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Abstract

It is shown that for every positive integer h, and for every ε > 0, there are graphs H = (VH , EH)

with at least h vertices and with density at least 0.5 − ε with the following property: If G =

(VG, EG) is any graph with minimum degree at least |VG|
2 (1 + o(1)) and |EH | divides |EG| then

G has an H-decomposition. This result extends the results of Wilson [8], Gustavsson [6] and

Yuster [9].

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic notations the reader is referred to [2]. Let H be a graph without isolated

vertices. An H-packing of a graph G is a set L = {G1, . . . , Gs} of edge-disjoint subgraphs of G,

where each subgraph is isomorphic to H. The H-packing number of G, denoted by P (H,G), is

the maximum cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing

with the property that every edge of G appears in exactly one member of the H-packing. Note

that in order for G to have an H-decomposition, two necessary conditions must hold. The first is

that e(H) divides e(G). The second is that gcd(H) divides gcd(G) where the gcd of a graph is the

greatest common-divisor of the degrees of its vertices. Note that for any pair of graphs G and H,

we can verify in polynomial time if G satisfies these two conditions. We call these conditions the

”necessary H-decomposition conditions”.

The combinatorial and computational aspects of the H-packing and H-decomposition problems

have been studied extensively. Wilson in [8] has proved that if G = Kn where n ≥ n0 = n0(H),

and Kn satisfies the necessary H-decomposition conditions, then Kn has an H-decomposition.
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Recently, the H-packing problem for G = Kn (n ≥ n(H)) was solved [3], by giving a closed formula

for computing P (H,Kn). In case the graph G is not complete, it is known that the H-decomposition

and H-packing problems are, in general, NP-Hard, since Dor and Tarsi [5] showed that deciding if

G has an H-decomposition is NP-Complete, where H is any fixed connected graph with at least

three edges. In view of Wilson’s positive result, and the Dor-Tarsi negative result, the following

extremal problem is naturally raised:

Problem 1: Determine fH(n), the smallest possible integer, such that whenever G has n vertices,

and δ(G) ≥ fH(n), and G satisfies the necessary H-decomposition conditions, then G has an

H-decomposition.

Wilson’s result proves that fH(n) exists, for n ≥ n0(H), or, in other words, fH(n) ≤ n − 1

for n ≥ n0(H). It turns out that estimating fH(n) is extremely difficult for general H. The first,

and only, nontrivial general upper bound for fH(n) was obtained in 1991 by Gustavsson [6]. He

has shown that if δ(G) ≥ (1 − ε(H))n, where ε(H) is some small positive constant depending on

H, and G satisfies the necessary H-decomposition conditions, then G has an H-decomposition. In

other words, fH(n) ≤ (1− ε(H))n, for n sufficiently large. Unfortunately, the ε(H) in Gustavsson’s

result is a very small number. For example, if H is a triangle then ε(H) ≤ 10−24. In general,

ε(H) ≤ 10−24/|H| (in fact, it is much smaller). It is believed, however, that the correct value for

fH(n) is much smaller. In fact, Nash-Williams conjectured in [7] that when H is a triangle, then

fH(n) ≤ d3n/4e, and he also gives an example showing that this would be be best possible, and

thus his conjecture is that fH(n) = d3n/4e. However, the best result still known for triangles is

Gustavsson’s asymptotic result.

The first significant improvement over Gustavsson’s result was obtained by the author in [9] in

case the graph H is a tree (or a forest). It is shown there that fH(n) ≤ n/2 + h4
√
n log n, where

h is the number of vertices of the tree H. This result is asymptotically best possible as it is also

shown in [9] that fH(n) ≥ bn/2c − 1 for every connected graph H with at least 3 vertices.

Prior to this article, trees are the only graphs for which fH(n)/n is asymptotically known. If

H has a cycle, then the best estimate that was known is Gustavsson’s result. The purpose of this

paper is to construct a family of graphs which are much more dense than trees, for which fH(n)/n

can also be asymptotically determined. Recall that the density of a graph H with m edges and

n vertices is d(H) = m/
(n
2

)
. Thus, trees on n vertices have very low density, namely 2/n, while

complete graphs have the maximum possible density, namely 1. We will show that there is an

infinite family of graphs with the property that for every ε > 0 and for every positive integer h,

there is a graph H in the family with at least h vertices and with density at least 0.5− ε, for which

fH(n)/n→ 0.5 when n→∞. We summarize our exact result in the following Theorem:
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Theorem 1.1 Let h be a positive integer, and let ε > 0. There exists a graph H = (VH , EH) with

|VH | ≥ h and with d(H) ≥ 0.5− ε having fH(n)/n→ 0.5 when n→∞.

