7} {3, 4, 6, 8} {3, 5, 6, 8}
Table 1: All maximal sets S that satisfy Theorem 4 for 5 ≤ k ≤ 11.

have no control over x, and we require solvability for each v ∈ V (G) (and

different v’s may have different degrees, thus different x’s) we need to ensure

solvability for each x ∈ (0, 1). This prove Lemma 4.1.

4.2. Sets that satisfy the conditions of Theorem 4

We start this section with an example showing that for some S, the linear

system of Theorem 4 can only be non-negatively solved for all x ∈ I ⊂ (0, 1),

where I has positive measure strictly less than 1. Hence, Theorem 4 cannot

be applied to such sets.

Consider the case k = 4, S = {2}. Observe that in this case, F(S, k) =

{C4}. The set of variables {pi | i ∈ {0, . . . , k−1}\S} is thus just {p0, p1, p3}.
The system in Theorem 4 therefore becomes:

xp3 = 1 ,

(1− x)p0 + xp1 = 1 ,

(1− x)p1 = 1 .

This system has a nonnegative solution only if x ∈ (0, 12 ].

Table 1 contains a list of all maximal sets2 S for which Theorem 4 holds,

for 5 ≤ k ≤ 11.

While the values in this table are verified by a computer program, one

particular symmetric pattern that emerges is S = {2, 4, . . . , k − 3} when k

is odd. Our goal is to prove that this holds for all odd k, thereby proving

Theorem 3.

2If Theorem 4 holds for a set S, then it clearly holds for any subset of S as one
can set any additional variables to zero.
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Proof of Theorem 3. To prove Theorem 3 using Theorem 4, we need to
prove that for all x ∈ (0, 1), the system

∑
i∈{0,1,3,...,k−4,k−2,k−1}

xi

i!

(1− x)k−3−i

(k − 3− i)!
pi = 1 ,

∑
i∈{0,1,3,...,k−4,k−2,k−1}

xi−1

(i− 1)!

(1− x)k−2−i

(k − 2− i)!
pi = 1 ,

∑
i∈{0,1,3,...,k−4,k−2,k−1}

xi−2

(i− 2)!

(1− x)k−1−i

(k − 1− i)!
pi = 1 .

has a nonnegative solution (p0, p1, p3, . . . , pk−4, pk−2, pk−1). Let us denote
the matrix of coefficients by A (so A has 3 rows and (k + 3)/2 columns),
and the vector of variables by p̂. So we need to prove that Ap̂ = J has a
nonnegative solution where J is the column vector (1, 1, 1). By the classical
Farkas’ Lemma [4] (or directly using linear programming duality), this holds
if and only if for any vector y = (y1, y2, y3) ∈ R3 such that yA is nonnegative,
we must have y1 + y2 + y3 ≥ 0.

So, suppose that yA is nonnegative. We must prove that y1+y2+y3 ≥ 0.
Consider first the product of y with the first column of A. The first column
of A corresponds to i = 0 so it is the column vector ((1−x)k−3/(k−3)!, 0, 0).
As we assume that yA is nonnegative, this implies that y1 ≥ 0. Consider
now the product of y with the last column of A. The last column of A
corresponds to i = k − 1 so it is the column vector (0, 0, xk−3/(k − 3)!). As
we assume that yA is nonnegative, this implies that y3 ≥ 0.

We now consider the remaining (k−1)/2 inequalities of the form yAj ≥ 0
where Aj is column j of A and j = 1, . . . , (k−1)/2. We sum all of these (k−
1)/2 inequalities. This sum is an inequality of the form y1f1(x) + y2f2(x) +
y3f3(x) ≥ 0. Specifically,

f1(x) =
∑

i=1,3,...,k−4

xi

i!

(1− x)k−3−i

(k − 3− i)!
,

f2(x) =
∑

i=1,3,...,k−2

xi−1

(i− 1)!

(1− x)k−2−i

(k − 2− i)!
,

f3(x) =
∑

i=3,5,...,k−2

xi−2

(i− 2)!

(1− x)k−1−i

(k − 1− i)!
.

Observe that f1(x) = f3(x). So, we know that (y1 + y3)f1(x) + y2f2(x) ≥ 0,
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that y1 ≥ 0 and that y3 ≥ 0. This, in turn, implies that

y2 ≥ −(y1 + y3)
f1(x)

f2(x)
.

Thus,

y1 + y2 + y3 ≥ (y1 + y3)

[
1− f1(x)

f2(x)

]
.

But observe that

0 ≤ (1− 2x)k−3

(k − 3)!
= f2(x)− f1(x)

so indeed y1 + y2 + y3 ≥ 0.

