Decomposing large graphs with small graphs of high density

Raphael Yuster *
Department of Mathematics
University of Haifa-ORANIM
Tivon 36006, Israel

Abstract

It is shown that for every positive integer h, and for every $\epsilon>0$, there are graphs $H=\left(V_{H}, E_{H}\right)$ with at least h vertices and with density at least $0.5-\epsilon$ with the following property: If $G=$ $\left(V_{G}, E_{G}\right)$ is any graph with minimum degree at least $\frac{\left|V_{G}\right|}{2}(1+o(1))$ and $\left|E_{H}\right|$ divides $\left|E_{G}\right|$ then G has an H-decomposition. This result extends the results of Wilson [8], Gustavsson [6] and Yuster [9].

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the standard graph-theoretic notations the reader is referred to [2]. Let H be a graph without isolated vertices. An H-packing of a graph G is a set $L=\left\{G_{1}, \ldots, G_{s}\right\}$ of edge-disjoint subgraphs of G, where each subgraph is isomorphic to H. The H-packing number of G, denoted by $P(H, G)$, is the maximum cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing with the property that every edge of G appears in exactly one member of the H-packing. Note that in order for G to have an H-decomposition, two necessary conditions must hold. The first is that $e(H)$ divides $e(G)$. The second is that $\operatorname{gcd}(H)$ divides $\operatorname{gcd}(G)$ where the $g c d$ of a graph is the greatest common-divisor of the degrees of its vertices. Note that for any pair of graphs G and H, we can verify in polynomial time if G satisfies these two conditions. We call these conditions the "necessary H-decomposition conditions".

The combinatorial and computational aspects of the H-packing and H-decomposition problems have been studied extensively. Wilson in [8] has proved that if $G=K_{n}$ where $n \geq n_{0}=n_{0}(H)$, and K_{n} satisfies the necessary H-decomposition conditions, then K_{n} has an H-decomposition.

[^0]Recently, the H-packing problem for $G=K_{n}(n \geq n(H))$ was solved [3], by giving a closed formula for computing $P\left(H, K_{n}\right)$. In case the graph G is not complete, it is known that the H-decomposition and H-packing problems are, in general, NP-Hard, since Dor and Tarsi [5] showed that deciding if G has an H-decomposition is NP-Complete, where H is any fixed connected graph with at least three edges. In view of Wilson's positive result, and the Dor-Tarsi negative result, the following extremal problem is naturally raised:
Problem 1: Determine $f_{H}(n)$, the smallest possible integer, such that whenever G has n vertices, and $\delta(G) \geq f_{H}(n)$, and G satisfies the necessary H-decomposition conditions, then G has an H-decomposition.

Wilson's result proves that $f_{H}(n)$ exists, for $n \geq n_{0}(H)$, or, in other words, $f_{H}(n) \leq n-1$ for $n \geq n_{0}(H)$. It turns out that estimating $f_{H}(n)$ is extremely difficult for general H. The first, and only, nontrivial general upper bound for $f_{H}(n)$ was obtained in 1991 by Gustavsson [6]. He has shown that if $\delta(G) \geq(1-\epsilon(H)) n$, where $\epsilon(H)$ is some small positive constant depending on H, and G satisfies the necessary H-decomposition conditions, then G has an H-decomposition. In other words, $f_{H}(n) \leq(1-\epsilon(H)) n$, for n sufficiently large. Unfortunately, the $\epsilon(H)$ in Gustavsson's result is a very small number. For example, if H is a triangle then $\epsilon(H) \leq 10^{-24}$. In general, $\epsilon(H) \leq 10^{-24} /|H|$ (in fact, it is much smaller). It is believed, however, that the correct value for $f_{H}(n)$ is much smaller. In fact, Nash-Williams conjectured in [7] that when H is a triangle, then $f_{H}(n) \leq\lceil 3 n / 4\rceil$, and he also gives an example showing that this would be be best possible, and thus his conjecture is that $f_{H}(n)=\lceil 3 n / 4\rceil$. However, the best result still known for triangles is Gustavsson's asymptotic result.

The first significant improvement over Gustavsson's result was obtained by the author in [9] in case the graph H is a tree (or a forest). It is shown there that $f_{H}(n) \leq n / 2+h^{4} \sqrt{n \log n}$, where h is the number of vertices of the tree H. This result is asymptotically best possible as it is also shown in [9] that $f_{H}(n) \geq\lfloor n / 2\rfloor-1$ for every connected graph H with at least 3 vertices.

Prior to this article, trees are the only graphs for which $f_{H}(n) / n$ is asymptotically known. If H has a cycle, then the best estimate that was known is Gustavsson's result. The purpose of this paper is to construct a family of graphs which are much more dense than trees, for which $f_{H}(n) / n$ can also be asymptotically determined. Recall that the density of a graph H with m edges and n vertices is $d(H)=m /\binom{n}{2}$. Thus, trees on n vertices have very low density, namely $2 / n$, while complete graphs have the maximum possible density, namely 1 . We will show that there is an infinite family of graphs with the property that for every $\epsilon>0$ and for every positive integer h, there is a graph H in the family with at least h vertices and with density at least $0.5-\epsilon$, for which $f_{H}(n) / n \rightarrow 0.5$ when $n \rightarrow \infty$. We summarize our exact result in the following Theorem:

Theorem 1.1 Let h be a positive integer, and let $\epsilon>0$. There exists a graph $H=\left(V_{H}, E_{H}\right)$ with $\left|V_{H}\right| \geq h$ and with $d(H) \geq 0.5-\epsilon$ having $f_{H}(n) / n \rightarrow 0.5$ when $n \rightarrow \infty$.

Theorem 1.1 can be extended easily to show that if $G=\left(V_{G}, E_{G}\right)$ has minimum degree $\frac{n}{2}(1+o(1))$, but does not satisfy the necessary H-decomposition conditions then there is an optimal packing in the sense that $P(H, G)=\left\lfloor\left|E_{G}\right| /\left|E_{H}\right|\right\rfloor$.

In the following section we describe the graphs H of Theorem 1.1 and mention some of their properties. The proof of Theorem 1.1, which requires some probabilistic arguments, appears in Section 3. Section 4 contains some concluding remarks and open problems.

