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Abstract

Let H be a fixed bipartite graph with δ(H) = 1. It is shown that if G is any graph with

n vertices and minimum degree at least n
2 (1 + on(1)) and e(H) divides e(G), then G can be

decomposed into e(G)/e(H) edge-disjoint copies of H. This is best possible and significantly

extends the result of [8] which deals with the case where H is a tree.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic notations the reader is referred to [2]. Let H be a connected graph. An

H-packing of a graph G is a coloring of the edges of G such that each color class induces a subgraph

which contains a copy of H. The H-packing number of G, denoted by P (H,G), is the maximum

possible number of colors used in an H-packing of G. Clearly, P (H,G) ≤ e(G)/e(H). In case

equality holds, we must have that every color class induces a subgraph which is isomorphic to H.

In this case we say that G has an H-decomposition. Thus, a necessary condition for the existence

of an H-decomposition is that e(H) divides e(G). Another obvious necessary condition is that

gcd(H) divides gcd(G), where the gcd of a graph is the greatest common-divisor of the degrees of

its vertices. We say that G has property H if these two conditions hold. Note that it is a trivial

computational task to verify if a graph G has H.

The combinatorial and computational aspects of the H-packing and H-decomposition problems

have been studied extensively. Wilson in [7] has proved that whenever n ≥ n0 = n0(H), and Kn

has H, then Kn has an H-decomposition. The H-packing problem for Kn (n ≥ n(H)) was solved

[3], by giving a closed formula for computing P (H,Kn). In case the graph G is not complete, it
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is known that the H-decomposition and H-packing problems are, in general, NP-Hard, since Dor

and Tarsi [4] showed that deciding if G has an H-decomposition is NP-Complete, where H is any

fixed connected graph with at least three edges (so, even for H = P4 or H = C3 or H = K1,3 this is

hard). In view of Wilson’s positive result, and the Dor-Tarsi negative result, the following extremal

problem was raised in [9]:

Problem 1: Determine fH(n), the smallest possible integer, such that whenever G has n vertices,

and δ(G) ≥ fH(n), and G has H, then G has an H-decomposition. (Note that it is possible that

for some n we might have fH(n) =∞).

Another version of Problem 1 is to determine the asymptotic behavior:

Problem 1A: Determine g(H) = lim supn→∞ fH(n)/n.

Wilson’s result proves that fH(n) exists for all n ≥ n0(H), or, in other words, fH(n) ≤ n−1 for

all n ≥ n0(H). It turns out that estimating fH(n) is extremely difficult for general H. The first,

and only, nontrivial general upper bound for fH(n) was obtained in 1991 by Gustavsson [5]. He has

shown that if δ(G) ≥ (1−ε(H))n, where ε(H) is some small positive constant depending on H, and

G hasH, then G has an H-decomposition. In other words, fH(n) ≤ (1−ε(H))n, for all n sufficiently

large, and thus g(H) ≤ 1 − ε(H). Unfortunately, the ε(H) in Gustavsson’s result is a very small

number. For example, if H = C3 then ε(H) ≤ 10−24. In general, ε(H) ≤ 10−24/|H|. It seems likely,

however, that the correct value for fH(n) is much smaller. In fact, Nash-Williams conjectured in

[6] that when H = C3, then fH(n) ≤ d3n/4e, and he also gave an example showing that this would

be best possible, and thus his conjecture is that fC3(n) = d3n/4e, and that g(C3) = 3/4. However,

the best result still known for triangles is Gustavsson’s asymptotic result.

The first significant improvement over Gustavsson’s result was obtained by the author in [8] in

case the graph H is a tree. It is shown there that fH(n) ≤ n/2+h4
√
n log n, where h is the number

of vertices of the tree H. Thus, g(H) ≤ 0.5 for trees. This result is asymptotically best possible as

it is also shown in [8] that fH(n) ≥ bn/2c− 1 for every connected graph H with at least 3 vertices.

Hence, g(H) = 0.5 for trees (and we can replace lim sup with lim in the definition of g(H), in this

case).

In this paper we significantly extend the result of [8] and show that it holds for every bipartite

graph H with δ(H) = 1. Note that trees are contained in this class of graphs. Our main result is

summarized in the statement of the following theorem:

Theorem 1.1 Let H be a bipartite graph with minimum degree 1. Then, limn→∞ fH(n)/n = 0.5.

Theorem 1.1 can be extended easily to show that if G = (VG, EG) has minimum degree n
2 (1+on(1)),

but does not have property H then there is an optimal packing in the sense that P (H,G) =

b|EG|/|EH |c.
Theorem 1.1 is best possible in another sense as well. It cannot be improved to include, say, all

fixed bipartite graphs with minimum degree 2. The following example, due to Peter Winkler and
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Jeff Kahn demonstrates this fact. Let H = C4, and let n = 5k where k ≡ 3 mod 8. Consider the

graph G = C5 ∗Kk (i.e. each vertex of C5 is blown up to a copy of Kk and each original edge of C5

is now a complete bipartite graph Kk,k). G has n vertices, it is regular of degree 3k− 1 = 0.6n− 1

which, by the choice of k, is an even number. The total number of edges of G is 5k2 + 5
(k
2

)
which,

again by the choice of k, is divisible by 4. Hence, G has property H. However, G does not have a

C4 decomposition. To see this, consider some complete bipartite graph Kk,k connecting two blown

up original vertices. Every C4 in G contains an even number of edges of this Kk,k (i.e. 0,2 or

4 edges). However, k2 is odd. One might conjecture that replacing 0.5 with 0.6 in Theorem 1.1

suffices for H = C4. However, a proof of this currently seems beyond reach.