Theorem 1.1 can be extended easily to show that if G = (VG, EG) has minimum degree n
2 (1+o(1)),

but does not satisfy the necessary H-decomposition conditions then there is an optimal packing in

the sense that P (H,G) = b|EG|/|EH |c.
In the following section we describe the graphs H of Theorem 1.1 and mention some of their

properties. The proof of Theorem 1.1, which requires some probabilistic arguments, appears in

Section 3. Section 4 contains some concluding remarks and open problems.

A word about notation used in this sequel. dG(v) is used to denote the degree of a vertex v in

the graph G = (V,E). e(G) is used to denote the number of edges of G. For X ⊂ V , we denote

by G[X] the subgraph induced by X. e(X,Y ) denotes the number of edges between X and Y , and

e(X) denotes the number of edges in G[X]. d(v,X) denotes the number of neighbors of v in X.

Finally, we note that all logarithms mentioned are natural.

2 Graphs with high density which decompose nicely

Given ε and h, we now show how to choose the graph H for which Theorem 1.1 is applied. Let h0

be the smallest odd number satisfying

h0 ≥ max{h , 5 , 1/(2ε)}.

and put h0 = 2k + 1. Note that k ≥ 2. Let Hk be the graph obtained from Kk,k by adding to it a

new vertex which is connected by an edge to some vertex of Kk,k. Clearly, Hk has h0 vertices and

k2 + 1 edges, and its density is

d(Hk) =
1

2
− 1

2h0
+

2

h0(h0 − 1)
≥ 1

2
− ε.

Also, gcd(Hk) = 1, so the only necessary Hk-decomposition condition is that the number of edges

of the large graph be divisible by k2 + 1. We will prove Theorem 1.1 for H = Hk, and for the

remainder of this section, and Section 3, we fix k and Hk.

In the proof of Theorem 1.1 we need to use the fact that Kk,k has a low Turán number, and a

low Bipartite Turán number. This was proved by several researchers, and we shall use the result

of Znám [10] (also in [2]):

Lemma 2.1 [Znám [10]]
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1. If G has n vertices and G does not contain Kk,k as a subgraph, then the number of edges of

G is less than
1

2
((k − 1)1/kn2−1/k +

k − 1

2
n).

2. If B is a bipartite graph with at most n vertices in each vertex class and B does not contain

Kk,k as a subgraph, then the number of edges of B is less than

(k − 1)1/kn2−1/k +
k − 1

2
n. 2

Corollary 2.2 Suppose n ≥ k. If G is a graph with n vertices not containing Kk,k then G has

less than n2−1/k edges. If B is a bipartite graph with at most n vertices in each vertex class, and

B does not contain Kk,k, then B has less than 2n2−1/k edges. 2

The corollary follows from Lemma 2.1 by observing that whenever n ≥ k, 2n2−1/k ≥ (k −
1)1/kn2−1/k + k−1

2 n.

3 Proof of the main result

In order to prove Theorem 1.1, we will show that for n sufficiently large (as a function of k)

fHk
(n) ≤ n

2
+ 20k2n1−1/(k+1).

This, together with the lower bound fH(n) ≥ bn/2c − 1 mentioned in the introduction (and which

applies to any connected graph H with at least 3 vertices, in particular, it applies to Hk) shows

that fHk
(n)/n→ 0.5 when n→∞.

Given a graph G = (V,E) on n vertices, e(G) = m(k2 + 1) edges, having δ(G) ≥ n/2 +

20k2n1−1/(k+1), we must show that G has an Hk-decomposition. As mentioned before, whenever

necessary, we shall assume that n is sufficiently large as a function of k.

Put t = n2−1/(k+1). Our initial step is to show that G contains a spanning subgraph G∗ with

at most m − t edges, and at least m − 3t edges, whose expansion properties resemble those of G.

This is done in the following lemma:

Lemma 3.1 G has a spanning subgraph G∗ = (V,E∗) with the following properties:

1.

m− t ≥ |E∗| ≥ m− 3t.

2. For every v ∈ V ,
dG(v)

k2 + 1
− t/n ≥ dG∗(v) ≥ dG(v)

k2 + 1
− 9t/n.
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3. Let X0 ⊂ V be an arbitrary subset of vertices satisfying n/(1000k3) ≤ |X0| ≤ 3n/4. Let z

denote the number of edges not in G∗ which have an endpoint in X0. Then:

z ≥ 4tk2 + k2e(G∗[X0])

where e(G∗[X0]) is the number of edges of G∗ with both endpoints in X0.