A word about notation used in this sequel. $d_{G}(v)$ is used to denote the degree of a vertex v in the graph $G=(V, E)$. $e(G)$ is used to denote the number of edges of G. For $X \subset V$, we denote by $G[X]$ the subgraph induced by $X . e(X, Y)$ denotes the number of edges between X and Y, and $e(X)$ denotes the number of edges in $G[X] . d(v, X)$ denotes the number of neighbors of v in X. Finally, we note that all logarithms mentioned are natural.

2 Graphs with high density which decompose nicely

Given ϵ and h, we now show how to choose the graph H for which Theorem 1.1 is applied. Let h_{0} be the smallest odd number satisfying

$$
h_{0} \geq \max \{h, 5,1 /(2 \epsilon)\} .
$$

and put $h_{0}=2 k+1$. Note that $k \geq 2$. Let H_{k} be the graph obtained from $K_{k, k}$ by adding to it a new vertex which is connected by an edge to some vertex of $K_{k, k}$. Clearly, H_{k} has h_{0} vertices and $k^{2}+1$ edges, and its density is

$$
d\left(H_{k}\right)=\frac{1}{2}-\frac{1}{2 h_{0}}+\frac{2}{h_{0}\left(h_{0}-1\right)} \geq \frac{1}{2}-\epsilon .
$$

Also, $\operatorname{gcd}\left(H_{k}\right)=1$, so the only necessary H_{k}-decomposition condition is that the number of edges of the large graph be divisible by $k^{2}+1$. We will prove Theorem 1.1 for $H=H_{k}$, and for the remainder of this section, and Section 3, we fix k and H_{k}.

In the proof of Theorem 1.1 we need to use the fact that $K_{k, k}$ has a low Turán number, and a low Bipartite Turán number. This was proved by several researchers, and we shall use the result of Znám [10] (also in [2]):

Lemma 2.1 [Znám [10]]

1. If G has n vertices and G does not contain $K_{k, k}$ as a subgraph, then the number of edges of G is less than

$$
\frac{1}{2}\left((k-1)^{1 / k} n^{2-1 / k}+\frac{k-1}{2} n\right) .
$$

2. If B is a bipartite graph with at most n vertices in each vertex class and B does not contain $K_{k, k}$ as a subgraph, then the number of edges of B is less than

$$
(k-1)^{1 / k} n^{2-1 / k}+\frac{k-1}{2} n .
$$

Corollary 2.2 Suppose $n \geq k$. If G is a graph with n vertices not containing $K_{k, k}$ then G has less than $n^{2-1 / k}$ edges. If B is a bipartite graph with at most n vertices in each vertex class, and B does not contain $K_{k, k}$, then B has less than $2 n^{2-1 / k}$ edges.

The corollary follows from Lemma 2.1 by observing that whenever $n \geq k, 2 n^{2-1 / k} \geq(k-$ $1)^{1 / k} n^{2-1 / k}+\frac{k-1}{2} n$.

3 Proof of the main result

In order to prove Theorem 1.1, we will show that for n sufficiently large (as a function of k)

$$
f_{H_{k}}(n) \leq \frac{n}{2}+20 k^{2} n^{1-1 /(k+1)}
$$

This, together with the lower bound $f_{H}(n) \geq\lfloor n / 2\rfloor-1$ mentioned in the introduction (and which applies to any connected graph H with at least 3 vertices, in particular, it applies to H_{k}) shows that $f_{H_{k}}(n) / n \rightarrow 0.5$ when $n \rightarrow \infty$.

Given a graph $G=(V, E)$ on n vertices, $e(G)=m\left(k^{2}+1\right)$ edges, having $\delta(G) \geq n / 2+$ $20 k^{2} n^{1-1 /(k+1)}$, we must show that G has an H_{k}-decomposition. As mentioned before, whenever necessary, we shall assume that n is sufficiently large as a function of k.

Put $t=n^{2-1 /(k+1)}$. Our initial step is to show that G contains a spanning subgraph G^{*} with at most $m-t$ edges, and at least $m-3 t$ edges, whose expansion properties resemble those of G. This is done in the following lemma:

Lemma 3.1 G has a spanning subgraph $G^{*}=\left(V, E^{*}\right)$ with the following properties:
1.

$$
m-t \geq\left|E^{*}\right| \geq m-3 t .
$$

2. For every $v \in V$,

$$
\frac{d_{G}(v)}{k^{2}+1}-t / n \geq d_{G^{*}}(v) \geq \frac{d_{G}(v)}{k^{2}+1}-9 t / n
$$

3. Let $X_{0} \subset V$ be an arbitrary subset of vertices satisfying $n /\left(1000 k^{3}\right) \leq\left|X_{0}\right| \leq 3 n / 4$. Let z denote the number of edges not in G^{*} which have an endpoint in X_{0}. Then:

$$
z \geq 4 t k^{2}+k^{2} e\left(G^{*}\left[X_{0}\right]\right)
$$

where $e\left(G^{*}\left[X_{0}\right]\right)$ is the number of edges of G^{*} with both endpoints in X_{0}.
Proof: We will show the existence of G^{*} using a probabilistic argument. Let $p=\frac{m-2 t}{m\left(k^{2}+1\right)}$. We first show that $p>1 /\left(2 k^{2}+2\right)$. This is equivalent to showing that $t<m / 4$, and this holds since

$$
t=n^{2-1 /(k+1)}<\frac{n^{2}}{16\left(k^{2}+1\right)}=\frac{m}{4} \frac{n^{2} / 4}{e(G)}<\frac{m}{4}
$$

(In the last inequality, we have used here the fact that n is sufficiently large as a function of k, and we have also used the obvious fact that $\left.e(G)>n^{2} / 4\right)$. Each edge of G chooses to be in G^{*} by flipping a biased coin with probability p for being in G^{*}. All the choices of all the edges are independent. We now show that with high probability, the three conditions required of G^{*} hold.

