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Abstract

Since counting subgraphs in general graphs is, by and large, a computationally demanding prob-
lem, it is natural to try and design fast algorithms for restricted families of graphs. One such family
that has been extensively studied is that of graphs of bounded degeneracy (e.g., planar graphs).
This line of work, which started in the early 80’s, culminated in a recent work of Gishboliner et al.,
which highlighted the importance of the task of counting homomorphic copies of cycles (i.e., cyclic
walks) in graphs of bounded degeneracy.

Our main result in this paper is a surprisingly tight relation between the above task and the
well-studied problem of detecting (standard) copies of directed cycles in general directed graphs.
More precisely, we prove the following:

� One can compute the number of homomorphic copies of C2k and C2k+1 in n-vertex graphs of
bounded degeneracy in time Õ(ndk), where the fastest known algorithm for detecting directed
copies of Ck in general m-edge digraphs runs in time Õ(mdk).

� Conversely, one can transform any O(nbk) algorithm for computing the number of homomor-
phic copies of C2k or of C2k+1 in n-vertex graphs of bounded degeneracy, into an Õ(mbk) time
algorithm for detecting directed copies of Ck in general m-edge digraphs.

We emphasize that our first result does not use a black-box reduction (as opposed to the second
result which does). Instead, we design an algorithm for computing the number of Ck-homomorphisms
in degenerate graphs and show that one part of its analysis can be reduced to the analysis of the
fastest known algorithm for detecting directed cycles in general digraphs, which was carried out in
a recent breakthrough of Dalirrooyfard, Vuong and Vassilevska Williams. As a by-product of our
algorithm, we obtain a new algorithm for detecting k-cycles in directed and undirected graphs of
bounded degeneracy that is faster than all previously known algorithms for 7 ≤ k ≤ 11, and faster
for all k ≥ 7 if the matrix multiplication exponent is 2.

1 Introduction

Counting occurrences of small subgraphs in a given input graph is among the most fundamental
algorithmic problems. Most prominently, it is the subject of a rich line of research in parameterized
complexity theory [11, 12, 14, 17, 19, 25, 27, 31, 34, 36], which has by now produced several important
general results on the fixed-parameter tractability of subgraph counting problems [14, 19, 25]. Works in
this area are too numerous to survey here, so we refer the reader to the above-cited papers for further

*ETH Zurich. Email: lior.gishboliner@math.ethz.ch.
�School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: yevgenyl@mail.tau.ac.il. Supported in

part by ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.
�School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by

ISF Grant 1028/16, ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.
§Department of Mathematics, University of Haifa, Haifa 3498838, Israel. Email: raphael.yuster@gmail.com. Supported

in part by ISF Grant 1028/16.

1



references. On the practical side of things, subgraph counting is important due to the role played by
subgraph counts in the analysis of real-world networks, see, e.g., [28, 32], and the references therein.

1.1 Detecting and Counting Cycles

One of the most fundamental and well-studied cases of subgraph-counting is that of counting (and
detecting) cycles. Such questions have been studied in both undirected and directed graphs. We will
always denote by n the number of vertices of the input graph and bym its number of edges. The problem
of counting copies of a k-length cycle is known to be #W [1]-hard [17], meaning that it is unlikely to
admit an algorithm which runs in time f(k) ·nO(1) for any computable function f . For cycle detection,
however, efficient algorithms exist and are the subject of numerous works [3, 4, 15, 21, 22, 29, 38, 39].
Notably, Alon, Yuster and Zwick [4] presented several cycle detection algorithms for both the undirected
and directed settings, improving upon earlier results of Itai and Rodeh [21] and Monien [29]. Some
of these algorithms used the technique of color-coding, introduced earlier in [3]. Most relevant for us
is the problem of detecting directed cycles in digraphs, where [4] provided a classical algorithm that
detects a directed k-cycle (for a fixed k) in an m-edge directed graph running in time

O(m2−1/dk/2e). (1)

This is still the fastest combinatorial algorithm for directed k-cycle detection in terms of m; see the
remark at the end of Section 1.4 concerning its optimality. However, faster algorithms exist if we use
algebraic algorithms relying on fast matrix multiplication. Let ω denote the exponent of fast matrix
multiplication, namely the infimum over all constants t such that two n×n matrices can be multiplied
using Õ(nt) field operations. It is known that ω < 2.373 [2, 23, 35]. Indeed, motivated by a simple
O(m2ω/(ω+1)) time algorithm of [4] for detecting a 3-cycle, Yuster and Zwick [38] set out to use fast
matrix multiplication for k-cycle detection (for a fixed k). They obtained an algorithm running in time
Õ(mck), and were able to show that for k = 4, 5, the value of ck (which they explicitly computed for
k = 4, 5) is strictly smaller than 2−1/dk/2e, thereby improving upon the aforementioned combinatorial
algorithm. It is, to date, the fastest algorithm for directed k-cycle detection when k = 4, 5 in terms
of m. For k ≥ 6, the exact value of ck turned out to be hard to analyze, due to an involved use
of dynamic programming, which resulted in a complicated recursive relation. This led Yuster and
Zwick to raise a conjecture1 regarding the runtime of their algorithm (i.e., the value of ck). This
conjecture was recently resolved by Dalirrooyfard, Vuong and Vassilevska Williams [13], establishing
that the algorithm of Yuster and Zwick detects a directed k-cycle in a graph with m edges in time
Õ(mck), where2

ck ≤
(k + 1)ω

2ω + k − 1
if k is odd, (2)

ck ≤
kω − 4

k

2ω + k − 2− 4
k

if k is even.

It should be noted that equality holds in the odd case when ω ≤ 2k
k−1

3. Moreover, it was proved in [13]
that equality holds also in the even case if ω = 2 and the exact value of c6 was determined for all ω. To

1In fact, they only conjectured the value of ck when k is odd; for even k it was not even clear what the “right”
conjecture should be.

2As in [13], the value of ck in (2) assumes, for simplicity, that rectangular matrix multiplication is simulated by square
matrix multiplication; the exact definition of ck is given in (9). If ω > 2 and the fastest known rectangular matrix
multiplication algorithms are used, ck results in a marginal improvement over the value in (2).