In the following section we make some initial preparations, mainly concerning a construction

which we need in the proof of Theorem 1.1. A top-down sketch of the proof appears in Section 3.

The detailed proof appears in Section 4. We note that, although Theorem 1.1 extends the result

in [8], the method of proof is entirely different. The method of proof is a generalization of that of

[9], which is, in fact, a proof of a very special case of Theorem 1.1 where H is a complete bipartite

graph together with a vertex of degree one.

2 A preliminary construction

From here onwards we fix a bipartite graph H with δ(H) = 1 and with h edges. We will assume

h ≥ 3 since otherwise the result is trivial. We label the vertices of H as {b, a0, . . . , ar−1} where b

has degree one, a0 is the unique neighbor of b, and a1 is in a different vertex class from that of a0

is a (fixed) bipartition of H. Notice also that r ≥ 3. We call b the leaf of H (although there may

be other vertices with degree one, we only designate b as a leaf). We call a0 the pivot of H and we

call (b, a0) the leaf edge of H. We denote by H ′ the bipartite graph obtained from H by deleting

the leaf vertex. Note that it is possible that H ′ has a high minimum degree. The vertex set of H ′

is {a0, . . . , ar−1} and H ′ has h− 1 edges. We still refer to a0 as the pivot of H ′ (although this term

may be somewhat misleading w.r.t. H ′).

In the proof it will be convenient to initially find many edge-disjoint copies of H ′ in G. However,

we will need that the set of these copies will meet several strong conditions regarding the distribution

of vertices of G with respect to the role they play in each copy of H ′ (namely, to which vertex of

H ′ they map in each copy). This is rather inconvenient since H ′ may be highly non-symmetric. In

fact, it may even have a trivial automorphism group.

To overcome this obstacle we first construct a larger fixed bipartite graph, denoted H∗, which,

in turn, decomposes in some very specific manner into copies of H ′. We will then use H∗ in the

major part of the proof.

Lemma 2.1 There exists a bipartite graph H∗ with the following properties:

1. H∗ has r2(r − 1) vertices in each vertex class.
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2. H∗ has 2(h− 1)r2(r − 1)2 edges, and is regular of degree 2(h− 1)(r − 1).

3. There exists an H ′-decomposition of H∗, denoted D, where |D| = 2r2(r−1)2, such that every

vertex of H∗ is the pivot in precisely r − 1 elements of D.

4. For any two distinct vertices of H∗ denoted v and u, there is at least one element of D in

which v plays the role of the pivot and u does not appear at all.

Proof: The vertex-set of H∗ is composed of 2r(r−1) disjoint subsets that we denote by X(i, j) and

Y (i, j) where i = 0, . . . , r− 1 and j = 1, . . . , r− 1. Each of these subsets contains r vertices. Thus,

we denote X(i, j) = {x0(i,j), . . . , x
r−1
(i,j)} and Y (i, j) = {y0(i,j), . . . , y

r−1
(i,j)}. The union of all X(i, j) will

correspond to one vertex class while the union of all Y (i, j) will correspond to the other vertex

class. Thus, H∗ has precisely r2(r − 1) vertices in each vertex class. It remains to describe the

edges between some X(i, j) and some Y (s, t).

The induced subgraph of H∗ on the vertices X(i, j) and Y (s, t) will contain two vertex-disjoint

copies of H ′, and thus 2(h− 1) edges. Hence, the total number of edges in H∗ is 2(h− 1)r2(r− 1)2

and H∗ has a decomposition D into 2r2(r − 1)2 copies of H ′. The 2(h− 1) edges between X(i, j)

and Y (s, t) are defined as follows. For each w = 0, . . . , r − 1 except w = 1 or w = t (note that it

is possible that t = 1), map vertex aw of H ′ to vertex x
(w+s) mod r
(i,j) of X(i, j). Similarly, for each

w = 0, . . . , r − 1 except w = 1 or w = j, map vertex aw of H ′ to vertex y
(w+i) mod r
(s,t) of Y (s, t). For

w = 1, map a1 to x
(t+s) mod r
(i,j) and to y

(j+i) mod r
(s,t) . For w = t, map at to x

(1+s) mod r
(i,j) . For w = j,

map aj to y
(1+i) mod r
(s,t) .