1. The expected number of edges of G^{*} is exactly $m-2 t$. Since $\left|E^{*}\right|$, the number of edges of G^{*}, is the sum of $m\left(k^{2}+1\right)$ indicator random variables, it has binomial distribution, so we can use the Chernoff inequality (c.f. [1]) to bound the deviation of $\left|E^{*}\right|$ from its mean:

$$
\operatorname{Prob}\left[\left|\left|E^{*}\right|-(m-2 t)\right|>t\right]<2 e^{-\frac{2 t^{2}}{m\left(k^{2}+1\right)}}<2 e^{-\frac{2 n^{4-2 /(k+1)}}{n^{2} / 2}}=2 e^{-4 n^{2-2 /(k+1)}}<1 / n
$$

Thus, with probability at least $1-1 / n, m-t \geq\left|E^{*}\right| \geq m-3 t$.
2. Consider a vertex v. The expected degree of v in G^{*} is exactly $p \cdot d_{G}(v)$. Once again, $d_{G^{*}}(v)$ has binomial distribution, so according to the Chernoff inequality, we know that

$$
\operatorname{Prob}\left[\left|d_{G^{*}}(v)-p \cdot d_{G}(v)\right|>\sqrt{n \log n}\right]<2 e^{-2 n \log n / d_{G}(v)}<2 e^{-2 \log n}=\frac{2}{n^{2}}
$$

Thus, with probability at least $1-2 / n$, we have that for every $v \in V$,

$$
\left|d_{G^{*}}(v)-p \cdot d_{G}(v)\right| \leq \sqrt{n \log n}
$$

This translates to

$$
\begin{gathered}
d_{G^{*}}(v) \geq p \cdot d_{G}(v)-\sqrt{n \log n}=\frac{d_{G}(v)}{k^{2}+1}-\frac{2 t d_{G}(v)}{m\left(k^{2}+1\right)}-\sqrt{n \log n} \geq \\
\frac{d_{G}(v)}{k^{2}+1}-\frac{2 n^{2-1 /(k+1)} n}{n^{2} / 4}-\sqrt{n \log n}=\frac{d_{G}(v)}{k^{2}+1}-8 n^{1-1 /(k+1)}-\sqrt{n \log n}>
\end{gathered}
$$

$$
\frac{d_{G}(v)}{k^{2}+1}-9 n^{1-1 /(k+1)}=\frac{d_{G}(v)}{k^{2}+1}-9 t / n .
$$

and

$$
\begin{gathered}
d_{G^{*}}(v) \leq p \cdot d_{G}(v)+\sqrt{n \log n}=\frac{d_{G}(v)}{k^{2}+1}-\frac{2 t d_{G}(v)}{m\left(k^{2}+1\right)}+\sqrt{n \log n} \leq \\
\frac{d_{G}(v)}{k^{2}+1}-\frac{2 n^{2-1 /(k+1)} n / 2}{n^{2} / 2}+\sqrt{n \log n}= \\
\frac{d_{G}(v)}{k^{2}+1}-2 n^{1-1 /(k+1)}+\sqrt{n \log n} \leq \frac{d_{G}(v)}{k^{2}+1}-n^{1-1 /(k+1)}=\frac{d_{G}(v)}{k^{2}+1}-t / n .
\end{gathered}
$$

3. Now consider a set $X_{0} \subset V$ satisfying $n /\left(1000 k^{3}\right) \leq\left|X_{0}\right| \leq 3 n / 4$. Let $y=e_{G}\left(X_{0}, V \backslash X_{0}\right)$ denote the number of edges of G with only one endpoint in X_{0}, and let $y^{*}=e_{G^{*}}\left(X_{0}, V \backslash X_{0}\right)$. If $\left|X_{0}\right| \leq n / 2$ then $y \geq\left|X_{0}\right|\left(n / 2+20 k^{2} n^{1-1 /(k+1)}-\left|X_{0}\right|\right)$. By elementary calculus, if n is sufficiently large then the minimum for y is obtained when $\left|X_{0}\right|=n / 2$, and then

$$
\begin{equation*}
y \geq \frac{n}{2} 20 k^{2} n^{1-1 /(k+1)}=10 t k^{2} . \tag{1}
\end{equation*}
$$

If $\left|X_{0}\right| \geq n / 2$ then $y \geq\left(n-\left|X_{0}\right|\right)\left(n / 2+20 k^{2} n^{1-1 /(k+1)}-\left(n-\left|X_{0}\right|\right)\right)$. Once again, if n is sufficiently large the minimum is obtained when $\left|X_{0}\right|=n / 2$ and thus (1) holds in any case. Clearly, the expectation of y^{*} is $p y$. Now, by the Chernoff inequality,

$$
\begin{gathered}
\operatorname{Prob}\left[y^{*}>3 p y / 2\right]=\operatorname{Prob}\left[y^{*}-p y>p y / 2\right]<e^{-2(p y / 2)^{2} / y}=e^{-p^{2} y / 2}<e^{-y /\left(8\left(k^{2}+1\right)^{2}\right)}< \\
e^{-10 t k^{2} / 20 k^{4}}=e^{-t /\left(2 k^{2}\right)}=e^{-n^{2-1 /(k+1)} /\left(2 k^{2}\right)}<e^{-n}
\end{gathered}
$$

As there are 2^{n} possible subsets of V (and even less possible subsets which may correspond to X_{0}), we have that with probability at least $1-(2 / e)^{n}$, for all X_{0}, the corresponding y^{*} satisfies $y^{*} \leq 3 p y / 2$.

We now show that when $y^{*} \leq 3 p y / 2$ then also $y-y^{*} \geq 5 t k^{2}$. Indeed, according to (1), $y / 2 \geq 5 t k^{2}$. Also, trivially, $y / 2>1.5 p y$ since $p<1 /\left(k^{2}+1\right)<1 / 3$. Thus, $y=y / 2+y / 2>$ $1.5 p y+5 t k^{2} \geq y^{*}+5 t k^{2}$. Consider first the case where $e\left(G\left[X_{0}\right]\right) \leq t$. In this case,

$$
z \geq y-y^{*} \geq 5 t k^{2} \geq 4 t k^{2}+k^{2} e\left(G\left[X_{0}\right]\right) \geq 4 t k^{2}+k^{2} e\left(G^{*}\left[X_{0}\right]\right)
$$