3When k is odd and ω > 2k
k−1

, one can prove that ck ≤ 2 − 2
k+1

< (k+1)ω
2ω+k−1

, which matches the runtime of the fastest
combinatorial algorithm.
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date, for any pair (k, ω) with k ≥ 3 and 2 ≤ ω < 2.373, the fastest algorithm for detecting a directed
k-cycle in a directed m-edge graph (i.e., in terms of m alone) is either the combinatorial O(m2−1/dk/2e)
algorithm or the Õ(mck) algorithm (which of them is faster depends on (k, ω)). It is easy to verify that
if ω > 2, then for all large enough k the O(m2−1/dk/2e) is faster, while if ω = 2 then Õ(mck) is always
faster, and ck is approximately 2− 4

k in this case (for k large).

1.2 Counting Homomorphisms in Degenerate Graphs

In this work we are concerned with the problem of counting homomorphisms of cycles (i.e., cyclic
walks of a given length) in graphs of bounded degeneracy4. Arguably, homomorphism-counting is the
most basic subgraph counting problem, to which other natural problems — such as counting copies or
induced copies — can be reduced [11].

Recall that a graph is called d-degenerate if it admits a vertex ordering v1, . . . , vn such that vi has
at most d neighbors among vi+1, . . . , vn (for every 1 ≤ i ≤ n). In the setting considered here, we
look for algorithms which run in time f(d) · nα, where d is the degeneracy5 of the input graph, n is
its number of vertices, and α does not depend on d. Such algorithms are particularly useful when
the input graph has bounded degeneracy. The family of such graphs is rich, including for example all
non-trivial minor-closed graph classes (in particular, planar graphs), preferential attachment graphs
[5], and bounded expansion graphs [30].

The study of subgraph counting in degenerate graphs goes back to a classical work of Chiba and
Nishizeki [10] from the early 1980s. Very recently, this research direction has seen several substantial
developments [6, 7, 9, 18]. Bressan [9] gave a general algorithm for counting homomorphisms in
bounded-degeneracy graphs, which in particular implies a sufficient condition6 (on graphs H) under
which H-homomorphisms can be counted in time Õ(n). In [18], it was shown that this sufficient
condition is also necessary, and moreover, a clean combinatorial characterization of the graphs H
satisfying it was obtained. Specifically, it was shown that H-homomorphisms in bounded-degeneracy
graphs can be counted in time Õ(n) if and only if H contains no induced cycles of length 6 or larger7.
A similar result has been independently obtained in [7]. These results highlight the important role
played by cycles of length at least 6, as being the minimal graphs whose homomorphisms cannot be
counted in (almost) linear time (in bounded-degeneracy graphs). This motivates the study of the time
complexity of counting homomorphisms of such cycles (with the intention of improving the running
time of Bressan’s general algorithm for cycles), which is precisely the question studied in the present
paper.

1.3 Our Results

Let Ck denote the cycle of length k (where k is fixed throughout the paper). Here we state our
results regarding the problem of counting Ck-homomorphisms in graphs of bounded degeneracy. By

4We note that counting copies of cycles remains #W [1]-hard even in bounded-degeneracy graphs. This follows from the
fact that counting k-cycles in general graphs can be reduced to counting 2k-cycles in 2-degenerate ones via the reduction
which replaces each edge of the input graph by a path of length 2 (thus producing a 2-degenerate graph).

5We note that degeneracy is closely related to another well-studied graph parameter, namely arboricity, which is the
minimum number of forests into which the edge-set of a graph can be partitioned. It is well-known that the arboricity of
a d-degenerate graph is between (d+ 1)/2 and d.

6Bressan’s result in its full generality states that for every graph H, one can count H-homomorphisms in bounded-
degeneracy graphs in time Õ(nτ(H)), where τ(H) is a suitable width parameter called DAG treewidth.

7The “only if” direction of this result is under a certain standard hardness assumption from fine-grained complexity
[1]. The proof of this direction actually shows that if H contains an induced `-cycle for some ` ≥ 6, then one cannot count
H-homomorphisms in bounded-degeneracy graphs in time O(n1+γ), where γ > 0 is some fixed constant.
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the aforementioned result of Bressan [9], if 3 ≤ k ≤ 5 then Ck-homomorphisms can be counted in near-
linear time (which is optimal), and we therefore focus on the case k ≥ 6. As our main results in this
paper show, the problem of counting C2k- and C2k+1-homomorphisms in bounded-degeneracy graphs
is related to the problem of detecting directed k-cycles in general (i.e., not necessarily degenerate)
digraphs. In particular, we shall design two algorithms: a combinatorial algorithm for counting cycle
homomorphisms whose runtime corresponds to the runtime of the combinatorial k-cycle detection
algorithm of [4] and an algorithm for counting cycle homomorphisms whose runtime obeys the same
recursive relation as the aforementioned directed-cycle detection algorithm of Yuster and Zwick [38].
Combining these two algorithms and the work of Dalirrooyfard, Vuong and Vassilevska Williams [13],
we will obtain the following theorem, which is our main result in this paper. Let hom-cntH denote
the problem of computing the number of H-homomorphisms.

Theorem 1 (Main Result). For every k ≥ 2, the following hold:
(i) hom-cntC2k

and hom-cntC2k+1
can be solved in bounded-degeneracy graphs in time Õ(nck), where

ck is as defined in (9).
(ii) hom-cntC2k

and hom-cntC2k+1
can be solved in bounded-degeneracy graphs in time Õ(n2−1/dk/2e).

The algorithm of case (i) in Theorem 1 combines the general structure of the Yuster-Zwick algorithm
with several significant additional twists used in the setting of degenerate graphs, inspired by the
approach in [9].

As opposed to the algorithm of case (i) which relies on fast matrix multiplication, the algorithm of
case (ii) is purely combinatorial. Furthermore, it can be modified to give a combinatorial algorithm
for counting Ck-homomorphisms in general (i.e., not necessarily degenerate) graphs, both directed and
undirected, which runs in time Õ(m2−1/dk/2e). This algorithm can in turn be used to obtain a new
combinatorial algorithm for directed k-cycle detection, which essentially matches the runtime of the
best such combinatorial algorithm to date, namely the algorithm of [4] mentioned above, while being
somewhat simpler. It should be noted that another combinatorial cycle-detection algorithm with the
same runtime was given in [37] (see also [22]). The details appear in Section 7.

The relation to directed-cycle detection is in fact more robust, as is evidenced by our next result,
which states that counting C2k- or C2k+1-homomorphisms already in 2-degenerate graphs is at least as
hard as detecting a directed k-cycle in general digraphs. Note that if k = 2 then both problems can be
solved in time linear in the number of edges, so the interesting case is when k ≥ 3. Formally, we prove
the following theorem.