We have thus defined a bijection between the vertices of H ′ and X(i, j) and a bijection between

the vertices of H ′ and Y (s, t). Now, for each edge (aw, az) of H ′ connect an edge between the

vertex of X(i, j) mapped to aw and the vertex of Y (s, t) mapped to az. Similarly, connect an edge

between the vertex of X(i, j) mapped to az and the vertex of Y (s, t) mapped to aw. Clearly, the

induced subgraph of H∗ on X(i, j) and Y (s, t) contains 2(h − 1) edges and is composed of two

vertex-disjoint copies of H ′. One of this copies contains the vertices of X(i, j) mapped to the first

vertex class of H ′ and the vertices of Y (s, t) mapped to the second vertex class of H ′. The other

copy contains the vertices of X(i, j) mapped to the second vertex class of H ′ and the vertices of

Y (s, t) mapped to the first vertex class of H ′.

Now consider an arbitrary vertex xs(i,j). By the definition of our bijection, xs(i,j) is a pivot in

one of the two copies of H ′ in the subgraph induced on X(i, j) and Y (s, t). Since this is true for

each t = 1, . . . , r − 1 we have that xs(i,j) is a pivot in precisely r − 1 elements of the decomposition

D. The same argument hold for vertices of the form yi(s,t).

We also need to show that for any vertex u ∈ H∗, distinct from xs(i,j), at least one of the r − 1

elements of D that contain xs(i,j) as a pivot does not contain u at all. Consider first the case where

u = xs
′

(i′,j′). Trivially, if (i′, j′) 6= (i, j) then u and xs(i,j) never appear together in any element of
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D. Thus, assume u = xs
′

(i,j) and hence s′ 6= s. Let t = (s′ − s) mod r. Consider the subgraph of

H∗ induced on X(i, j) and Y (s, t). The bijection from the vertices of H ′ to X(i, j) associated with

this induced subgraph maps a0 to xs(i,j) and maps a1 to x
(s+t) mod r
(i,j) = xs

′

(i,j) = u. Recall, however,

that a0 and a1 are in distinct vertex classes of H ′ and thus one of the two copies of H ′ in the

subgraph of H∗ induced on X(i, j) and Y (s, t) contains xs(i,j) as the pivot but does not contain u

at all (u appears in the other copy and plays the role of a1 there). Next, assume that u = ys
′′

(s′,t).

If s′ 6= s then, trivially, whenever xs(i,j) is a pivot, u does not appear at all. Assume, therefore,

that u = ys
′′

(s,t). If t′ 6= t then the subgraph induced by X(i, j) and Y (s, t′) contains a copy of H ′

in which xs(i,j) is the pivot, and trivially u does not appear at all in such a copy. Thus, there are

r − 2 > 0 elements of D in which xs(i,j) is the pivot and u does not appear at all. Similarly, all of

these arguments also apply to vertices of the form yi(s,t), namely, for each u ∈ H∗, distinct from

yi(s,t), at least one of the r− 1 elements of D that contain yi(s,t) as a pivot does not contain u at all.

It remains to show that H∗ is regular. Consider, without loss of generality, some vertex xs(i,j).

We already showed that the number of elements of D in which xs(i,j) plays the role of a0 is r − 1.

We claim that this is true not only for a0 but for all other vertices of H ′ as well. Consider an

arbitrary vertex aw of H ′. We show that in precisely r−1 elements of D, xs(i,j) plays the role of aw.

Assume first that w 6= 1. Consider the subgraph of H∗ induced by X(i, j) and Y ((s−w) mod r, t),

where t 6= w. The bijection from the vertices of H ′ to X(i, j) which corresponds to this subgraph

maps aw to xs(i,j). Since there are r − 2 choices for t 6= w we have found r − 2 elements of D in

which xs(i,j) plays the role of aw. However, there is still another one. In the subgraph of H∗ induced

by X(i, j) and Y ((s − 1) mod r, w) the corresponding bijection maps aw to xs(i,j). We have thus

explicitly described the r − 1 copies of D in which xs(i,j) plays the role of aw (by the definition of

our bijections or by the pigeonhole principle, there cannot be more than r − 1). Now consider a1.

For each t = 1, . . . , r− 1, let s′ be the unique solution between 0 and r− 1 to (s′+ t) mod r = s. In

the subgraph of H∗ induced by X(i, j) and Y (s′, t) the corresponding bijection maps a1 to xs(i,j).

As there are r− 1 choices for t we have (precisely) r− 1 elements of D in which xs(i,j) plays the role

of a1. Since D is a decomposition, every edge incident with xs(i,j) belongs to precisely one element

of D. Thus, the degree of xs(i,j) is (r − 1) times the sum of the degrees of H ′, which is 2(h − 1).

Since xs(i,j) was arbitrary and since similar arguments hold for vertices of the form yi(s,t) we have

that H∗ is 2(h− 1)(r − 1) regular.

It is well known that the Turán number of fixed bipartite graphs is o(n2). There are many

results giving upper bounds for such Turán numbers. In essence, they all give a slightly better

upper bound than the following:

Lemma 2.2 Suppose n >> k. If G is a graph with n vertices not containing Kk,k then G has less

than n2−1/k edges. If B is a bipartite graph with at most n vertices in each vertex class and B does

not contain Kk,k, then B has less than 2n2−1/k edges.
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An example of such a result is that of Znám [10]. See also [2] for more results of this type. Since

Kr3,r3 contains H∗ we have the following:

Corollary 2.3 Let n >> r3. If G is a graph with n vertices and at least n2−1/r
3

edges then G

contains H∗ as a subgraph. If B is a bipartite graph with at most n vertices in each vertex class

and B has at least 2n2−1/r
3

edges then B contains H∗ as a subgraph.