Now consider the case where $e\left(G\left[X_{0}\right]\right)>t$. The expectation of $e\left(G^{*}\left[X_{0}\right]\right)$ is $p \cdot e\left(G\left[X_{0}\right]\right)$. Using the Chernoff inequality we obtain

$$
\begin{gathered}
\operatorname{Prob}\left[e\left(G^{*}\left[X_{0}\right]\right)>\frac{e\left(G\left[X_{0}\right]\right)}{k^{2}+1}\right]=\operatorname{Prob}\left[e\left(G^{*}\left[X_{0}\right]\right)-p \cdot e\left(G\left[X_{0}\right]\right)>\frac{2 t}{m\left(k^{2}+1\right)} e\left(G\left[X_{0}\right]\right)\right] \\
\quad<e^{-\frac{8 t^{2} e\left(G\left[X_{0}\right]\right)^{2}}{m^{2}\left(k^{2}+1\right)^{2} e\left(G\left[X_{0}\right]\right)}}=e^{-\frac{8 t^{2} e\left(G\left[X_{0}\right]\right)}{m^{2}\left(k^{2}+1\right)^{2}}} \leq e^{-\frac{8 t^{3}}{e(G)^{2}}}<e^{-\frac{8\left(n^{2-1 /(k+1)}{ }^{3}\right.}{\left(n^{2} / 2\right)^{2}}}<e^{-32 n} .
\end{gathered}
$$

Therefore, with probability at least $1-\left(2 / e^{32}\right)^{n}$, for all subsets X_{0} having $e\left(G\left[X_{0}\right]\right)>t$, we have that $e\left(G^{*}\left[X_{0}\right]\right) \leq \frac{e\left(G\left[X_{0}\right]\right)}{k^{2}+1}$. This implies that
$z=y-y^{*}+e\left(G\left[X_{0}\right]\right)-e\left(G^{*}\left[X_{0}\right]\right) \geq 5 t k^{2}+\left(k^{2}+1\right) e\left(G^{*}\left[X_{0}\right]\right)-e\left(G^{*}\left[X_{0}\right]\right)>4 t k^{2}+k^{2} e\left(G^{*}\left[X_{0}\right]\right)$.

Summing up all the probabilities, we have that with probability at least

$$
1-\left(2 / e^{32}\right)^{n}-(2 / e)^{n}-2 / n-1 / n>0
$$

all of the properties required from G^{*} in parts 1,2 and 3 of the lemma hold.
We now fix G^{*} with the properties guaranteed by Lemma 3.1. Let $G^{\prime}=\left(V, E^{\prime}\right)$ be the spanning subgraph of G obtained by removing from G the edges of G^{*}. Hence $E^{\prime}=E \backslash E^{*}$. By lemma 3.1, $m-3 t \leq\left|E^{*}\right| \leq m-t$, and therefore

$$
\begin{equation*}
k^{2} m+3 t \geq\left|E^{\prime}\right| \geq k^{2} m+t . \tag{2}
\end{equation*}
$$

By Lemma 3.1, $d_{G^{*}}(v)<d_{G}(v) /\left(k^{2}+1\right)$ for every $v \in V$. Thus,

$$
\frac{n}{2}<d_{G}(v)=d_{G^{\prime}}(v)+d_{G^{*}}(v)<d_{G^{\prime}}(v)+\frac{d_{G}(v)}{k^{2}+1} .
$$

Hence, since $k \geq 2$,

$$
\begin{equation*}
\forall v \in V: d_{G^{\prime}}(v) \geq d_{G}(v) \frac{k^{2}}{k^{2}+1} \geq \frac{n}{2} \cdot \frac{4}{5}=0.4 n \tag{3}
\end{equation*}
$$

Our next step is to find in G^{\prime} a set L of exactly m edge-disjoint copies of $K_{k, k}$. L can clearly be constructed in a greedy way, using the fact that $\left|E^{\prime}\right| \geq k^{2} m+t$, for as long as there are t edges of E^{\prime} which are not assigned to any copy of $K_{k, k}$, we can find an additional copy using Corollary 2.2 , since $t>n^{2-1 / k}$. However, we do not want to create L by an entirely greedy procedure, since we want L to satisfy two requirements (the reason for insisting on these requirement will be made apparent later). The requirements are:

1. property A: Every vertex appears in at least $n /\left(600 k^{2}\right)$ members of L.
2. property B: For every two distinct vertices a and b, there are at least $n /\left(600 k^{3}\right)$ members of L which contain a and do not contain b.

In the following paragraph we describe how to pick the m copies of $K_{k, k}$ in such a way that both requirements are met.
Put $q=\left\lceil n^{2} /\left(100 k^{2}\right)+n\right\rceil$. We begin by picking a set of q copies of $K_{k+1, k+1}$ which we denote by T_{1}, \ldots, T_{q} as follows: Suppose we have already picked $T_{1}, \ldots T_{r}$, where $0 \leq r<q$. We show how T_{r+1} is selected. Let $G_{r}=\left(V, E_{r}\right)$ be the spanning subgraph of G^{\prime} consisting of the edges of E^{\prime} that
are not used by $T_{1} \cup \ldots \cup T_{r}$ (initially, $G_{0}=G^{\prime}$). Let v be the vertex which appears the minimum number of times in $\left\{T_{1}, \ldots, T_{r}\right\}$. We pick T_{r+1} to be a copy of $K_{k+1, k+1}$ in G_{r}, which contains v. We must show that, indeed, there exists a copy of $K_{k+1, k+1}$ in G_{r} which contains v. This is proved in the following lemma:

Lemma 3.2 If v appears the minimum number of times in T_{1}, \ldots, T_{r}, then there exists a $K_{k+1, k+1}$ in G_{r} which contains v.

Proof: Let $X=\left\{T_{1}, \ldots T_{r}\right\}$, and suppose the number of members of X having v as a vertex is minimum. Each T_{i} has $2(k+1)$ vertices. Overall there are $2(k+1) r$ vertices in all the members of X, so v appears in at most $2(k+1) r / n$ members of X. Now,

$$
\begin{equation*}
\frac{2(k+1) r}{n} \leq \frac{2(k+1)(q-1)}{n} \leq 2(k+1)\left(\frac{n}{100 k^{2}}+1\right)=\frac{n}{50 k}+\frac{n}{50 k^{2}}+2 k+2<\frac{n}{30 k} . \tag{4}
\end{equation*}
$$