Theorem 2. Let k ≥ 3. If there is an algorithm that computes hom-cntC2k
or hom-cntC2k+1

in 2-
degenerate graphs in O(nα) time, then there is an algorithm that decides if an arbitrary directed m-edge
graph has a directed k-cycle in time O(mα) (randomized) and O(mα logm) (deterministic).

To make the relation between directed-cycle detection in general graphs and counting cycle homo-
morphisms in bounded-degeneracy graphs even sharper, recall that for all k ≥ 3, the presently fastest
k-cycle detection algorithm in m-edge directed graphs is either the O(m2−1/dk/2e) algorithm [4] or the
Õ(mck) algorithm [13, 38]. Let us therefore define for a given 2 ≤ ω < 2.373

dk = min{ck , 2− 1/dk/2e} .

Recall that if ω > 2 then for all large enough k we have dk = 2 − 1/dk/2e (i.e., the second term is
smaller), while if ω = 2 then dk = ck for all k ≥ 3. The following corollary immediately follows from
Theorem 1 and Theorem 2.
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Corollary 3. Let k ≥ 3. If the fastest algorithm (in terms of the number of edges m) for deciding
if a directed graph has a directed k-cycle runs in Õ(mdk) time then the fastest algorithm for comput-
ing hom-cntC2k

in degenerate graphs runs in Õ(ndk) time and the fastest algorithm for computing
hom-cntC2k+1

in degenerate graphs runs in Õ(ndk) time.

In particular, for every ε > 0, if we can improve the bound in Theorem 1 and compute, say,
hom-cntC2k

in time O(ndk−ε), then we could decide if a digraph with m edges has a directed k-cycle
in time O(mdk−ε), which is faster (in terms of m) than the presently fastest known algorithm for the
latter problem.

Another interesting by-product of Theorem 1 is that it can be used (together with a standard appli-
cation of the color-coding method) to give an algorithm for (directed or undirected) k-cycle detection
in bounded-degeneracy graphs.

Theorem 4. Let k ≥ 6. There is an algorithm that detects if a (directed) bounded-degeneracy graph
has a (directed) k-cycle in Õ(ndbk/2c) time.

As can easily be verified by examining the values of ck (hence dk), the algorithm of Theorem 4 is
faster than any known algorithm for cycle detection in degenerate graphs for 7 ≤ k ≤ 11. If ω = 2, it
is faster for all k ≥ 7. In any case it is never slower (up to polylogarithmic factors) than the previously
fastest algorithm for this problem, given in [4], Theorem 4.2.

Let us give some more details of the proof of Theorem 1. For (di)graphs G,H, let us denote
by hom(H,G) the number of homomorphisms from H to G. Suppose that we want to compute
hom(C`, G) for a given d-degenerate input graph G. As is usual when working with degenerate graphs,
we approach this task by first finding a degeneracy ordering8 v1, . . . , vn of G — i.e., a vertex ordering
in which each vertex vi has at most d neighbors succeeding it — and then considering the orientation
~G of G in which all edges are oriented forward with respect to this ordering, namely, from vi to vj
for {vi, vj} ∈ E(G) with i < j. Observe that ~G can be obtained in linear time (in |E(G)| = O(dn)),
that it is acyclic, and that all of its vertices have out-degree at most d. Moreover, it is not hard to
see that hom(C`, G) =

∑
~H hom( ~H, ~G), where ~H runs over all acyclic orientations of C`. It follows

that counting C`-homomorphisms in d-degenerate graphs reduces to counting homomorphisms of (all)
acyclic orientations of C` in directed acyclic graphs (DAGs) of maximum out-degree d.

As it turns out, there is a particular orientation of C` which is harder, in a sense, than all others;
this is the orientation with the maximum number of sources, namely, the orientation where edges are
oriented in an alternating fashion (with the exception of one edge in the case that ` is odd). We call this
the alternating orientation of C`. To establish that this is indeed the “hardest orientation”, we show
(roughly speaking) that for every DAG ~H and for every directed subdivision ~H ′ of ~H, counting ~H ′-
homomorphisms can be reduced to counting ~H-homomorphisms (in input DAGs of bounded maximum
degree). It is easy to see that every acyclic orientation ~H of C` (with at least two sources) is a directed
subdivision of the alternating orientation of C`′ for some even `′ ≤ `, and that `′ = ` if and only if
~H itself is alternating9. It follows that the running time of counting C`-homomorphisms is dominated
by the running time of counting homomorphisms of alternating orientations of cycles of even length at
most `.

8A degeneracy ordering of a graph can be found in time linear in its number of edges [26]. In particular, since a
bounded-degeneracy graph has O(n) edges, a degeneracy ordering of such a graph can be found in time O(n).

9Indeed, one can observe that if the number of sources in ~H is p > 1, then ~H is a directed subdivision of the alternating
orientation of C2p. If p = 1 then we can think of C` as the subdivision of the 2-vertex alternating cycle C2, which is the
multigraph with two vertices x, y and two parallel edges from x to y. Theorem 5 applies to ~H = C2 as well. A different
way to handle the case p = 1 is to observe that in this case one can easily count homomorphisms of ~H in linear time [9].
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The aforementioned general reduction for directed subdivisions is stated in the following theorem.
For technical reasons, the reduction reduces the problem of counting ~H ′-homomorphisms to the prob-
lem of counting ~H-homomorphisms in weighted digraphs. We denote by w-hom-cnt ~H the weighted
analogue of hom-cnt ~H ; see Section 3 for the precise definition.

Theorem 5. Let ~H be a DAG and let ~H ′ be a directed subdivision of ~H. If w-hom-cnt ~H can be
solved in time O(nα) in n-vertex weighted degenerate digraphs10, then hom-cnt ~H′ can be solved in
time O(nα) in n-vertex degenerate digraphs.

We believe Theorem 5 to be of independent interest. With this theorem at hand, it remains to give
an efficient algorithm which counts homomorphisms of the alternating orientation of C2k (in DAGs
of bounded maximum out-degree) for every k ≥ 3, which is the main step towards proving Theorem
1. Since applying Theorem 5 requires that the algorithm works in the more general weighted setting,
we need to modify it accordingly (this modification is straightforward and does not pose additional
difficulties).