3 A top down view of the proof

In order to prove Theorem 1.1 it obviously suffices to prove the following theorem for n sufficiently

large as a function of h and r.

Theorem 3.1 Let G = (V,E) be a graph with n vertices and δ(G) ≥ n/2 + 40(h − 1)n1−1/r
3
. If

|E| is a multiple of h then G has an H-decomposition.

Note that Theorem 3.1 together with the fact that fH(n) ≥ bn/2c−1 mentioned in the introduction

(recall this lower bound is valid for every connected graph H with at least three vertices), yield

Theorem 1.1.

Here is an outline of the proof of Theorem 3.1: Given a graph G = (V,E) as in the statement

of the theorem, put |E| = mh. Thus, m is an integer, and our goal is to find in G a set of m

edge-disjoint copies of H. Our algorithm consists of several steps.

1. Find k = bm/(2r2(r − 1)2)c edge-disjoint copies of H∗. We will be able do this since the

Turán number of H∗ is relatively small. However, as will be seen, we shall require several

strong properties from our set of k copies of H∗, such as that each vertex of G be a vertex in a

significant number of these copies. In fact, we need several other properties (their description

is somewhat technical, so we defer it to the actual proof in the next section).

2. Find additional m− 2kr2(r− 1)2 copies of H ′ in G which are edge-disjoint from the k copies

of H∗ that were previously found.

3. Using the fact that each H∗ can be decomposed into 2r2(r−1)2 copies of H ′ we have, in fact,

a set of 2r2(r − 1)2k + m − 2kr2(r − 1)2 = m edge-disjoint copies of H ′ together with the

copies of H ′ found in the previous step. We denote this set of m copies of H ′ by L.

4. There are exactly mh−m(h− 1) = m edges of G that do not belong to any of the m copies

of H ′ designated in the previous step. Denote this set of edges by C. We prove (using all

of the properties that we required from the k copies of H∗ found in the first step, and using

Lemma 2.1) that there is a perfect matching between C and L such that an edge (x, y) ∈ C
is matched to a copy S of H ′ in L only if exactly one of x or y is the pivot of S, while the

other endpoint of the edge does not appear at all in S. Note that each such match introduces

a copy of H, and thus a perfect matching corresponds to an H-decomposition of G.

6



Remark: From here onwards, we assume, whenever necessary, that n is sufficiently large as a

function of the constants r and h.

4 Proof of the main result

We begin by showing that G contains a spanning subgraph with slightly less than m edges whose

expansion properties resemble those of G. These edges, together with some additional ones, will

be used as leaf edges in elements of the H-decomposition. The proof of the next lemma resembles

the proof of a lemma appearing in [9].

Lemma 4.1 Let G = (V,E) satisfy |V | = n, |E| = mh, δ(G) ≥ n/2 + 40(h− 1)n1−1/r
3
. Then, G

has a spanning subgraph G∗ = (V,E∗) with the following properties:

1.

m− n2−1/r3 ≥ |E∗| ≥ m− 3n2−1/r
3
.

2. For every v ∈ V ,
dG(v)

h
− n1−1/r3 ≥ dG∗(v) ≥ dG(v)

h
− 9n1−1/r

3
.

3. Let W ⊂ V be an arbitrary subset of vertices satisfying n/(50r6) ≤ |W | ≤ 0.9n. Let w1 denote

the sum of the degrees of the vertices of W in G′ = (V,E \E∗). Let w2 denote the number of

edges of E∗ with both endpoints in W . Then,

w1 ≥ 9.5n2−1/r
3
(h− 1) + 2(h− 1)w2.

Proof: We will show the existence of G∗ using a probabilistic argument. For ease of notation put

t = n2−1/r
3
, and let p = m−2t

mh . We first show that p > 1/(2h). This is equivalent to showing that

t < m/4, and this holds for n sufficiently large since t = o(n2) and m = |E|/h = Θ(n2).

Each edge of G chooses to be in G∗ by flipping a biased coin with probability p for being in

G∗. All the choices of all the edges are independent. We now show that with high probability, the

three conditions required of G∗ hold.

1. The expected number of edges of G∗ is exactly m − 2t. Since |E∗|, the number of edges of

G∗, is the sum of mh indicator random variables, it has binomial distribution, so we can use

the Chernoff inequality (cf. [1] Appendix A) to bound the deviation of |E∗| from its mean:

Pr[| |E∗| − (m− 2t) | > t] < 2e−
2t2

mh < 2e
− 2n4−2/r3

n2/2 = 2e−4n
2−2/r3

<
1

n
.

Thus, with probability at least 1− 1/n, m− t ≥ |E∗| ≥ m− 3t.
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2. Consider a vertex v. The expected degree of v in G∗ is exactly p · dG(v). Once again, dG∗(v)

has binomial distribution, so according to the Chernoff inequality, we know that

Pr[|dG∗(v)− p · dG(v)| >
√
n log n] < 2e−2n logn/dG(v) < 2e−2 logn =

2

n2
.