(The fact that $n /(50 k)+n /\left(50 k^{2}\right)+2 k+2<n /(30 k)$ follows from the fact that $k \geq 2$ and n is sufficiently large.) Therefore, v appears in less than $n /(30 k)$ members of X. Let D be the neighborhood of v in G_{r}, and put $d=|D|$, the degree of v in G_{r}. By (4) $d>d_{G^{\prime}}(v)-(k+1) \cdot(n / 30 k)$. By (3), $d_{G^{\prime}}(v) \geq 0.4 n$, so $d>0.4 n-3 n / 60>0.3 n$.
We claim that there are more than $3 t+d$ edges of G_{r} with an endpoint in D. To see this, note that by (3), the sum of degrees of the vertices of D in G^{\prime} is at least $0.4 n d>0.4 n \cdot 0.3 n=0.12 n^{2}$. There are $(k+1)^{2} r$ edges which appear in G^{\prime} and do not appear in G_{r}. Thus, the sum of the degrees of the vertices of D in G_{r} is greater than $0.12 n^{2}-2(k+1)^{2} r$. However,
$0.12 n^{2}-2(k+1)^{2} r \geq 0.12 n^{2}-2(k+1)^{2}\left(\frac{n^{2}}{100 k^{2}}+n\right)>0.07 n^{2}>8 n^{2-1 /(k+1)}=6 t+2 t>6 t+2 d$.
So, the sum of the degrees of the vertices of D in G_{r} is greater than $6 t+2 d$, and thus there are more than $3 t+d$ edges of G_{r} with an endpoint in D.
Excluding from the edges with an endpoint in D the d edges connected to v, we still remain with more than $3 t$ edges. Thus, either there are t edges of G_{r} with both endpoints in D, or there are $2 t$ edges in the bipartite subgraph of G_{r} induced by the vertex classes D and $V \backslash(D \cup\{v\})$. In the first case, by Corollary 2.2, G_{r} has a copy of $K_{k+1, k+1}$ whose edges are all in $G_{r}[D]$, so v may be joined to either vertex class of this $K_{k+1, k+1}$, thereby proving that v appears in a $K_{k+2, k+1}$ copy of G_{r} (which is even better than what we need). In the second case, again by Corollary 2.2, G_{r} has a copy of $K_{k+1, k+1}$ with one vertex class in D and the other in $V \backslash(D \cup\{v\})$, so v may be joined to the second vertex class, thereby proving, again, that v appears in a $K_{k+2, k+1}$ copy of G_{r}.

After picking T_{1}, \ldots, T_{q}, we randomly select from each T_{i}, one vertex from each vertex class and delete it from T_{i}, thereby forming a $K_{k, k}$ which we denote by S_{i}. All the $2 q$ random selections
are independent. Note that the probability that a vertex $v \in T_{i}$ does not appear in S_{i} is exactly $1 /(k+1)$. Let $G^{\prime \prime}$ be the subgraph of G^{\prime} from which the edges of $S_{1} \cup \ldots \cup S_{q}$ have been deleted. By (2) $G^{\prime \prime}$ has $\left|E^{\prime}\right|-k^{2} q \geq k^{2}(m-q)+t$ edges, so we can continue selecting, greedily, $m-q$ edge-disjoint additional copies of $K_{k, k}$ which we denote by S_{q+1}, \ldots, S_{m}.

Having produced the set $L=\left\{S_{1}, \ldots, S_{m}\right\}$ by the process described above, we claim that L is guaranteed to have, with positive probability, properties A and B. This is formally proved in the next two lemmas.

Lemma 3.3 With probability at least $1-1 / n$, every $v \in V$ appears in at least $n /\left(600 k^{2}\right)$ members of L.

Proof: Let $v \in V$ be arbitrary. We first show that v must appear in at least $n /\left(100 k^{2}\right)$ copies of $X=\left\{T_{1}, \ldots, T_{q}\right\}$. Recall the process which created X. Each T_{r} must contain a vertex which appears the minimum number of times in T_{1}, \ldots, T_{r-1}. Thus, there is a vertex w which was chosen as minimal at least q / n times. Let r_{0} be the last stage in which w was chosen as minimal. w appears at least $q / n-1$ times in $T_{1}, \ldots, T_{r_{0}-1}$. and by the minimality of w, every $v \in V$ appears at least $q / n-1$ times in $T_{1}, \ldots, T_{r_{0}-1}$. However, $q / n-1 \geq n /\left(100 k^{2}\right)$, proving what we wanted. Let $Y_{v}=\left\{i \mid v \in T_{i}\right\}$. By the first part above, $\left|Y_{v}\right| \geq n /\left(100 k^{2}\right)$. Let $Z_{v}=\left\{i \mid v \in S_{i}, i \leq q\right\}$. $\left|Z_{v}\right|$ is a random variable which is the sum of $\left|Y_{v}\right|$ independent indicator variables whose probability of success is $k /(k+1)$. Thus, the expectation of $\left|Z_{v}\right|$ is $k\left|Y_{v}\right| /(k+1)$, and by the Chernoff inequality:

$$
\operatorname{Prob}\left[\left|Z_{v}\right|-\frac{k}{k+1}\left|Y_{v}\right|<-\frac{\left|Y_{v}\right|}{k}\right]<e^{-\frac{2\left|Y_{v}\right|^{2}}{k^{2}\left|Y_{v}\right|}}=e^{-2 \frac{\left|Y_{v}\right|}{k^{2}}}<e^{-n /\left(50 k^{4}\right)}<1 / n^{2}
$$

Thus, with probability greater than $1-1 / n^{2},\left|Z_{v}\right|$ is at least $k\left|Y_{v}\right| /(k+1)-\left|Y_{v}\right| / k \geq\left|Y_{v}\right| / 6 \geq$ $n /\left(600 k^{2}\right)$, and therefore, with probability $1-n \cdot 1 / n^{2}=1-1 / n$ this holds for every $v \in V$.

Lemma 3.4 With probability at least 0.5 the following holds: for every two distinct vertices a and b, there there are at least $n /\left(600 k^{3}\right)$ members of L which contain a and do not contain b.