1.4 Related Work

While the fastest algorithm for k-cycle detection in directed m-edge graphs runs in Õ(mdk) time,
it is worth noting that there are other algorithms expressed in terms of both n and m (or n alone).
Indeed, the color-coding method [3] shows that a simple directed or undirected cycle of size k in a
directed or undirected graph can be detected in either Õ(nm) time or Õ(nω) time. For dense graphs,
this is faster than the Õ(mdk) time algorithm. Eisenbrand and Grandoni [15] proved that a directed
C4 can be detected in time O(m2−2/ωn1/ω). This algorithm is inferior to the Õ(mck) algorithm for
sparse graphs and inferior to the O(nω) algorithm for dense graphs, but is better than both in some
intermediate range.

As for hardness, Lincoln et al. [22] proved conditional lower bounds for k-cycle detection. Under
a widely-believed assumption, Kk cannot be detected faster than O(C(n, k)) time, where C(n, k) =
M(ndk/3e, nbk/3c, nd(k−1)/3e) and where M(a, b, c) is the fastest known runtime for multiplying an a×b by
a b×c matrix. Assuming this, they proved that detecting a directed k-cycle in an m-edge graph requires

m
2ωk

3(k+1)
−o(1)

time. The same reduction also shows that any combinatorial algorithm for detecting a
directed k-cycle in an m-edge graph requires m2−1/dk/2e−o(1) time, in this case under the suitable
hardness hypothesis that any combinatorial algorithm for Kk-detection requires nk−o(1) time. This
lower bound of m2−1/dk/2e−o(1) coincides with the runtime in (1), showing that the algorithms of [4, 22,
37], as well as our combinatorial algorithm for directed-cycle detection given in Section 7, are optimal
(for combinatorial algorithms). The same applies to the algorithm given by Part (ii) of Theorem 1.

Paper Overview: The goal of Section 2 is to introduce the definitions we will use in subsequent
sections. Section 3 is devoted to proving Theorem 5. Theorem 1 is proved in Sections 4 and 5: the
former deals with Part (ii) of the theorem and the latter with Part (i). Section 6 contains the proofs of
Theorems 2 and 4. Finally, in Section 7 we apply our methods to obtain combinatorial algorithms for
counting Ck-homomorphisms and for Ck-detection in general graphs (both directed and undirected).

10Here, and in what follows, by degenerate digraphs we mean digraphs where all out-degrees are bounded.
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2 Preliminaries

Here we introduce the basic definitions to be used throughout the paper. Recall that for (undirected)
graphs G,H, a homomorphism from H to G is a map ϕ : V (H)→ V (G) such that {ϕ(u), ϕ(v)} ∈ E(G)
whenever {u, v} ∈ E(H). Similarly, for digraphs ~G, ~H, a homomorphism from ~H to ~G is a map
ϕ : V ( ~H)→ V (~G) such that (ϕ(u), ϕ(v)) ∈ E(~G) whenever (u, v) ∈ E( ~H). We will consider (di)graphs
with edge weights. Let us define what we mean by the weight of a homomorphism.

Definition 2.1. Let ~H be a digraph, let ~G be a weighted digraph with a weight function
w ~G : E(~G) → R≥0, and let ϕ : V ( ~H) → V (~G) be a homomorphism. The weight of ϕ, denoted
W (ϕ), is defined as follows:

W (ϕ) :=
∏

(u,v)∈E( ~H)

w ~G((ϕ(u), ϕ(v))).

For digraphs ~G, ~H, denote by Hom( ~H, ~G) the set of all homomorphisms from ~H to ~G. For a
weight-function w ~G on the edges of ~G, define the weighted homomorphism count as follows:

hom( ~H, ~G,w ~G) :=
∑

ϕ∈Hom( ~H, ~G)

W (ϕ).

As mentioned above, we denote by w-hom-cnt ~H the problem of computing hom( ~H, ~G,w~G) for a given

weighted input digraph ~G. (Usual — i.e., unweighted — homomorphism counts can be cast in this
setting by letting all edge-weights be 1.)

Finally, we recall the notion of subdivision for directed graphs:

Definition 2.2. Let ~H be a directed graph and write E( ~H) = {e1, . . . , et}. Let (x1, . . . , xt) be a
sequence of positive integers. The directed (x1, . . . , xt)-subdivision of ~H is the digraph obtained from
~H by replacing each edge ei with a directed path with xi edges, where paths replacing different edges
are internally disjoint. We call (x1, . . . , xt) the subdivision sequence. We say that a digraph ~H ′ is a
directed subdivision of ~H if it is the directed (x1, . . . , xt)-subdivision of ~H for some (x1, . . . , xt).

3 Homomorphism Counting and Graph Subdivisions

In this section we prove Theorem 5, showing that counting (weighted) homomorphisms of a directed
graph is at least as hard as counting homomorphisms of its directed subdivisions. The main tool in the
proof is (a digraph variant of) an extremely useful result of Curticapean, Dell and Marx [11], stated
below as Lemma 3.1. This lemma deals with computing linear combinations of homomorphism counts.
For digraphs ~H1, . . . , ~Hk and non-zero constants c1, . . . , ck, let hom-cntc1 ~H1+···+ck ~Hk be the problem

of computing c1 · hom( ~H1, ~G) + · · · + ck · hom( ~Hk, ~G) for an input digraph ~G. Lemma 3.1 states that
solving hom-cntc1 ~H1+···+ck ~Hk is essentially equivalent to solving hom-cnt ~Hi

for all 1 ≤ i ≤ k.

Lemma 3.1. Let ~H1, . . . , ~Hk be pairwise non-isomorphic digraphs and let c1, . . . , ck be non-zero con-
stants. Then hom-cntc1 ~H1+···+ck ~Hk can be solved in time O(nα) in n-vertex degenerate digraphs if and

only if hom-cnt ~Hi
can be solved in time O(nα) in n-vertex degenerate digraphs for all 1 ≤ i ≤ k.

The undirected version of Lemma 3.1 was proved in [11], and subsequently used in [18] to study
homomorphism-counting in degenerate graphs. The proof uses tensor products and a result of Erdős,
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Lovász and Spencer [16] regarding linear independence of homomorphism counts. Since the proof of
the directed variant (namely, Lemma 3.1) is essentially the same as that of the undirected one, we
postpone it to the appendix.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Let ~H be a fixed digraph and write E( ~H) = {e1, . . . , et}. We assume that
w-hom-cnt ~H can be solved in time O(nα) (for some α ≥ 1) in n-vertex weighted degenerate digraphs.