Thus, with probability at least 1− 2/n, we have that for every v ∈ V ,

|dG∗(v)− p · dG(v)| ≤
√
n log n.

For the lower bound this translates to

dG∗(v) ≥ p · dG(v)−
√
n log n =

dG(v)

h
− 2tdG(v)

mh
−
√
n log n ≥

dG(v)

h
− 2n2−1/r

3
n

n2/4
−
√
n log n =

dG(v)

h
− 8n1−1/r

3 −
√
n log n >

dG(v)

h
− 9n1−1/r

3
.

For the upper bound this translates to

dG∗(v) ≤ p · dG(v) +
√
n log n =

dG(v)

h
− 2tdG(v)

mh
+
√
n log n ≤

dG(v)

h
− 2n2−1/r

3
n/2

n2/2
+
√
n log n =

dG(v)

h
− 2n1−1/r

3
+
√
n log n ≤ dG(v)

h
− n1−1/r3 .

3. Now consider a set W ⊂ V satisfying n/(50r6) ≤ |W | ≤ 0.9n. Let y denote the number of

edges of G with only one endpoint in W , and let y∗ denote the number of edges of E∗ with

only one endpoint in W . Note that w1 ≥ y − y∗. If |W | ≤ n/2 then y ≥ |W |(n/2 + 40(h −
1)n1−1/r

3 − |W |). By elementary calculus, if n is sufficiently large then the minimum for y is

obtained when |W | = n/2 (recall that |W | = Θ(n) so it cannot be too small) , and then

y ≥ n

2
40(h− 1)n1−1/r

3
= 20t(h− 1). (1)

If |W | ≥ n/2 then y ≥ (n − |W |)(n/2 + 40(h − 1)n1−1/r
3 − (n − |W |)). Once again, if n is

sufficiently large the minimum is obtained when |W | = n/2 and thus (1) holds in any case.

Clearly, the expectation of y∗ is py. Now, by the Chernoff inequality,

Pr[y∗ > 3py/2] = Pr[y∗ − py > py/2] < e−2(py/2)
2/y = e−p

2y/2 < e−y/(4h
2) <

e−20t(h−1)/(4h
2) << e−n.
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As there are 2n possible subsets of V (and even less possible subsets which may correspond

to W ), we have that with probability at least 1 − (2/e)n, for all W , the corresponding y∗

satisfies y∗ ≤ 3py/2.

We now show that when y∗ ≤ 3py/2 then also y − y∗ ≥ 10t(h− 1). Indeed, according to (1),

0.5y ≥ 10t(h− 1). Also, trivially, 0.5y > 1.5py since p < 1/h ≤ 1/3. Thus, y = 0.5y + 0.5y >

1.5py + 10t(h − 1) ≥ y∗ + 10t(h − 1). Now, consider first the case where e(G[W ]) ≤ t/4. In

this case,

w1 ≥ y − y∗ ≥ 10t(h− 1) ≥ 9.5t(h− 1) + 2(h− 1)e(G[W ]) ≥ 9.5t(h− 1) + 2(h− 1)w2.

Now consider the case where e(G[W ]) > t/4. The expectation of w2 is p · e(G[W ]). Using the

Chernoff inequality we obtain

Pr[w2 >
e(G[W ])

h
] = Pr[w2 − p · e(G[W ]) >

2t

mh
e(G[W ])]

< e
− 8t2e(G[W ])2

m2h2e(G[W ]) = e−
8t2e(G[W ])

m2h2 ≤ e−
2t3

m2h2 < e
− 2(n2−1/r3 )3

(n2/2)2 < e−8n.

Therefore, with probability at least 1− (2/e8)n, for all subsets W having e(G[W ]) > t/4, we

have that w2 ≤ e(G[W ])
h . This implies that

w1 = y − y∗ + 2e(G[W ])− 2w2 ≥ 10t(h− 1) + 2hw2 − 2w2 > 9.5t(h− 1) + 2(h− 1)w2.

Summing up all the probabilities, we have that with probability at least

1− (2/e8)n − (2/e)n − 2/n− 1/n > 0

all of the properties required from G∗ in parts 1,2 and 3 of the lemma hold.

Let G and G∗ be as in Lemma 4.1. Put E′ = E \ E∗ and G′ = (V,E′). Notice that for every

v ∈ V
dG′(v) = dG(v)− dG∗(v) ≥ dG(v)− dG(v)

h
+ n1−1/r

3
>
h− 1

h
dG(v) >

n

3
. (2)

Lemma 4.2 G′ contains a set L′ of k = bm/(2r2(r − 1)2)c edge-disjoint copies of H∗ such that

each v ∈ V appears in at least n/(50r6) elements of L′.

Proof: Put q = dn2/(50r6) + ne. We begin by picking a set of q copies of H∗ which we denote by

S1, . . . , Sq as follows: Suppose we have already picked S1, . . . Sz, where 0 ≤ z < q. We show how

Sz+1 is selected. Let Gz = (V,Ez) be the spanning subgraph of G′ consisting of the edges of E′ that

are not used by S1 ∪ . . . ∪ Sz (initially, G0 = G′). Let v be the vertex which appears the minimum

number of times in Z = {S1, . . . , Sz}. We pick Sz+1 to be a copy of H∗ in Gz, which contains v.