5. Some unavoidable graphs

We prove Proposition 1.1. The fact that F = Kk is unavoidable for every
k ≥ 2 is trivial. We prove next that F = {K1,k−1} is unavoidable for each
k ≥ 3. Let α < (k2/8 + 1)−1 be a positive constant. Consider a partition of
[n] into sets A,B with |A| = αn. Color Kn by coloring all edges in E(B)
blue, and all edges in E(A) ∪ E(A,B) red. Consider a Kk-packing of this

Kn which leaves o(n2) edges unpacked. There are at most |E(A)| =
(|A|

2

)
elements in this packing that contain at least one edge of E(A). Any such
element contains at most k2/4 edges of E(A,B). So, altogether, all of these

elements contain at most
(|A|

2

)
k2/4 edges of E(A,B). But these do not cover

all |E(A,B)| = α(1− α)n2 − o(n2) edges of E(A,B) since(
|A|
2

)
k2/4 <

α2

2
n2
k2

4
< α(1− α)n2 − o(n2) .

Hence, there is an element of the packing which contains no edge of E(A) and
does contain an edge of E(A,B). This element is thus a red F = {K1,k−1}.

To see that K2,3 is unavoidable, consider a partition of [n] into sets A,B
with |A| = n/2. Color Kn by coloring E(A,B) red and coloring E(A)∪E(B)
blue. Consider a K5-packing of this Kn which leaves o(n2) edges unpacked.
Any element of the packing which contains an edge of E(A,B) is either a
red K1,4 or a red K2,3. They cannot all be red K1,4 as otherwise, since any
red K1,4 occupies four red edges of E(A,B) and at least n2/4− o(n2) edges
of E(A,B) are packed, there would have been n2/16−o(n2) elements in the
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K5-packing, but all together they would occupy 10n2/16 − o(n2) edges of

Kn, while the latter only has less than n2/2 edges. The same example shows

that K3,4 is unavoidable. Any element of the packing which contains an edge

of E(A,B) is either a red K1,6 or a red K2,5 or a red K3,4. They cannot all

be red K1,6 or red K2,5 as otherwise, since any red K1,6 or red K2,5 occupies

at most 10 red edges of E(A,B) and at least n2/4− o(n2) edges of E(A,B)

are packed, there would have been at least n2/40 − o(n2) elements in the

r-packing, but all together they would occupy at least 21n2/40−o(n2) edges

of Kn, while the latter only has less than n2/2 edges.

The proof that K−4 is unavoidable is slightly more involved. Consider

a partition of [n] into sets A1, A2, A3, A4 with |Ai| = n/4 for i = 1, 2, 3, 4.

Color Kn by coloring E(Ai) blue for i = 1, 2, 3, 4 and coloring E(A1, A2)

blue as well. All other edges are red. Consider a K4-packing L of this Kn

with leaves o(n2) edges unpacked. We claim that L must contain a red K−4 .

Suppose it does not. As each element in the packing consists of 6 edges, we

have that |L| = n2/12−o(n2). We partition the elements of L into five types

as follows. Type 1 elements have two vertices in A3 and two vertices in A4.

Type 2 elements have three vertices in A3 and one in A4, or vice versa. Type

3 elements have all their four vertices in A3 or all their four vertices in A4.

Type 4 elements have two vertices in A3 and no vertex in A4, or two vertices

in A4 and no vertex in A3. Type 5 elements are all remaining elements. Let

ti be the number of elements of type i for i = 1, . . . , 5.

Consider a packed edge (x, y) where x ∈ A3 and y ∈ A4 and the element

S ∈ L containing (x, y). We claim that S is entirely in A3 ∪ A4. Indeed,

otherwise, S has at least one vertex in A1 ∪A2. Suppose w.l.o.g. that it has

a vertex in A1. Then, no matter where the fourth vertex resides, we obtain

a red K−4 , a contradiction. Thus, we have that for any packed edge (x, y)

where x ∈ A3 and y ∈ A4, the element of L containing it is of type 1 or of

type 2. As there are n2/16− o(n2) packed edges in E(A3, A4), we have that

4t1 + 3t2 = n2/16− o(n2). Also, the number of edges of type 1, type 2 and

type 3 elements in E(A3) ∪ E(A4) is 2t1 + 3t2 + 6t3.