Proof: Fix two distinct vertices a and b. Using the same notation of Lemma 3.3, let $Y_{a}=\{i \mid a \in$ $\left.T_{i}\right\}$. By the proof of Lemma 3.3, $\left|Y_{a}\right| \geq n /\left(100 k^{2}\right)$. Since the $\left\{T_{1}, \ldots, T_{q}\right\}$ are edge-disjoint, there is at most one member which contains a and b in distinct vertex classes (in other words, the edge (a, b), if it exists, appears in at most one of the $\left.T_{i}\right)$. Let $f(a, b)$ be the number of members of $\left\{S_{1}, \ldots, S_{q}\right\}$ which contain a and do not contain b. For each $i \in Y_{a}$, (except for, maybe, at most one member of Y_{a} that contains the edge $\left.(a, b)\right)$ the probability that it contains a and does not contain b is either $1 /(k+1)$ if a and b are in the same vertex class of T_{i}, or $k /(k+1)$ if b does not appear in T_{i}. In any case, $f(a, b)$ is the sum of $\left|Y_{a}\right|$ (or $\left|Y_{a}\right|-1$) independent indicator random
variables having probability of success at least $1 /(k+1)$. Denoting by μ the expectation of $f(a, b)$ we have:

$$
\operatorname{Prob}\left[f(a, b)-\mu<-\left|Y_{a}\right| / 2 k\right]<e^{-\frac{2\left|Y_{a}\right|^{2}}{4 k^{2}\left|Y_{a}\right|}}=e^{-\frac{\left|Y_{a}\right|}{2 k^{2}}}<e^{-n /\left(200 k^{4}\right)} \ll 1 /\left(2 n^{2}\right) .
$$

Thus, with probability greater than $1-1 /\left(2 n^{2}\right), f(a, b) \geq \mu-\left|Y_{a}\right| / 2 k \geq\left|Y_{a}\right| /(k+1)-\left|Y_{a}\right| /(2 k) \geq$ $\left|Y_{a}\right| /(6 k) \geq n /\left(600 k^{3}\right)$. Therefore, with probability $1-n(n-1) /\left(2 n^{2}\right)>0.5$ this holds for all ordered pairs a and b.

By lemmas 3.3 and 3.4 we have that with probability at least $0.5-1 / n>0.4, L$ satisfies both properties A and B. We therefore fix a set L satisfying both of these properties. Let M denote the set of edges which do not appear in any member of L. Clearly, $M \supset E^{*},|M|=m$. Let F be those edges of G^{\prime} that do not appear in any member of L. Thus, $M=E^{*} \cup F$. Our goal is to match the m edges of M with the m members of L such that $(a, b) \in M$ is matched to some $S_{i} \in L$ if and only if exactly one of a or b is a vertex of S_{i}. Such a matching shows that G has m edge-disjoint copies of H_{k}, and thus an H_{k}-decomposition, as required. For this purpose we define a bipartite graph B with two vertex classes of size m each. The left vertex class is M and the right vertex class is L. A vertex of the left vertex class (namely some edge $(a, b) \in M$), is connected in B to a vertex of the right vertex class (namely some $S_{i} \in L$), if and only if exactly one of a and b appears in S_{i}. Our goal is, therefore, to show that B has a perfect matching. For this purpose, we will use Hall's Theorem (cf. e.g. [2]). Let $M^{\prime} \subset M$ be an arbitrary nonempty subset. We need to show that $N\left(M^{\prime}\right)$, the neighborhood of M^{\prime} in B, satisfies $\left|N\left(M^{\prime}\right)\right| \geq\left|M^{\prime}\right|$.

Let $X \subset V$ be the set of vertices which are endpoints of at least one edge of M^{\prime}. Let $X_{0} \subset X$ be the subset of vertices which are incident with at least k edges of M^{\prime}, and let $X_{1}=X \backslash X_{0}$ be the subset of vertices of X incident with less than k edges of M^{\prime}. An important observation about X_{0} is the following:
Claim: If $v \in X_{0}$ appears in S_{i} then $S_{i} \in N\left(M^{\prime}\right)$.
Proof: The vertex class of S_{i} which contains v has $k-1$ vertices other than v. However, since $v \in X_{0}$, we know that there are at least k members of M^{\prime} which have v as their endpoint. Therefore, there exists some $(v, w) \in M^{\prime}$ such that w is not in the same vertex class of S_{i} as v. Also, w is not in the other vertex class of S_{i} since $(v, w) \notin S_{i}$ because $(v, w) \in M^{\prime} \subset M$. Thus, w does not appear at all in S_{i}, and therefore, (v, w) is connected in B to S_{i}. Hence, $S_{i} \in N\left(M^{\prime}\right)$. This proves the claim.

In order to prove that $\left|N\left(M^{\prime}\right)\right| \geq\left|M^{\prime}\right|$ we distinguish between several cases, according to the sizes of M^{\prime} and X_{0}.

- $\left|M^{\prime}\right| \leq n /\left(600 k^{3}\right)$.

Consider an arbitrary member $(a . b) \in M^{\prime}$. By Lemma 3.4, there are at least $n /\left(600 k^{3}\right)$ members of L which contain a and do not contain b. It follows that $\left|N\left(M^{\prime}\right)\right| \geq|N(\{a, b\})| \geq$ $n /\left(600 k^{3}\right) \geq\left|M^{\prime}\right|$, as required.

- $\left|M^{\prime}\right|>n /\left(600 k^{3}\right)$ and $\left|X_{0}\right| \leq \frac{\sqrt{n}}{(6 k)^{5.5}}$.

Trivially, $\left|M^{\prime}\right| \leq\binom{|X|}{2}$, which implies $|X|>\sqrt{2\left|M^{\prime}\right|}>\frac{\sqrt{n}}{18 k \sqrt{k}}$. Thus,

$$
\left|X_{1}\right|=|X|-\left|X_{0}\right| \geq \frac{\sqrt{n}}{18 k \sqrt{k}}-\frac{\sqrt{n}}{(6 k)^{5.5}}>\frac{\sqrt{n}}{20 k \sqrt{k}}
$$

Consider $v \in X_{1}$, and let $(v, w) \in M^{\prime}$ be arbitrary. According to Lemma 3.4, there are at least $n /\left(600 k^{3}\right)$ members of L which contain v and do not contain w. All of these members are neighbors of (v, w) in B. Thus, they are all in $N\left(M^{\prime}\right)$. Since this is true for every $v \in X_{1}$, we have at least $\left|X_{1}\right| n /\left(600 k^{3}\right)$ members of L counted in this way, and since no copy of L is counted more than $2 k$ times ($2 k$ is the number of vertices of $K_{k, k}$), we get that

$$
\left|N\left(M^{\prime}\right)\right| \geq \frac{\left|X_{1}\right| n}{1200 k^{4}}
$$