Proof: We will show the existence of G∗ using a probabilistic argument. Let p = m−2t
m(k2+1)

. We

first show that p > 1/(2k2 + 2). This is equivalent to showing that t < m/4, and this holds since

t = n2−1/(k+1) <
n2

16(k2 + 1)
=
m

4

n2/4

e(G)
<
m

4
.

(In the last inequality, we have used here the fact that n is sufficiently large as a function of k,

and we have also used the obvious fact that e(G) > n2/4). Each edge of G chooses to be in G∗

by flipping a biased coin with probability p for being in G∗. All the choices of all the edges are

independent. We now show that with high probability, the three conditions required of G∗ hold.

1. The expected number of edges of G∗ is exactly m − 2t. Since |E∗|, the number of edges of

G∗, is the sum of m(k2 + 1) indicator random variables, it has binomial distribution, so we

can use the Chernoff inequality (c.f. [1]) to bound the deviation of |E∗| from its mean:

Prob[| |E∗| − (m− 2t) | > t] < 2e
− 2t2

m(k2+1) < 2e
− 2n4−2/(k+1)

n2/2 = 2e−4n
2−2/(k+1)

< 1/n.

Thus, with probability at least 1− 1/n, m− t ≥ |E∗| ≥ m− 3t.

2. Consider a vertex v. The expected degree of v in G∗ is exactly p · dG(v). Once again, dG∗(v)

has binomial distribution, so according to the Chernoff inequality, we know that

Prob[|dG∗(v)− p · dG(v)| >
√
n log n] < 2e−2n logn/dG(v) < 2e−2 logn =

2

n2
.

Thus, with probability at least 1− 2/n, we have that for every v ∈ V ,

|dG∗(v)− p · dG(v)| ≤
√
n log n.

This translates to

dG∗(v) ≥ p · dG(v)−
√
n log n =

dG(v)

k2 + 1
− 2tdG(v)

m(k2 + 1)
−
√
n log n ≥

dG(v)

k2 + 1
− 2n2−1/(k+1)n

n2/4
−
√
n log n =

dG(v)

k2 + 1
− 8n1−1/(k+1) −

√
n log n >
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dG(v)

k2 + 1
− 9n1−1/(k+1) =

dG(v)

k2 + 1
− 9t/n.

and

dG∗(v) ≤ p · dG(v) +
√
n log n =

dG(v)

k2 + 1
− 2tdG(v)

m(k2 + 1)
+
√
n log n ≤

dG(v)

k2 + 1
− 2n2−1/(k+1)n/2

n2/2
+
√
n log n =

dG(v)

k2 + 1
− 2n1−1/(k+1) +

√
n log n ≤ dG(v)

k2 + 1
− n1−1/(k+1) =

dG(v)

k2 + 1
− t/n.

3. Now consider a set X0 ⊂ V satisfying n/(1000k3) ≤ |X0| ≤ 3n/4. Let y = eG(X0, V \ X0)

denote the number of edges of G with only one endpoint in X0, and let y∗ = eG∗(X0, V \X0).

If |X0| ≤ n/2 then y ≥ |X0|(n/2 + 20k2n1−1/(k+1) − |X0|). By elementary calculus, if n is

sufficiently large then the minimum for y is obtained when |X0| = n/2, and then

y ≥ n

2
20k2n1−1/(k+1) = 10tk2. (1)

If |X0| ≥ n/2 then y ≥ (n − |X0|)(n/2 + 20k2n1−1/(k+1) − (n − |X0|)). Once again, if n is

sufficiently large the minimum is obtained when |X0| = n/2 and thus (1) holds in any case.

Clearly, the expectation of y∗ is py. Now, by the Chernoff inequality,

Prob[y∗ > 3py/2] = Prob[y∗ − py > py/2] < e−2(py/2)
2/y = e−p

2y/2 < e−y/(8(k
2+1)2) <

e−10tk
2/20k4 = e−t/(2k

2) = e−n
2−1/(k+1)/(2k2) < e−n.

As there are 2n possible subsets of V (and even less possible subsets which may correspond

to X0), we have that with probability at least 1 − (2/e)n, for all X0, the corresponding y∗

satisfies y∗ ≤ 3py/2.