For an integer p ≥ 1, we denote by SD ~H,p the set of all directed subdivisions of ~H where each edge is

replaced by a directed path of length at most p, and the original vertices (i.e., the vertices of ~H) are
labeled as in ~H. We will prove the theorem simultaneously for all digraphs ~H ′ ∈ SD ~H,p (this is clearly

sufficient as p was arbitrary). Note that every digraph in SD ~H,p is defined by a unique subdivision

sequence x = (x1, . . . , xt) ∈ [p]t. Our goal is to show that hom-cnt ~H′ can be solved in time O(nα) in

bounded-degeneracy digraphs for every digraph ~H ′ ∈ SD ~H,p. To this end, we will show that a certain

linear combination of hom( ~H ′, ~G), where ~H ′ runs over all digraphs ~H ′ ∈ SD ~H,p, can be computed in

time O(nα). We will then apply Lemma 3.1 to complete the proof.

Let ~G be an n-vertex digraph where all out-degrees are at most κ = O(1). We construct a weighted
digraph ~F , that will have the same vertex set as ~G, as follows. For every pair x, y ∈ V (~G) and every
` ∈ [p], let w`(x, y) denote the number of directed walks of length exactly ` from x to y in ~G. Let

w(x, y) =

p∑
`=1

w`(x, y).

If w(x, y) > 0, then the graph ~F will have the edge (x, y) with weight w(x, y), and otherwise (i.e., if
w(x, y) = 0), it will not have the edge (x, y). Namely, the weight function of ~F is w~F (u, v) = w(u, v).

We observe that the graph ~F can be constructed in O(n) time. Indeed, for each x ∈ V (~G), there are
at most κ` vertices y such that there is a directed walk of length ` from x to y, as all out-degrees in ~G
are at most κ. Thus, for each x ∈ V (~G), it takes constant time to compute w(x, y) for all y such that
w(x, y) > 0. Moreover, we observe that the out-degree of every vertex in ~F is constant.

Now, let ϕ : V ( ~H)→ V (~F ) be a homomorphism. We have that

W (ϕ) =
∏

(u,v)∈E( ~H)

w~F ((ϕ(u), ϕ(v))) =
∏

(u,v)∈E( ~H)

(w1(ϕ(u), ϕ(v)) + · · ·+ wp(ϕ(u), ϕ(v))),

and so
hom( ~H, ~F ,w~F ) =

∑
ϕ∈Hom( ~H, ~F )

∏
(u,v)∈E( ~H)

(w1(ϕ(u), ϕ(v)) + · · ·+ wp(ϕ(u), ϕ(v))). (3)

Write ei = (ui, vi) for 1 ≤ i ≤ t. Crucially, observe that for a digraph ~H ′ ∈ SD ~H,p with subdivi-

sion sequence (x1, . . . , xt) ∈ [p]t, a homomorphism ψ : V ( ~H ′) → V (~G) corresponds to a homomor-
phism ϕ : V ( ~H) → V (~F ) such that ϕ(v) = ψ(v) for every v ∈ V ( ~H), together with a directed walk
ψ(ui)→ ψ(s1

ei)→ · · · → ψ(sxi−1
ei )→ ψ(vi) of length xi in ~G (where {sjei} ∈ V ( ~H ′) are the subdivision

vertices of the path corresponding to the edge ei), for every 1 ≤ i ≤ t. Since for each i the number of
such walks (in ~G) is wxi(ϕ(ui), ϕ(vi)), we have that

hom( ~H ′, ~G) =
∑

ϕ∈Hom( ~H, ~F )

∏
ei=(ui,vi)∈E( ~H)

wxi(ϕ(ui), ϕ(vi)). (4)
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Recalling that every ~H ′ ∈ SD ~H,p is defined by a unique sequence (x1, . . . , xt) ∈ [p]t, by combining (3)

and (4), we get∑
~H′∈SD ~H,p

hom( ~H ′, ~G) =
∑

ϕ∈Hom( ~H, ~F )

∑
(x1,...,xt)∈[p]t

∏
ei=(ui,vi)∈E( ~H)

wxi(ϕ(ui), ϕ(vi))

=
∑

ϕ∈Hom( ~H, ~F )

∏
ei=(ui,vi)∈E( ~H)

(w1(ϕ(ui), ϕ(vi)) + · · ·+ wp(ϕ(ui), ϕ(vi))) (5)

= hom( ~H, ~F ,w~F ).

We were able to express hom( ~H, ~F ,w~F ) as a linear combination of hom( ~H ′, ~G) (with ~H ′ ∈ SD ~H,p),

where all of the coefficients are equal to 1. We observe that for isomorphic graphs ~H ′, ~H ′′ ∈ SD ~H,p,

hom( ~H ′, ~G) = hom( ~H ′′, ~G), and thus we can “combine like terms” in (5). Namely, let ~H1, . . . , ~Hk

be an enumeration of all graphs in SD ~H,p up to isomorphism (that is, ~H1, . . . , ~Hk are pairwise non-

isomorphic). Then, there exist positive constants c1, . . . , ck > 0 such that

hom( ~H, ~F ,w~F ) =
k∑
i=1

ci · hom( ~Hi, ~G). (6)

As ~F is a weighted digraph where all out-degrees are constant, hom( ~H, ~F ,w~F ) can be computed in
time O(nα), by our assumption. Combined with (6), we get that hom-cntc1 ~H1+···+ck ~Hk can be solved

in time O(nα) in bounded-degeneracy digraphs.

By Lemma 3.1, hom-cnt ~Hi
can be solved in time O(nα) in degenerate digraphs, for each 1 ≤ i ≤ k.

This completes the proof, since every digraph ~H ′ ∈ SD ~H,p is isomorphic to one of ~H1, . . . , ~Hk. �

4 Counting Homomorphisms of Cycles: A Combinatorial Algorithm

In this section we prove the second part of Theorem 1. We prefer to prove this part first as it is
technically simpler than the first part. Let Pr denote the oriented path with vertices 1, . . . , 2r + 1 (so
e(Pr) = 2r), and where the vertices 1, 3, . . . , 2r + 1 are sinks and the vertices 2, 4, . . . , 2r are sources.