We must show that, indeed, there exists a copy of H∗ in Gz which contains v. Since each Si has
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2r2(r − 1) vertices, there are, in total, 2zr2(r − 1) vertices in all the elements of Z (counting with

multiplicities), so by the definition of v, we have that v appears in at most 2zr2(r− 1)/n elements

of Z. Now,
2zr2(r − 1)

n
≤ 2(q − 1)r2(r − 1)

n
≤ 2r2(r − 1)

n
· ( n2

50r6
+ n) <

n

24r3
. (3)

Therefore, v appears in less than n/(24r3) elements of Z. Let D be the neighborhood of v in Gz,

and put d = |D|, the degree of v in Gz. Using the fact that H∗ is regular of degree 2(h− 1)(r− 1)

we have by (3) that d > dG′(v)− 2(h− 1)(r − 1) · n/(24r3) ≥ dG′(v)− n/12. (Note that, trivially,

h− 1 ≤ r2 since H ′ is a bipartite graph with r vertices and h− 1 edges.) By (2), dG′(v) > n/3, so

d > n/3− n/12 ≥ n/4.

As in the proof of Lemma 4.1, put t = n2−1/r
3
. We claim that there are more than 3t + d edges

of Gz with an endpoint in D. To see this, note that by (2), the sum of degrees of the vertices of

D in G′ is at least nd/3 > n2/12. There are exactly 2(h− 1)r2(r − 1)2z edges which appear in G′

and do not appear in Gz. Thus, the sum of the degrees of the vertices of D in Gz is greater than

n2/12− 2(h− 1)r2(r − 1)2z. However,

n2

12
− 2(h− 1)r2(r − 1)2z ≥ n2

12
− 2(h− 1)r2(r − 1)2(

n2

50r6
+ n) ≥

n2

12
− n2

25
−Θ(n) >

n2

25
>> 8t >> 6t+ 2d.

So, the sum of the degrees of the vertices of D in Gz is greater than 6t + 2d, and thus there are

more than 3t+ d edges of Gz with an endpoint in D.

Excluding from the edges with an endpoint in D the d edges connected to v, we still remain with

more than 3t edges. Thus, either there are t edges of Gz with both endpoints in D, or there are

2t edges in the bipartite subgraph of Gz induced by the vertex classes D and V \ (D ∪ {v}). In

the first case, by Corollary 2.3, Gz has a copy of H∗ whose edges are all in Gz[D], so v may take

the role of any one of the vertices of this H∗, thereby proving that v appears in an H∗ copy of Gz.

In the second case, again by Corollary 2.3, Gz has a copy of H∗ with one vertex class in D and

the other in V \ (D ∪ {v}), so v may take the role of any one of the vertices in the second vertex

class of this H∗, thereby proving, again, that v appears in an H∗ copy of Gz. We have proved the

existence of S1, . . . , Sq.

Let v ∈ V be arbitrary. We prove that v must appear in at least n/(50r6) elements of {S1, . . . , Sq}.
By our construction, each Sz must contain a vertex which appears the minimum number of times in

S1, . . . , Sz−1. Thus, there is a vertex w which was chosen as minimal at least q/n times. Let z0 be

the last stage in which w was chosen as minimal. w appears at least q/n−1 times in S1, . . . , Sz0−1,

and by the minimality of w, every v ∈ V appears at least q/n− 1 times in S1, . . . , Sz0−1. However,

q/n− 1 ≥ n/(50r6), proving what we wanted.

In order to complete the proof of the lemma we need only to show how to enlarge {S1, . . . , Sq}
be adding to it k − q additional edge-disjoint copies of H∗. Notice that by Lemma 4.1 we have
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|E′| = |E| − |E∗| = mh− |E∗| ≥ mh− (m− t) = m(h− 1) + t. By Corollary 2.3, this means that

we can greedily select bm(h− 1)/e(H∗)c = k edge-disjoint copies of H∗ in G′. We selected the first

q of them non-greedily as in the above process. We can thus continue selecting k − q additional

copies greedily from the remaining edges of E′ which do not appear in {S1, . . . , Sq}.

Using the last lemma, and the properties of H∗ shown in Lemma 2.1, and Corollary 2.3 we can

now show the following:

Lemma 4.3 G′ contains a set L of m edge-disjoint copies of H ′ such that for any two distinct

vertices v, u ∈ V , there are at least n/(50r6) elements of L which contain v as the pivot and do not

contain u at all. Furthermore, if fv denotes the total number of edges incident with v and belonging

to some element of L and pv denotes the total number of elements of L in which v is the pivot then

pv > fv/(2(h− 1))− r2(r − 1)2.