We now show that when y∗ ≤ 3py/2 then also y − y∗ ≥ 5tk2. Indeed, according to (1),

y/2 ≥ 5tk2. Also, trivially, y/2 > 1.5py since p < 1/(k2 + 1) < 1/3. Thus, y = y/2 + y/2 >

1.5py + 5tk2 ≥ y∗ + 5tk2. Consider first the case where e(G[X0]) ≤ t. In this case,

z ≥ y − y∗ ≥ 5tk2 ≥ 4tk2 + k2e(G[X0]) ≥ 4tk2 + k2e(G∗[X0]).

Now consider the case where e(G[X0]) > t. The expectation of e(G∗[X0]) is p · e(G[X0]).

Using the Chernoff inequality we obtain

Prob[e(G∗[X0]) >
e(G[X0])

k2 + 1
] = Prob[e(G∗[X0])− p · e(G[X0]) >

2t

m(k2 + 1)
e(G[X0])]

< e
− 8t2e(G[X0])

2

m2(k2+1)2e(G[X0]) = e
− 8t2e(G[X0])

m2(k2+1)2 ≤ e−
8t3

e(G)2 < e
− 8(n2−1/(k+1))3

(n2/2)2 < e−32n.
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Therefore, with probability at least 1− (2/e32)n, for all subsets X0 having e(G[X0]) > t, we

have that e(G∗[X0]) ≤ e(G[X0])
k2+1

. This implies that

z = y−y∗+e(G[X0])−e(G∗[X0]) ≥ 5tk2+(k2+1)e(G∗[X0])−e(G∗[X0]) > 4tk2+k2e(G∗[X0]).

Summing up all the probabilities, we have that with probability at least

1− (2/e32)n − (2/e)n − 2/n− 1/n > 0

all of the properties required from G∗ in parts 1,2 and 3 of the lemma hold. 2

We now fix G∗ with the properties guaranteed by Lemma 3.1. Let G′ = (V,E′) be the spanning

subgraph of G obtained by removing from G the edges of G∗. Hence E′ = E \ E∗. By lemma 3.1,

m− 3t ≤ |E∗| ≤ m− t, and therefore

k2m+ 3t ≥ |E′| ≥ k2m+ t. (2)

By Lemma 3.1, dG∗(v) < dG(v)/(k2 + 1) for every v ∈ V . Thus,

n

2
< dG(v) = dG′(v) + dG∗(v) < dG′(v) +

dG(v)

k2 + 1
.

Hence, since k ≥ 2,

∀v ∈ V : dG′(v) ≥ dG(v)
k2

k2 + 1
≥ n

2
· 4

5
= 0.4n. (3)

Our next step is to find in G′ a set L of exactly m edge-disjoint copies of Kk,k. L can clearly

be constructed in a greedy way, using the fact that |E′| ≥ k2m+ t, for as long as there are t edges

of E′ which are not assigned to any copy of Kk,k, we can find an additional copy using Corollary

2.2, since t > n2−1/k. However, we do not want to create L by an entirely greedy procedure, since

we want L to satisfy two requirements (the reason for insisting on these requirement will be made

apparent later). The requirements are:

1. property A: Every vertex appears in at least n/(600k2) members of L.

2. property B: For every two distinct vertices a and b, there are at least n/(600k3) members

of L which contain a and do not contain b.

In the following paragraph we describe how to pick the m copies of Kk,k in such a way that both

requirements are met.

Put q = dn2/(100k2) + ne. We begin by picking a set of q copies of Kk+1,k+1 which we denote by

T1, . . . , Tq as follows: Suppose we have already picked T1, . . . Tr, where 0 ≤ r < q. We show how

Tr+1 is selected. Let Gr = (V,Er) be the spanning subgraph of G′ consisting of the edges of E′ that
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are not used by T1 ∪ . . . ∪ Tr (initially, G0 = G′). Let v be the vertex which appears the minimum

number of times in {T1, . . . , Tr}. We pick Tr+1 to be a copy of Kk+1,k+1 in Gr, which contains v.

We must show that, indeed, there exists a copy of Kk+1,k+1 in Gr which contains v. This is proved

in the following lemma:

Lemma 3.2 If v appears the minimum number of times in T1, . . . , Tr, then there exists a Kk+1,k+1

in Gr which contains v.

Proof: Let X = {T1, . . . Tr}, and suppose the number of members of X having v as a vertex is

minimum. Each Ti has 2(k+ 1) vertices. Overall there are 2(k+ 1)r vertices in all the members of

X, so v appears in at most 2(k + 1)r/n members of X. Now,

2(k + 1)r

n
≤ 2(k + 1)(q − 1)

n
≤ 2(k + 1)(

n

100k2
+ 1) =

n

50k
+

n

50k2
+ 2k + 2 <

n

30k
. (4)

(The fact that n/(50k) + n/(50k2) + 2k + 2 < n/(30k) follows from the fact that k ≥ 2 and

n is sufficiently large.) Therefore, v appears in less than n/(30k) members of X. Let D be the

neighborhood of v in Gr, and put d = |D|, the degree of v in Gr. By (4) d > dG′(v)−(k+1)·(n/30k).