Lemma 4.1. There is an algorithm which, given integers r,∆ ≥ 1 and a weighted degenerate n-vertex
input DAG ~G, computes the following:

1. For every x, y ∈ V (~G), the total weight Nr,∆(x, y) of homomorphisms ϕ : Pr → ~G such that
ϕ(1) = x, ϕ(2r + 1) = y, and in-deg(ϕ(t)) ≤ ∆ for every sink t of Pr other than 1, 2r + 1.

2. For every x, y ∈ V (~G) with in-deg(x) > ∆ and for every function f : {3, 5, . . . , 2r + 1} →
{low, high}, the total weight Mr,∆,f (x, y) of homomorphisms ϕ : Pr → ~G such that ϕ(1) = x and
ϕ(2r + 1) = y, and such that for every t ∈ {3, 5, . . . , 2r + 1} it holds that in-deg(ϕ(t)) ≤ ∆ if
f(t) = low and in-deg(ϕ(t)) > ∆ if f(t) = high.

The computation for Item 1 takes time Õ(n∆r−1) and the computation for Item 2 takes time Õ(n2/∆).
Furthermore, the number of pairs x, y with Nr,∆(x, y) > 0 is O(n∆r−1).

Proof. We will use a hash map to store the counts Nr,∆(x, y) and Mr,∆,f (x, y) (for all pairs (x, y)
for which the counts are non-zero). Using such a hash map is the reason for the logarithmic factors
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implicit in the Õ-notation in the runtime bound, since the hash-map operations require time Õ(1).
This logarithmic factor can be avoided at the cost of allowing randomized algorithms (in which case
we should speak of expected runtime).

Let w ~G be the weight function of ~G. We start with Item 1. Here we enumerate all homomorphisms ϕ :

Pr → ~G such that in-deg(ϕ(t)) ≤ ∆ for every sink t ∈ V (Pr) other than 1, 2r+1. Enumerating all such
homomorphisms is clearly sufficient to produce the desired counts. To choose such a homomorphism ϕ,
we first choose ϕ(2), for which there are n choices. Having chosen ϕ(2), we have O(1) choices for ϕ(1)
and ϕ(3), where we only go over the choices for ϕ(3) which satisfy in-deg(ϕ(3)) ≤ ∆. Having chosen
ϕ(3), there are at most ∆ choices for ϕ(4), since ϕ(4) must be an in-neighbor of ϕ(3). Continuing in
this fashion, we see that there are O(1) choices for each of the vertices ϕ(1), ϕ(3), . . . , ϕ(2r + 1) and
at most ∆ choices for each of the vertices ϕ(4), ϕ(6), . . . , ϕ(2r). Hence, the total number of choices is
n∆r−1. In particular, the number of pairs x, y with Nr,∆(x, y) > 0 (namely, which are the endpoints
in such a homomorphism) is at most O(n∆r−1), as required.

We now establish Item 2, whose proof is by induction on r. First, let us handle the base case r = 1.
Observe that P1 is just the two-edge oriented path with the middle vertex 2 being a source and the
two endpoints 1, 3 being sinks. We can enumerate all homomorphisms ϕ from P1 to ~G in time O(n),
by going over all (at most n) choices for ϕ(2) and for each such choice, going over all (at most O(1))
pairs of out-neighbors of ϕ(2). Enumerating all homomorphisms of P1 is clearly enough to compute
the desired counts.

We now proceed to the induction step. Assume, by the induction hypothesis, that we have already
computed the desired counts for Pr−1. To achieve this for Pr, go over all choices for vertices x, u ∈ V (~G)
such that in-deg(x) > ∆. The number of such choices is at most O(n2/∆), since there are at most
n choices for u and at most O(n/∆) choices for x. Now go over all pairs v, y of out-neighbors of u.
For each such pair v, y, and for each function g : {3, 5, . . . , 2r − 1} → {low, high}, we have already
computed the total weight Mr−1,∆,g(x, v) of homomorphisms ψ : Pr−1 → ~G such that ψ(1) = x and
ψ(2r−1) = v, and such that for every t ∈ {3, 5, . . . , 2r−1} it holds that in-deg(ϕ(t)) ≤ ∆ if g(t) = low
and in-deg(ϕ(t)) > ∆ if g(t) = high. Now, for each such ψ and g, the map ϕ : V (Pr) → V (~G)
which agrees with ψ on Pr[{1, . . . , 2r − 1}] = Pr−1 and satisfies ϕ(2r) = u and ϕ(2r + 1) = y, is
a homomorphism from Pr to ~G satisfying ϕ(1) = x and ϕ(2r + 1) = y. Furthermore, the function
f : {3, 5, . . . , 2r + 1} → {low, high} corresponding to ϕ is simply the function which agrees with g on
{3, 5, . . . , 2r− 1} and satisfies f(2r+ 1) = low if in-deg(y) ≤ ∆ and f(2r+ 1) = high if in-deg(y) > ∆.
Hence, multiplying the weight of ψ by w(u, v) · w(u, y) and summing over all such ψ, we obtain the
desired count for the pair x, y. �

Let ~C2` denote the alternating orientation of C2`.

Theorem 6. For every ` ≥ 2, there is an algorithm which, given a weighted degenerate n-vertex input
DAG ~G, computes the total weight of homomorphisms from ~C2` to ~G in time Õ(n2−1/d`/2e).

Proof. Set ∆ := n1/d`/2e. Denote the sinks of ~C2` by t1, . . . , t`. In order to compute hom(~C2`, ~G,w ~G),
we will compute, for every function g : {t1, . . . , t`} → {low, high}, the total weight homg of homomor-

phisms ϕ : ~C2` → ~G such that in-deg(ϕ(ti)) ≤ ∆ if g(ti) = low and in-deg(ϕ(ti)) > ∆ if g(ti) = high
(for every 1 ≤ i ≤ `). Clearly, hom(~C2`, ~G,w ~G) =

∑
g homg. We consider two cases. Suppose first that

g(ti) = low for every 1 ≤ i ≤ `. It is easy to see that ~C2` consists of a copy of Pb`/2c and a copy of
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Pd`/2e, glued together at their endpoints. It is now easy to see that for this particular g, one has

homg =
∑

x,y∈V ( ~G):
in-deg(x)≤∆
in-deg(y)≤∆

Nb`/2c,∆(x, y) ·Nd`/2e,∆(x, y),

where Nr,∆(x, y) is as defined in Item 1 of Lemma 4.1. Since we can compute the counts
Nb`/2c,∆(x, y), Nd`/2e,∆(x, y) for all pairs of vertices x, y ∈ V (G) (simultaneously) in time Õ(n∆d`/2e−1),

and since the total number of pairs for which these counts are non-zero is O(n∆d`/2e−1), the above sum
can be computed in time Õ(n∆d`/2e−1) = Õ(n2−1/d`/2e), as required.