Note that, obviously, $(n-1)\left|X_{0}\right|+(k-1)\left|X_{1}\right| \geq 2\left|M^{\prime}\right|$ (the l.h.s. bounds from above the sum of the degrees in the subgraph induced by M^{\prime}) which implies $\left|M^{\prime}\right|<\frac{n\left|X_{0}\right|+k\left|X_{1}\right|}{2}$. Thus, it suffices to show that

$$
\frac{n\left|X_{0}\right|+k\left|X_{1}\right|}{2} \leq \frac{\left|X_{1}\right| n}{1200 k^{4}} .
$$

This is equivalent to showing that

$$
\left|X_{0}\right| \leq\left(\frac{1}{600 k^{4}}-\frac{k}{n}\right)\left|X_{1}\right| .
$$

Indeed,

$$
\left|X_{0}\right| \leq \frac{\sqrt{n}}{(6 k)^{5.5}} \leq\left(\frac{1}{600 k^{4}}-\frac{k}{n}\right) \frac{\sqrt{n}}{20 k \sqrt{k}} \leq\left(\frac{1}{600 k^{4}}-\frac{k}{n}\right)\left|X_{1}\right| .
$$

- $\left|M^{\prime}\right|>n /\left(600 k^{3}\right)$ and $\sqrt{n} /(6 k)^{5.5}<\left|X_{0}\right|<n /\left(1000 k^{3}\right)$.

Clearly, $\left|M^{\prime}\right| \leq\left|X_{1}\right|(k-1)+\binom{\left|X_{0}\right|}{2}<n k+\binom{\left|X_{0}\right|}{2}$. By Lemma 3.3, every $v \in X_{0}$ appears in at least $n /\left(600 k^{2}\right)$ members of L. By the claim proved above, if v appears in S_{i} then $S_{i} \in N\left(M^{\prime}\right)$. Thus, every $v \in X_{0}$ contributes at least $n /\left(600 k^{2}\right)$ members to $N\left(M^{\prime}\right)$, and every such member S_{i} is counted at most $2 k$ times by these contributions (since S_{i} has $2 k$ vertices). Therefore,

$$
\left|N\left(M^{\prime}\right)\right| \geq \frac{n}{600 k^{2}}\left|X_{0}\right| \frac{1}{2 k}
$$

Now, for $\sqrt{n} /(6 k)^{5.5}<\left|X_{0}\right|<n /\left(1000 k^{3}\right)$ we have

$$
\left|M^{\prime}\right|<n k+\binom{\left|X_{0}\right|}{2}<\frac{n}{1200 k^{3}}\left|X_{0}\right| \leq\left|N\left(M^{\prime}\right)\right|
$$

as required.

- $\left|M^{\prime}\right|>n /\left(600 k^{3}\right)$ and $n /\left(1000 k^{3}\right) \leq\left|X_{0}\right| \leq 2 n / 3+k^{3}$.

In this case, we can use Lemma 3.1 applied to $\left|X_{0}\right|$ (note that $2 n / 3+k^{3}<3 n / 4$ for n sufficiently large). Let x be the number of members of L having a vertex of X_{0}. Clearly, $x \leq\left|N\left(M^{\prime}\right)\right|$. Let z_{1} denote the number of members of M with both endpoints in X_{0}, and let z_{2} denote the number of edges of E^{*} with both endpoints in X_{0}. Since $M=E^{*} \cup F$ and since, by (2) $|F|=\left|E^{\prime}\right|-k^{2} m \leq 3 t$, we get that $z_{1} \leq 3 t+z_{2}$ and therefore

$$
\left|M^{\prime}\right| \leq\left|X_{1}\right|(k-1)+z_{1}<k n+z_{1} \leq k n+3 t+z_{2} .
$$

Hence, it suffices to show that $x \geq k n+3 t+z_{2}$. According to Lemma 3.1, z, the number of edges of E^{\prime} with at least one endpoint in X_{0} satisfies $z \geq 4 t k^{2}+k^{2} z_{2}$. These z edges, except for the edges of F, all appear in the members of L. Thus, the number of edges in members of L which have at least one endpoint in X_{0} is at least $4 t k^{2}+k^{2} z_{2}-3 t$. Since each member of L has k^{2} edges we get that

$$
x \geq 4 t+z_{2}-\frac{3 t}{k^{2}} \geq 3 t+z_{2}+\frac{t}{4}>k n+3 t+z_{2} .
$$

- $\left|M^{\prime}\right|>n /\left(600 k^{3}\right)$ and $\left|X_{0}\right|>2 n / 3+k^{3}$.

Let $n^{\prime}=n-\left|X_{0}\right|$ be the size of $V \backslash X_{0}$. The conditions imply that $n^{\prime} \leq n / 3-k^{3}$. If some $S_{i} \in L$ is not in $N\left(M^{\prime}\right)$ then, according to the claim proved above, S_{i} contains no vertex of X_{0}, and therefore all its $2 k$ vertices are in $V \backslash X_{0}$. Thus, $N\left(M^{\prime}\right) \geq m-\binom{n^{\prime}}{2} / k^{2}$. We need to show that $\left|M^{\prime}\right| \leq m-\binom{n^{\prime}}{2} / k^{2}$, or, equivalently, that $\left|M \backslash M^{\prime}\right| \geq\binom{ n^{\prime}}{2} / k^{2}$. Consider a vertex $v \in V \backslash X_{0}$. By Lemma 3.1,

$$
d_{G^{*}}(v) \geq \frac{d_{G}(v)}{k^{2}+1}-9 t / n \geq \frac{n}{2 k^{2}+2}-9 n^{1-1 /(k+1)} \geq \frac{n}{3 k^{2}} .
$$

Thus, since $M \supset E^{*}$, there are at least $n /\left(3 k^{2}\right)$ edges of M having v as an endpoint. Either $v \notin X$ or $v \in X_{1}$. In any case, v is an endpoint of at most $k-1$ edges of M^{\prime}. Thus, there are at least $n /\left(3 k^{2}\right)-k+1$ edges of $M \backslash M^{\prime}$ having v as an endpoint. Since this is true for every $v \in V \backslash X_{0}$, we have that there are at least $\left(n /\left(3 k^{2}\right)-k+1\right) n^{\prime} / 2$ edges in $M \backslash M^{\prime}$. Thus, we must show that $\left(n /\left(3 k^{2}\right)-k+1\right) n^{\prime} / 2 \geq n^{\prime}\left(n^{\prime}-1\right) /\left(2 k^{2}\right)$. Indeed, this holds for $n^{\prime} \leq n / 3-k^{3}$ 。