By (3), dG′(v) ≥ 0.4n, so d > 0.4n− 3n/60 > 0.3n.

We claim that there are more than 3t+d edges of Gr with an endpoint in D. To see this, note that

by (3), the sum of degrees of the vertices of D in G′ is at least 0.4nd > 0.4n · 0.3n = 0.12n2. There

are (k + 1)2r edges which appear in G′ and do not appear in Gr. Thus, the sum of the degrees of

the vertices of D in Gr is greater than 0.12n2 − 2(k + 1)2r. However,

0.12n2 − 2(k + 1)2r ≥ 0.12n2 − 2(k + 1)2(
n2

100k2
+ n) > 0.07n2 > 8n2−1/(k+1) = 6t+ 2t > 6t+ 2d.

So, the sum of the degrees of the vertices of D in Gr is greater than 6t + 2d, and thus there are

more than 3t+ d edges of Gr with an endpoint in D.

Excluding from the edges with an endpoint in D the d edges connected to v, we still remain with

more than 3t edges. Thus, either there are t edges of Gr with both endpoints in D, or there are 2t

edges in the bipartite subgraph of Gr induced by the vertex classes D and V \ (D ∪ {v}). In the

first case, by Corollary 2.2, Gr has a copy of Kk+1,k+1 whose edges are all in Gr[D], so v may be

joined to either vertex class of this Kk+1,k+1, thereby proving that v appears in a Kk+2,k+1 copy of

Gr (which is even better than what we need). In the second case, again by Corollary 2.2, Gr has

a copy of Kk+1,k+1 with one vertex class in D and the other in V \ (D ∪ {v}), so v may be joined

to the second vertex class, thereby proving, again, that v appears in a Kk+2,k+1 copy of Gr. 2

After picking T1, . . . , Tq, we randomly select from each Ti, one vertex from each vertex class

and delete it from Ti, thereby forming a Kk,k which we denote by Si. All the 2q random selections
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are independent. Note that the probability that a vertex v ∈ Ti does not appear in Si is exactly

1/(k + 1). Let G′′ be the subgraph of G′ from which the edges of S1 ∪ . . . ∪ Sq have been deleted.

By (2) G′′ has |E′| − k2q ≥ k2(m − q) + t edges, so we can continue selecting, greedily, m − q

edge-disjoint additional copies of Kk,k which we denote by Sq+1, . . . , Sm.

Having produced the set L = {S1, . . . , Sm} by the process described above, we claim that L is

guaranteed to have, with positive probability, properties A and B. This is formally proved in the

next two lemmas.

Lemma 3.3 With probability at least 1− 1/n, every v ∈ V appears in at least n/(600k2) members

of L.

Proof: Let v ∈ V be arbitrary. We first show that v must appear in at least n/(100k2) copies

of X = {T1, . . . , Tq}. Recall the process which created X. Each Tr must contain a vertex which

appears the minimum number of times in T1, . . . , Tr−1. Thus, there is a vertex w which was chosen

as minimal at least q/n times. Let r0 be the last stage in which w was chosen as minimal. w

appears at least q/n− 1 times in T1, . . . , Tr0−1. and by the minimality of w, every v ∈ V appears

at least q/n− 1 times in T1, . . . , Tr0−1. However, q/n− 1 ≥ n/(100k2), proving what we wanted.

Let Yv = {i | v ∈ Ti}. By the first part above, |Yv| ≥ n/(100k2). Let Zv = {i | v ∈ Si, i ≤ q}. |Zv|
is a random variable which is the sum of |Yv| independent indicator variables whose probability of

success is k/(k+ 1). Thus, the expectation of |Zv| is k|Yv|/(k+ 1), and by the Chernoff inequality:

Prob[|Zv| −
k

k + 1
|Yv| < −

|Yv|
k

] < e
− 2|Yv |2

k2|Yv | = e−2
|Yv |
k2 < e−n/(50k

4) < 1/n2.