Proof: Consider the set L′ = {S1, . . . , Sq, Sq+1, . . . , Sk} of edge-disjoint copies of H∗ that was

constructed in Lemma 4.2. By Lemma 2.1, each Si can be further decomposed into 2r2(r − 1)2

copies of H ′. This yields a set L′′ of k · 2r2(r − 1)2 edge-disjoint copies of H ′ in E′. Furthermore,

each v ∈ V appears in at least n/(50r6) elements of L′, and thus, by Lemma 2.1, for any two

distinct vertices vertices v and u, there are at least n/(50r6) elements of L′′ which contain v as the

pivot and do not contain u at all.

Now, let f ′′v denote the total number of edges incident with v and belonging to an element

of L′′. By Lemma 2.1, H∗ is regular of degree 2(h − 1)(r − 1). Thus, v appears in precisely

f ′′v /(2(h− 1)(r − 1)) elements of L′. By lemma 2.1 we also have that in every decomposition of Si

into 2r2(r − 1)2 copies of H ′, each vertex of Si appears as a pivot precisely r − 1 times. Hence, v

is a pivot in precisely f ′′v /(2(h− 1)) elements of L′′. Thus, pv ≥ f ′′v /(2(h− 1)).

We now show how to enlarge L′′ by adding to it m − k · 2r2(r − 1)2 additional edge-disjoint

copies of H ′ from the set of edges of E′ not appearing in any element of L′′. As in the last part

of Lemma 4.2 we use the fact that |E′| ≥ m(h − 1) + t, the fact that t > n2−1/v(H
′) = n2−1/r,

the fact that H ′ has h − 1 edges, and Lemma 2.2 to obtain that we can always greedily select

m edge-disjoint copies of H ′ in G′. We already selected the first |L′′| = k · 2r2(r − 1)2, so we

can greedily select the remaining m − k · 2r2(r − 1)2 additional copies of H ′ from the remaining

edges of E′ which do not appear in the elements of L′′. Denote the enlarged L′′ by L. Notice

that |L \ L′′| = m − k · 2r2(r − 1)2 < 2r2(r − 1)2. Thus, fv − f ′′v < 2(h − 1)r2(r − 1)2. Hence,

pv > fv/(2(h− 1))− r2(r − 1)2.

There are |E′|−(h−1)m edges of E′ which are still not used by any element of L. We add these

edges to E∗ and obtain a set C with exactly |E∗|+ |E′| − (h− 1)m = |E| − (h− 1)m = m edges.

Let R be the bipartite graph whose vertex classes are L and C. We connect an edge between an

element S ∈ L and an element e = (x, y) ∈ C if exactly one of x or y is the pivot of S (recall that

S is isomorphic to H ′) and the other one does not appear at all in S. Note that if S is adjacent
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to e in R then S ∪ e induces a copy of H. Thus, in order to complete the proof of Theorem 3.1 we

need to show:

Lemma 4.4 R has a perfect matching.

Proof: By Hall’s Theorem (cf.[2]) it suffices to show that for any subset C ′ ⊂ C, the set of

neighbors of C ′ in R, denoted N(C ′) satisfies |N(C ′)| ≥ |C ′|. We shall use the properties of L

established in Lemma 4.3 and the properties of E∗ ⊂ C established in Lemma 4.1 to prove that

this holds.

Let v(C ′) ⊂ V be the set of vertices which are endpoints of at least one edge of C ′. Let A ⊂ v(C ′)

be the subset of vertices which are incident with at least r edges of C ′, and let B = v(C ′) \ A be

the subset of vertices incident with less than r edges of C ′.

Claim: If v ∈ A is a pivot of some element S ∈ L then S ∈ N(C ′).

Proof: Suppose v ∈ A is the pivot of some S ∈ L. Since v ∈ A there are r edges of C ′ which have

v as their endpoint. In at least one of these r edges, the other endpoint does not belong to S since

S only has r − 1 vertices other than the pivot v. By definition of R, S is adjacent to this edge of

C ′ in R. This proves the claim.

In order to prove that |N(C ′)| ≥ |C ′| we distinguish between five cases, according to the sizes

of C ′ and A.

• |C ′| ≤ n/(50r6).

Consider an arbitrary element (u, v) ∈ C ′. By Lemma 4.3, there are at least n/(50r6) elements

of L which contain v as the pivot and do not contain u at all. By definition of R, all of these

elements belong to N(C ′). Hence, trivially, |C ′| ≤ n/(50r6) ≤ |N(C ′)|.

• |C ′| > n/(50r6) and |A| ≤
√
n

250r10
.

Trivially, |C ′| ≤
(|v(C′)|

2

)
, which implies |v(C ′)| >

√
2|C ′| >

√
n

5r3
. Thus,

|B| = |v(C ′)| − |A| ≥
√
n

5r3
−
√
n

250r10
>

√
n

10r3
.

Consider a vertex u ∈ B, and let (u,w) ∈ C ′ be arbitrary. According to Lemma 4.3, there

are at least n/(50r6) elements of L which contain u as the pivot and do not contain w. All

of these elements are neighbors of (u,w) in R. Thus, they are all in N(C ′). Since this is true

for every u ∈ B, we have at least |B|n/(50r6) elements of L counted in this way, and since

no copy of L is counted more than once (there is only one pivot in each copy) we get that

|N(C ′)| ≥ |B|n
50r6

.