There remain n2/16 − 2t1 − 3t2 − 6t3 − o(n2) edges in E(A3) ∪ E(A4)

that are not of type 1, 2, 3. Hence, t4 ≤ n2/16 − 2t1 − 3t2 − 6t3. Now, any

element of type 5 has at least three vertices in A1 ∪A2. Also, each element

of type 4 contains a single edge of E(A1 ∪ A2). As the number of edges in
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E(A1∪A2) is less than n2/8 we have that t5 ≤ (n2/8− t4)/3. It follows that

|L| = t1 + t2 + t3 + t4 + t5

≤ t1 + t2 + t3 + t4 +
n2/8− t4

3

= t1 + t2 + t3 +
2

3
t4 +

n2

24

≤ t1 + t2 + t3 +
2

3

(
n2

16
− 2t1 − 3t2 − 6t3

)
+
n2

24

= −1

3
t1 − t2 − 3t3 +

n2

12

= t1 −
n2

48
+ o(n2)− 3t3 +

n2

12

≤ t1 −
n2

48
+
n2

12
+ o(n2)

≤ n2

64
− n2

48
+
n2

12
+ o(n2)

contradicting the fact that |L| = n2/12− o(n2).

6. Concluding remarks and open problems

In the proof of Theorem 2 we used Lemma 3.3 that shows that H ∼ G(h, 12) is
highly asymmetric, namely it has k(H) ≤ βh for all β ≥ 0.94, asymptotically
almost surely. However, it is not difficult to modify the proof of Lemma 3.3
so that it holds for H ∼ G(h, p) for any constant p ∈ (0, 1). This would cause
the lower bound for β to increase towards 1 (but staying strictly less than
1), changing some constants in the proof as the probability of the agreement
event in the proof changes from 1

2 to p2 + (1 − p)2. Since in the proof of
Lemma 3.6 we can choose γ to be any small positive constant, we obtain
that for every fixed p ∈ (0, 1), the random graph H ∼ G(h, p) is avoidable
asymptotically almost surely.

Theorem 4 gives a sufficient condition for avoidability of the family of
graphs F(S, k), namely all k-vertex graphs whose degrees are in S. It seems
interesting to determine all maximal sets S ⊂ {0, . . . , k−1} for which F(S, k)
is avoidable. While this is trivial for k = 2, 3, the following proposition
determines the case k = 5.

Proposition 6.1. S = {2} and S = {1, 3} are the only maximal sets for
which for which F(S, 5) is avoidable.



24 R. Yuster

Proof. The set F({1, 3}, 5) is trivially avoidable because it is empty (no

graph with an odd number of vertices can have all its degrees odd). The

set F({2}, 5) is avoidable by Theorem 3. The set F({2, 3}, 5) is unavoidable

since it contains K2,3 which is unavoidable by Proposition 1.1. Similarly, the

complement of K2,3 is unavoidable so F({1, 2}, 5) is unavoidable. The sets

F({0}, 5) and F({4}, 5) are unavoidable since K5 and its complement are

unavoidable. Hence, S = {2} and S = {1, 3} are the only maximal sets for

which for which F(S, 5) is avoidable.

Similar to the way Problem 1 asks to generalize the result of Erdős

and Hanani [2], it may be interesting to consider the analogous problem for

exact decompositions, generalizing Wilson’s Theorem. Recall from Section

3 that X ⊆ C(k) has the decomposition property for n if every red-blue

coloring of Kn has an X-packing of size n(n−1)
k(k−1) . Accordingly, we say that X ⊆

C(k) has the decomposition property if for all n sufficiently large, X has the

decomposition property for n whenever C(k) has the decomposition property

for n (namely, by Wilson’s Theorem, whenever n ≡ 1, k mod k(k − 1)).

Similarly, we can define decomposition avoidability for graphs and sets. The

following problem analogous to Problem 1 emerges.

Problem 2. For every fixed k, determine the subsets of C(k) that have the

decomposition property.

It is straightforward to see that if H is decomposition avoidable, then it

is also avoidable. However, the following proposition might suggest that the

converse is not true.

Proposition 6.2. C4 is decomposition unavoidable.

Proof. Let n be such that Kn has a K4 decomposition (in fact, this is

known to hold for all n ≡ 1, 4 mod 12). Partition the vertices of Kn into

two parts A and B of sizes dn/2e and bn/2c. Color E(A,B) blue and all the

other edges red. If our K4-decomposition avoids a blue C4, then any element

of this decomposition occupies at most 3 blue edges. As there are bn2/4c
blue edges, the decomposition must contain a least bn2/4c/3 elements. But

this is impossible since it contains precisely n(n− 1)/12 elements.
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[2] P. Erdős and H. Hanani. On a limit theorem in combinatorical analysis.

Publ. Math. Debrecen, 10:10–13, 1963.
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