4 Concluding remarks and open problems

1. The graphs H_{k} which are used to prove Theorem 1.1 have density which is arbitrary close to $1 / 2$. In particular, $k^{2}+1$, the number of edges of H_{k}, is a quadratic function of the number of vertices, which is $2 k+1$. Thus, the graphs H_{k} are dense. However, the minimum degree of H_{k} is 1 . It is an open problem whether there exist graphs H with arbitrary high minimum degree for which the statement of Theorem 1.1 holds. Namely, is it possible to determine the limit of $f_{H}(n) / n$ for graphs H with arbitrary high minimum degree. A somewhat less ambitious problem, but still an open one, is to find a graph H with $\delta(H)=2$, for which the limit of $f_{H}(n) / n$ can be determined.
2. Another obstacle in extending Theorem 1.1 to other families of graphs is the chromatic number. The graphs H_{k} are bipartite, and so are all trees, for which the limit of $f_{H}(n) / n$ is determined in [9]. It will be interesting to find graphs H with arbitrary high chromatic number, for which $f_{H}(n) / n$ can be asymptotically determined. We do not even know of a 3 -Chromatic graph for which this can be done.
3. Although Theorem 1.1 determines the asymptotic behavior of $f_{H_{k}}(n)$, i.e. $f_{H_{k}}(n)=\frac{n}{2}(1+$ $o(1))$ there is still a sublinear gap between the lower bound of $\lfloor n / 2\rfloor-1$ and the upper bound of $n / 2+O\left(n^{1-1 /(k+1)}\right)$. It would be interesting to close this gap.
4. As mentioned in the introduction, a lower bound of $\lfloor n / 2\rfloor-1$ for $f_{H}(n)$ is described in [9], and applies to all connected graphs with at least three vertices (this lower bound is valid for $n \geq n_{0}(H)$ since when n is small there is some noise). For the sake of completeness, we describe it here for $H=H_{k}$. We will assume that $n \geq 4 k^{2}$ is even, although a similar argument holds when $n>4 k^{2}$ is odd. It suffices to show the existence of a graph $G=(V, E)$ with n vertices, and $\delta(G)=n / 2-2$ where $k^{2}+1$ divides $|E|$, but still there is no $H_{k^{-}}$ decomposition of G. Put $n=2 x$ and let $d=x(x-1) \bmod \left(k^{2}+1\right)$, where $0 \leq d \leq k^{2}$. If $d \neq 0$ consider the graph G obtained from the vertex-disjoint union of K_{x} and $P_{x, d}$ where $P_{x, d}$ is the complete graph on x vertices from which d independent edges have been removed. (We can remove d independent edges since $2 d \leq 2 k^{2} \leq n / 2=x$). G has $2 x=n$ vertices, $|E|=x(x-1)-d$ edges, and so $k^{2}+1$ divides $|E|$. Also $\delta(G)=x-2=n / 2-2$. However, G does not have an H_{k}-decomposition since $k^{2}+1$ does not divide $\binom{x}{2}$, which is the number of edges of the connected component K_{x} of G. If $d=0$ we can take G to be the union of $P_{x, 1}$ and $P_{x, k^{2}}$, and once again G has $|E|=x(x-1)-\left(k^{2}+1\right)$ edges, and so $k^{2}+1$ divides $|E|$. $\delta(G)=x-2=n / 2-2$, and G does not have an H_{k} decomposition since $k^{2}+1$ does not
divide $\binom{x}{2}-1$, which is the number of edges of the component $P_{x, 1}$.
5. As mentioned in the introduction, Theorem 1.1 can be extended to show that if G has minimum degree $\frac{n}{2}(1+o(1))$ but does not have the necessary H_{k}-decomposition conditions (i.e. the number of edges of G is not divisible by $k^{2}+1$) then G still has an optimal packing, namely, there exist $\left\lfloor\left|E_{G}\right| /\left(k^{2}+1\right)\right\rfloor$ edge-disjoint copies of H_{k} in G. This follows from Theorem 1.1, since if $\delta(G) \geq n / 2+20 k^{2} n^{1-1 /(k+1)}+1$, and if $d=\left|E_{G}\right| \bmod \left(k^{2}+1\right)$ where $1 \leq d \leq k^{2}$, then by deleting from G an arbitrary set of d independent edges we remain with a subgraph G^{α} with n vertices, $\delta\left(G^{\alpha}\right)=\delta(G)-1 \geq n / 2+20 k^{2} n^{1-1 /(k+1)}$, and G^{α} does satisfy the necessary H_{k}-decomposition conditions, so by Theorem $1.1 G^{\alpha}$ has an H_{k}-decomposition, and the number of members in this decomposition is $\left\lfloor\left|E_{G}\right| /\left(k^{2}+1\right)\right\rfloor$.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, Wiley.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
[3] Y. Caro and R. Yuster, Packing graphs: The packing problem solved, Elect. J. Combin. (1997), \#R1.
[4] Y. Chang, A bound for Wilson's Theorem - III, J. Combinatorial Designs 4 (1996), 83-93.
[5] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer's conjecture, Proc. 20th ACM STOC, ACM Press (1992), 252-263.
[6] T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, Doctoral Dissertation, Dept. of Mathematics, Univ. of Stockholm, 1991.
[7] C. St. J. A. Nash-Williams, An unsolved problem concerning decomposition of graphs into triangles, Combinatorial Theory and its Applications III. ed. P. Erdös, P. Rényi and V.T. Sós. North Holland (1970), 1179-1183.
[8] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.
[9] R. Yuster, Tree packing of graphs, Random Structures and Algorithms, to appear.
[10] S. Znám, On a combinatorial problem of K. Zarankiewicz, Colloq. Math. 11 (1963) 81-84.

[^0]: *e-mail: raphy@macam98.ac.il World Wide Web: http:
www.math.tau.ac.il
~raphy