Note that, obviously, (n − 1)|A| + (r − 1)|B| ≥ 2|C ′| (the l.h.s. bounds from above the sum

of the degrees in the subgraph of G induced by C ′) which implies |C ′| < n|A|+r|B|
2 . Thus, it
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suffices to show that
n|A|+ r|B|

2
≤ |B|n

50r6
.

This is equivalent to showing that

|A| ≤ (
1

25r6
− r

n
)|B|.

Indeed,

|A| ≤
√
n

250r10
≤ (

1

25r6
− r

n
)

√
n

10r3
≤ (

1

25r6
− r

n
)|B|.

• |C ′| > n/(50r6) and
√
n

250r10
< |A| < n/(50r6).

Clearly, |C ′| ≤ |B|(r− 1) +
(|A|

2

)
< nr+

(|A|
2

)
. By Lemma 4.3, every u ∈ A appears as a pivot

in at least n/(50r6) elements of L. By the claim proved above, if u appears in some S ∈ L
then S ∈ N(C ′). Thus, every u ∈ A contributes at least n/(50r6) elements to N(C ′), and

every such element Si is counted at most once by these contributions. Therefore,

|N(C ′)| ≥ n

50r6
|A|.

Now, for
√
n

250r10
< |A| < n/(50r6) we have

|C ′| < nr +

(
|A|
2

)
<

n

100r6
|A|+ n

100r6
|A| ≤ n

50r6
|A| ≤ |N(C ′)|

as required.

• |C ′| > n/(50r6) and n/(50r6) ≤ |A| ≤ 0.9n.

In this case, we can use Lemma 4.1 applied to A as W . Let z1 denote the number of elements

of C with both endpoints in A, and let w2 denote the number of edges of E∗ with both

endpoints in A. Since, by Lemma 4.1, |C|− |E∗| ≤ 3n2−1/r
3

we have that z1 ≤ 3n2−1/r
3

+w2,

and thus

|C ′| ≤ |B|(r − 1) + z1 < rn+ z1 ≤ rn+ 3n2−1/r
3

+ w2.

Hence, we must show that |N(C ′)| ≥ rn + 3n2−1/r
3

+ w2. According to Lemma 4.1, if w1

denotes the sum of the degrees of the vertices of A in G′ = (V,E′) then

w1 ≥ 9.5n2−1/r
3
(h− 1) + 2(h− 1)w2.

Let w∗ denote the sum of the degrees of the vertices of A in the union of all the elements

of L. Only the edges of C \ E∗ appear in E′ and do not appear in an element of L. Thus,

w∗ ≥ w1 − 6n2−1/r
3
, and therefore w∗ ≥ 9.5n2−1/r

3
(h− 1) + 2(h− 1)w2 − 6n2−1/r

3
.

For v ∈ A, let fv denote the number of edges incident with v that appear in an element of L.

Hence w∗ =
∑

v∈A fv. Let pv denote the number of elements of L in which v is a pivot. By
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Lemma 4.3, pv > fv/(2(h − 1)) − r2(r − 1)2. If v ∈ A is a pivot of an element of L then by

our claim on the vertices of A we have that this element is in N(C ′). Since each element of

L only has one pivot we get that |N(C ′)| ≥
∑

v∈A pv. We now have

|N(C ′)| ≥
∑
v∈A

pv >
∑
v∈A

(
fv

2(h− 1)
− r2(r − 1)2

)
=

w∗

2(h− 1)
− |A|r2(r − 1)2 ≥

4.75n2−1/r
3

+ w2 −
3n2−1/r

3

h− 1
− nr2(r − 1)2 ≥ rn+ 3n2−1/r

3
+ w2

as required.

• |C ′| > n/(50r6) and |A| > 0.9n.

Let n′ = n − |A| be the size of V \ A. The conditions imply that n′ ≤ 0.1n. If some Si ∈ L
is not in N(C ′) then, according to the claim proved above, Si contains no vertex of A, and

therefore all its r vertices are in V \ A. Thus, |N(C ′)| ≥ m−
(n′
2

)
/(h− 1). We need to show

that |C ′| ≤ m−
(n′
2

)
/(h− 1), or, equivalently, that |C \C ′| ≥

(n′
2

)
/(h− 1). Consider a vertex

v ∈ V \A. By Lemma 4.1,

dG∗(v) ≥ dG(v)

h
− 9n1−1/r

3 ≥ n

2h
− 9n1−1/r

3 ≥ n

3h
.

Thus, there are at least n/(3h) edges of C having v as an endpoint. Either v /∈ v(C ′) or

v ∈ B. In any case, v is an endpoint of at most r − 1 edges of C ′. Thus, there are at least

n/(3h)− r+ 1 edges of C \C ′ having v as an endpoint. Since this is true for every v ∈ V \A,

we have that there are at least (n/(3h) − r + 1)n′/2 edges in C \ C ′. Thus, we must show

that (n/(3h)− r + 1)n′/2 ≥ n′(n′ − 1)/(2h− 2). This is equivalent to showing that

n′ ≤ n

3
− n

3h
− r(h− 1) + h.

Indeed, this holds for n sufficiently large since n′ ≤ 0.1 and h ≥ 3.
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