Suppose now that g(ti) = high for some 1 ≤ i ≤ `. We proceed similarly to the previous case.
Decompose ~C2` into a copy P of Pb`/2c and a copy P ′ of Pd`/2e, such that ti is an endpoint of both of
these paths. Let f, f ′ be the “low/high signatures” corresponding the paths P, P ′, respectively. Again,
it is not hard to see that

homg =
∑

x,y∈V ( ~G):
in-deg(x)>∆

Mb`/2c,∆,f (x, y) ·Md`/2e,∆,f ′(x, y).

By Item 2 of Lemma 4.1, one can compute Mb`/2c,∆,f (x, y) and Md`/2e,∆,f ′(x, y) for all pairs x, y ∈
V (~G) with in-deg(x) > ∆ in time Õ(n2/∆). Furthermore, the number of such pairs x, y is O(n2/∆),
because there are O(n/∆) choices for x. We conclude that the above sum can be computed in time
Õ(n2/∆) = Õ(n2−1/d`/2e), as required. This completes the proof of the theorem. �

Proof of Theorem 1, Part (ii). Let G be an n-vertex degenerate graph and consider the DAG ~G
obtained (in linear time) from a degenerate ordering of G. We need to compute hom(C2k, G) in
O(n2−1/dk/2e) time (the proof for hom(C2k+1, G) is analogous). Recall that this amounts to computing
hom( ~H, ~G) for every acyclic orientation ~H of C2k. So, consider some such ~H. If ~H has exactly
one source, then we can enumerate all homomorphisms from ~H to ~G — and in particular compute
hom( ~H, ~G) — in linear time11; see, e.g., [9]. Suppose then that ~H has at least two sources, and recall
that ~H is a directed subdivision of the alternating orientation ~C2` of C2` for some 2 ≤ ` ≤ k. It now
follows from Theorem 5 that it suffices to show that w-hom-cnt ~C2`

can be solved in time Õ(n2−1/dk/2e)
in weighted degenerate DAGs, which is precisely the statement of Theorem 6. �

5 Counting Homomorphisms of Cycles: Using Matrix Multiplication

In this section we prove the first part of Theorem 1. We begin with describing an algorithm
for counting weighted homomorphisms of alternating orientations of cycles. As mentioned in the
introduction, our algorithm is inspired by the algorithm of Yuster and Zwick [38] for finding a directed
k-cycle in a (general) directed graph but bears several significant differences and tweaks.

Theorem 7. Let k ≥ 2 and let ~C2k be the alternating orientation of C2k. Then, the w-hom-cnt ~C2k

problem can be solved in degenerate digraphs in time Õ(nck).

11This is because after choosing the image of the unique source of ~H (under a homomorphism from ~H to ~G), there are
O(1) choices for every other vertex of ~H, as all vertices of ~H are reachable from the source and ~G has bounded out-degrees.
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Proof. Let ~G be an n-vertex degenerate weighted digraph with weight function w ~G. Let us denote

by u0, . . . , uk−1 the source vertices of ~C2k, and by s0, . . . , sk−1 the sink vertices of ~C2k, such that
(ui, si), (ui, si−1) are edges for all i (here and in what follows, indices are taken modulo k).

We call a triple of vertices x, y, z ∈ V (~G) such that (z, x), (z, y) are edges a cherry. We start by
observing that in O(n) time one can enumerate all the cherries in ~G, as the out-degree of every vertex in
~G is bounded. In particular, for every pair of vertices x, y ∈ V (~G), we will store in a hash table, denoted
HM, the sum of weight products of cherries with endpoints x, y (i.e., the sum of w ~G(z, x) · w ~G(z, y)
over all vertices z such that (z, x), (z, y) are edges). This number will be denoted by HM[x, y]. Note
that there are only O(n) pairs (x, y) for which HM[x, y] > 0.

Let us partition the vertices of ~G into log n degree classes, as follows. For every 0 ≤ i < log n, let

Wi = {v ∈ V (~G) | 2i ≤ in-deg(v) < 2i+1}.

We refer to a degree class Wj by its index j, for simplicity of notation. Clearly, we have that |Wi| =

O(n/2i) (recall that ~G has O(n) edges).

Our approach for enumerating (weighted) homomorphisms from ~C2k to ~G will be classifying them
into O(logk n) classes, according to the degree classes of the images of s0, . . . , sk−1.

Now, let us fix a tuple of degree classes f = (f0, . . . , fk−1) with fr ∈ {0, . . . , log n}. Our goal is to
compute the weighted homomorphism count of homomorphisms ϕ : ~C2k → ~G such that ϕ(sj) ∈ Wfj

for all 0 ≤ j < k (i.e., ϕ(sj) has in-degree roughly 2fj ). For i, j ∈ {0, . . . , log n}, we denote by Ai,j
the |Wi| × |Wj | matrix such that for every x ∈ Wi, y ∈ Wj , Ai,j(x, y) = HM[x, y]. We will sometimes
represent Ai,j as a sparse matrix, e.g., using adjacency lists. Note that Ai,j has only O(n) non-zero

entries, since there are in total only O(n) pairs x, y ∈ V (~G) for which HM[x, y] > 0. Hence, a sparse
representation of Ai,j can be obtained in time O(n).

Now, for p, q ∈ {0, . . . , k − 1}, we let

Bf
p,q = Afp,fp+1Afp+1,fp+2 · · ·Afq−1,fq .

Observe that for a given p ∈ {0, . . . , k−1}, Afp,fp+1(x, y) corresponds to the number of homomorphisms

ϕ of ~C2k[{sp, up+1, sp+1}] such that ϕ(sp) = x, ϕ(sp+1) = y. We thus get that Bf
p,q(x, y) corresponds to

the number of homomorphisms ϕ of ~C2k[{sp, up+1, sp+1, . . . , uq, sq}] such that ϕ(sp) = x, ϕ(sq) = y, and
ϕ(sj) ∈Wfj for all p < j < q (this is a variation of the standard way of counting r-walks in a digraph

using the rth power of its adjacency matrix.). Now, one can observe that the weighted homomorphism
count of homomorphisms ϕ : ~C2k → ~G such that ϕ(sj) ∈ Wfj for 0 ≤ j < k can be obtained in

the following way. We consider the matrix chain product Bf
0,k = Af0,f1Af1,f2 · · ·Afk−2,fk−1

Afk−1,f0 .