Thus, with probability greater than 1 − 1/n2, |Zv| is at least k|Yv|/(k + 1) − |Yv|/k ≥ |Yv|/6 ≥
n/(600k2), and therefore, with probability 1− n · 1/n2 = 1− 1/n this holds for every v ∈ V . 2

Lemma 3.4 With probability at least 0.5 the following holds: for every two distinct vertices a and

b, there there are at least n/(600k3) members of L which contain a and do not contain b.

Proof: Fix two distinct vertices a and b. Using the same notation of Lemma 3.3, let Ya = {i | a ∈
Ti}. By the proof of Lemma 3.3, |Ya| ≥ n/(100k2). Since the {T1, . . . , Tq} are edge-disjoint, there

is at most one member which contains a and b in distinct vertex classes (in other words, the edge

(a, b), if it exists, appears in at most one of the Ti). Let f(a, b) be the number of members of

{S1, . . . , Sq} which contain a and do not contain b. For each i ∈ Ya, (except for, maybe, at most

one member of Ya that contains the edge (a, b)) the probability that it contains a and does not

contain b is either 1/(k + 1) if a and b are in the same vertex class of Ti, or k/(k + 1) if b does

not appear in Ti. In any case, f(a, b) is the sum of |Ya| (or |Ya| − 1) independent indicator random
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variables having probability of success at least 1/(k + 1). Denoting by µ the expectation of f(a, b)

we have:

Prob[f(a, b)− µ < −|Ya|/2k] < e
− 2|Ya|2

4k2|Ya| = e−
|Ya|
2k2 < e−n/(200k

4) << 1/(2n2).

Thus, with probability greater than 1− 1/(2n2), f(a, b) ≥ µ− |Ya|/2k ≥ |Ya|/(k+ 1)− |Ya|/(2k) ≥
|Ya|/(6k) ≥ n/(600k3). Therefore, with probability 1 − n(n − 1)/(2n2) > 0.5 this holds for all

ordered pairs a and b. 2

By lemmas 3.3 and 3.4 we have that with probability at least 0.5− 1/n > 0.4, L satisfies both

properties A and B. We therefore fix a set L satisfying both of these properties. Let M denote the

set of edges which do not appear in any member of L. Clearly, M ⊃ E∗, |M | = m. Let F be those

edges of G′ that do not appear in any member of L. Thus, M = E∗ ∪ F . Our goal is to match the

m edges of M with the m members of L such that (a, b) ∈ M is matched to some Si ∈ L if and

only if exactly one of a or b is a vertex of Si. Such a matching shows that G has m edge-disjoint

copies of Hk, and thus an Hk-decomposition, as required. For this purpose we define a bipartite

graph B with two vertex classes of size m each. The left vertex class is M and the right vertex

class is L. A vertex of the left vertex class (namely some edge (a, b) ∈ M), is connected in B to a

vertex of the right vertex class (namely some Si ∈ L), if and only if exactly one of a and b appears

in Si. Our goal is, therefore, to show that B has a perfect matching. For this purpose, we will use

Hall’s Theorem (cf. e.g. [2]). Let M ′ ⊂ M be an arbitrary nonempty subset. We need to show

that N(M ′), the neighborhood of M ′ in B, satisfies |N(M ′)| ≥ |M ′|.
Let X ⊂ V be the set of vertices which are endpoints of at least one edge of M ′. Let X0 ⊂ X

be the subset of vertices which are incident with at least k edges of M ′, and let X1 = X \X0 be

the subset of vertices of X incident with less than k edges of M ′. An important observation about

X0 is the following:

Claim: If v ∈ X0 appears in Si then Si ∈ N(M ′).

Proof: The vertex class of Si which contains v has k − 1 vertices other than v. However, since

v ∈ X0, we know that there are at least k members of M ′ which have v as their endpoint. Therefore,

there exists some (v, w) ∈ M ′ such that w is not in the same vertex class of Si as v. Also, w is

not in the other vertex class of Si since (v, w) /∈ Si because (v, w) ∈ M ′ ⊂ M . Thus, w does not

appear at all in Si, and therefore, (v, w) is connected in B to Si. Hence, Si ∈ N(M ′). This proves

the claim.

In order to prove that |N(M ′)| ≥ |M ′| we distinguish between several cases, according to the

sizes of M ′ and X0.

• |M ′| ≤ n/(600k3).
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Consider an arbitrary member (a.b) ∈ M ′. By Lemma 3.4, there are at least n/(600k3)

members of L which contain a and do not contain b. It follows that |N(M ′)| ≥ |N({a, b})| ≥
n/(600k3) ≥ |M ′|, as required.

• |M ′| > n/(600k3) and |X0| ≤
√
n

(6k)5.5
.

Trivially, |M ′| ≤
(|X|

2

)
, which implies |X| >

√
2|M ′| >

√
n

18k
√
k
. Thus,

|X1| = |X| − |X0| ≥
√
n

18k
√
k
−
√
n

(6k)5.5
>

√
n

20k
√
k
.

Consider v ∈ X1, and let (v, w) ∈ M ′ be arbitrary. According to Lemma 3.4, there are at

least n/(600k3) members of L which contain v and do not contain w. All of these members

are neighbors of (v, w) in B. Thus, they are all in N(M ′). Since this is true for every v ∈ X1,

we have at least |X1|n/(600k3) members of L counted in this way, and since no copy of L is

counted more than 2k times (2k is the number of vertices of Kk,k), we get that

|N(M ′)| ≥ |X1|n
1200k4

.

Note that, obviously, (n − 1)|X0| + (k − 1)|X1| ≥ 2|M ′| (the l.h.s. bounds from above the

sum of the degrees in the subgraph induced by M ′) which implies |M ′| < n|X0|+k|X1|
2 . Thus,

it suffices to show that
n|X0|+ k|X1|

2
≤ |X1|n

1200k4
.

This is equivalent to showing that

|X0| ≤ (
1

600k4
− k

n
)|X1|.

Indeed,

|X0| ≤
√
n

(6k)5.5
≤ (

1

600k4
− k

n
)

√
n

20k
√
k
≤ (

1

600k4
− k

n
)|X1|.

• |M ′| > n/(600k3) and
√
n/(6k)5.5 < |X0| < n/(1000k3).

Clearly, |M ′| ≤ |X1|(k − 1) +
(|X0|

2

)
< nk +

(|X0|
2

)
. By Lemma 3.3, every v ∈ X0 appears

in at least n/(600k2) members of L. By the claim proved above, if v appears in Si then

Si ∈ N(M ′). Thus, every v ∈ X0 contributes at least n/(600k2) members to N(M ′), and

every such member Si is counted at most 2k times by these contributions (since Si has 2k

vertices). Therefore,

|N(M ′)| ≥ n

600k2
|X0|

1

2k
.
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Now, for
√
n/(6k)5.5 < |X0| < n/(1000k3) we have

|M ′| < nk +

(
|X0|

2

)
<

n

1200k3
|X0| ≤ |N(M ′)|

as required.

• |M ′| > n/(600k3) and n/(1000k3) ≤ |X0| ≤ 2n/3 + k3.

In this case, we can use Lemma 3.1 applied to |X0| (note that 2n/3 + k3 < 3n/4 for n

sufficiently large). Let x be the number of members of L having a vertex of X0. Clearly,

x ≤ |N(M ′)|. Let z1 denote the number of members of M with both endpoints in X0, and

let z2 denote the number of edges of E∗ with both endpoints in X0. Since M = E∗ ∪ F and

since, by (2) |F | = |E′| − k2m ≤ 3t, we get that z1 ≤ 3t+ z2 and therefore

|M ′| ≤ |X1|(k − 1) + z1 < kn+ z1 ≤ kn+ 3t+ z2.

Hence, it suffices to show that x ≥ kn+ 3t+ z2. According to Lemma 3.1, z, the number of

edges of E′ with at least one endpoint in X0 satisfies z ≥ 4tk2 + k2z2. These z edges, except

for the edges of F , all appear in the members of L. Thus, the number of edges in members

of L which have at least one endpoint in X0 is at least 4tk2 + k2z2 − 3t. Since each member

of L has k2 edges we get that

x ≥ 4t+ z2 −
3t

k2
≥ 3t+ z2 +

t

4
> kn+ 3t+ z2.

• |M ′| > n/(600k3) and |X0| > 2n/3 + k3.

Let n′ = n − |X0| be the size of V \X0. The conditions imply that n′ ≤ n/3 − k3. If some

Si ∈ L is not in N(M ′) then, according to the claim proved above, Si contains no vertex of

X0, and therefore all its 2k vertices are in V \X0. Thus, N(M ′) ≥ m−
(n′
2

)
/k2. We need to

show that |M ′| ≤ m −
(n′
2

)
/k2, or, equivalently, that |M \M ′| ≥

(n′
2

)
/k2. Consider a vertex

v ∈ V \X0. By Lemma 3.1,

dG∗(v) ≥ dG(v)

k2 + 1
− 9t/n ≥ n

2k2 + 2
− 9n1−1/(k+1) ≥ n

3k2
.

Thus, since M ⊃ E∗, there are at least n/(3k2) edges of M having v as an endpoint. Either

v /∈ X or v ∈ X1. In any case, v is an endpoint of at most k − 1 edges of M ′. Thus, there

are at least n/(3k2)− k + 1 edges of M \M ′ having v as an endpoint. Since this is true for

every v ∈ V \ X0, we have that there are at least (n/(3k2) − k + 1)n′/2 edges in M \M ′.
Thus, we must show that (n/(3k2) − k + 1)n′/2 ≥ n′(n′ − 1)/(2k2). Indeed, this holds for

n′ ≤ n/3− k3. 2
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4 Concluding remarks and open problems

1. The graphs Hk which are used to prove Theorem 1.1 have density which is arbitrary close to

1/2. In particular, k2 + 1, the number of edges of Hk, is a quadratic function of the number

of vertices, which is 2k + 1. Thus, the graphs Hk are dense. However, the minimum degree

of Hk is 1. It is an open problem whether there exist graphs H with arbitrary high minimum

degree for which the statement of Theorem 1.1 holds. Namely, is it possible to determine

the limit of fH(n)/n for graphs H with arbitrary high minimum degree. A somewhat less

ambitious problem, but still an open one, is to find a graph H with δ(H) = 2, for which the

limit of fH(n)/n can be determined.

2. Another obstacle in extending Theorem 1.1 to other families of graphs is the chromatic

number. The graphs Hk are bipartite, and so are all trees, for which the limit of fH(n)/n

is determined in [9]. It will be interesting to find graphs H with arbitrary high chromatic

number, for which fH(n)/n can be asymptotically determined. We do not even know of a

3-Chromatic graph for which this can be done.

3. Although Theorem 1.1 determines the asymptotic behavior of fHk
(n), i.e. fHk

(n) = n
2 (1 +

o(1)) there is still a sublinear gap between the lower bound of bn/2c−1 and the upper bound

of n/2 +O(n1−1/(k+1)). It would be interesting to close this gap.

4. As mentioned in the introduction, a lower bound of bn/2c − 1 for fH(n) is described in [9],

and applies to all connected graphs with at least three vertices (this lower bound is valid

for n ≥ n0(H) since when n is small there is some noise). For the sake of completeness,

we describe it here for H = Hk. We will assume that n ≥ 4k2 is even, although a similar

argument holds when n > 4k2 is odd. It suffices to show the existence of a graph G = (V,E)

with n vertices, and δ(G) = n/2 − 2 where k2 + 1 divides |E|, but still there is no Hk-

decomposition of G. Put n = 2x and let d = x(x − 1) mod (k2 + 1), where 0 ≤ d ≤ k2. If

d 6= 0 consider the graph G obtained from the vertex-disjoint union of Kx and Px,d where

Px,d is the complete graph on x vertices from which d independent edges have been removed.

(We can remove d independent edges since 2d ≤ 2k2 ≤ n/2 = x). G has 2x = n vertices,

|E| = x(x− 1)− d edges, and so k2 + 1 divides |E|. Also δ(G) = x− 2 = n/2− 2. However,

G does not have an Hk-decomposition since k2 + 1 does not divide
(x
2

)
, which is the number

of edges of the connected component Kx of G. If d = 0 we can take G to be the union of Px,1

and Px,k2 , and once again G has |E| = x(x − 1) − (k2 + 1) edges, and so k2 + 1 divides |E|.
δ(G) = x − 2 = n/2 − 2, and G does not have an Hk decomposition since k2 + 1 does not
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divide
(x
2

)
− 1, which is the number of edges of the component Px,1.

5. As mentioned in the introduction, Theorem 1.1 can be extended to show that if G has

minimum degree n
2 (1 + o(1)) but does not have the necessary Hk-decomposition conditions

(i.e. the number of edges of G is not divisible by k2 + 1) then G still has an optimal packing,

namely, there exist b|EG|/(k2+1)c edge-disjoint copies of Hk in G. This follows from Theorem

1.1, since if δ(G) ≥ n/2 + 20k2n1−1/(k+1) + 1, and if d = |EG| mod (k2 + 1) where 1 ≤ d ≤ k2,
then by deleting from G an arbitrary set of d independent edges we remain with a subgraph

Gα with n vertices, δ(Gα) = δ(G) − 1 ≥ n/2 + 20k2n1−1/(k+1), and Gα does satisfy the

necessary Hk-decomposition conditions, so by Theorem 1.1 Gα has an Hk-decomposition,

and the number of members in this decomposition is b|EG|/(k2 + 1)c.
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