The sum of the diagonal entries of Bf
0,k (i.e., trace(Bf

0,k)) gives the desired weighted homomorphism

count. In order to compute trace(Bf
0,k) efficiently, our approach will be to pick a particular pair

i, j ∈ {0, . . . , k−1}, compute Bf
i,j and Bf

j,i, and then use them to compute trace(Bf
i,jB

f
j,i) = trace(Bf

0,k).
Our choice of i, j will be such that the running time is minimized.

It will be more convenient to express the degrees in terms of the number of edges in ~G, which is
O(n). Specifically, when considering a k-tuple of degree classes (f0, . . . , fk−1) with fr ∈ {0, . . . , log n},
we will let ndj = 2fj , and so dj = fj/ log n. Notice that 0 ≤ dj ≤ 1, and that |Wj | = O(n1−dj ).

For a fixed tuple of degree classes d = (d0, . . . , dk−1), let P di,j be the minimum such that Bd
i,j can be

computed in time O(nP
d
i,j ). We observe that this also gives an upper bound on the number of non-zero

entries in Bd
i,j . The matrix Bd

i,j can be computed in three ways, as follows:
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1. Compute a sparse representation of Bd
i,j−1. Then, for every entry (x, y) ∈Wfi ×Wfj−1

of Bd
i,j−1,

traverse all of the in-neighbors of y, and denote by Sy the set of their out-neighbors in Wfj (i.e.,

w ∈ Sy if and only if w ∈Wfj and there exists u ∈ V (~G) such that (u, y), (u,w) ∈ E(~G)). Now, for

each w ∈ Sy, update Bd
i,j(x,w) = Bd

i,j(x,w) +Bd
i,j−1(x, y) ·HM[y, w]. The computation of Bd

i,j−1

takes O(nP
d
i,j−1) time. Now, each y ∈Wfj−1

has at most O(ndj−1) in-neighbors, with each having

O(1) out-neighbors (i.e., |Sy| = O(ndj−1) for each y ∈Wfj−1
). Therefore, a sparse representation

of Bd
i,j can be computed in time O(nP

d
i,j−1+dj−1) (as the size of a sparse representation of Bd

i,j−1

is O(nP
d
i,j−1)).

2. Similar to the above, but reversing the roles of j − 1 and i: Compute a sparse representation of
Bd
i+1,j . Then, for every entry (x, y) ∈ Wfi+1

×Wfj of Bd
i+1,j , traverse all of the in-neighbors of

x, and denote by Sx the set of their out-neighbors in Wfi (i.e., w ∈ Sx if and only if w ∈ Wfi

and there exists u ∈ V (~G) such that (u, x), (u,w) ∈ E(~G)). Now, for each w ∈ Sx, update

Bd
i,j(w, y) = Bd

i,j(w, y)+HM[w, x]·Bd
i+1,j(x, y). The computation of Bd

i+1,j takes O(nP
d
i+1,j ) time.

Now, each x ∈ Wfi+1
has at most O(ndi+1) in-neighbors, with each having O(1) out-neighbors

(i.e., |Sx| = O(ndi+1) for each x ∈ Wfi+1
). Therefore, a sparse representation of Bd

i,j can be

computed in time O(nP
d
i+1,j+di+1) (as the size of a sparse representation of Bd

i+1,j is O(nP
d
i+1,j )).

3. For some i < r < j, compute Bd
i,r and Bd

r,j . Then, compute their product to obtain Bd
i,j . It

takes O(nP
d
i,r + n1−din1−dr) time to compute the (non-sparse) matrix representation of Bd

i,r, and

O(nP
d
r,j + n1−drn1−dj ) time to compute the (non-sparse) matrix representation of Bd

r,j . Finally,

it takes O(nM(1−di,1−dr,1−dj)) time to compute their product, where M(a, b, c) is the smallest g
such that one can multiply an na × nb by an nb × nc matrix in time O(ng). It is not difficult to
see (see, e.g., [20]), that M(a, b, c) ≤ a+ b+ c− (3− ω) min{a, b, c}.

Now, the exponent of the running time in Item 1 is recursively bounded as P di,j ≤ P di,j−1 + dj−1.

Similarly, for Item 2 we have the bound P di,j ≤ P di+1,j + di+1. On the other hand, the running time of
Item 3 is bounded by

P di,j ≤ min
i<r<j

max{P di,r, P dr,j ,M(1− di, 1− dr, 1− dj)}.

We observe that P di,i+1 = 1 as a sparse representation of Bd
i,i+1 = Afi,fi+1

can be obtained in time
O(n). To summarize, we have the following inductive definition:

P di,i+1 = 1

P di,j = min{P di,j−1 + dj−1, P
d
i+1,j + di+1, min

i<r<j
max{P di,r, P dr,j ,M(1− di, 1− dr, 1− dj)}}

(7)

Now, given sparse representations of Bd
i,j and Bd

j,i for some i, j ∈ {0, . . . , k − 1}, we can compute

trace(Bd
i,jB

d
j,i) in time of the number of non-zero entries in Bd

i,j and Bd
j,i, which is O(nP

d
i,j +nP

d
j,i). This

is true as trace(Bd
i,jB

d
j,i) =

∑
p,q(B

d
i,j)p,q · (Bd

j,i)q,p, and so we can exploit the sparse representations of

Bd
i,j and Bd

j,i
12. We note that if Bd

i,j and Bd
j,i are given in (non-sparse) matrix representations, we can

12One way to do it is as follows. For every entry (y, x) in the sparse representation of Bdj,i, store its value in a hash
table, with (y, x) being the key. Then, go over all entries (x, y) in the sparse representation of Bdi,j , and check whether
the key (y, x) is in the hash table. If so, accumulate the product of the two entries.
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always convert them into spare representations, as the running time of this conversion is dominated
by the time it took to create those matrices. Finally, recall that trace(Bd

i,jB
d
j,i) corresponds to the

weighted homomorphism count for the current degree class d.

For d = (d0, . . . , dk−1), define

Ck(d0, . . . , dk−1) = min
0≤i<j≤k−1

max{P di,j , P dj,i}. (8)

Now, given d = (d0, . . . , dk−1), the algorithm solves a dynamic programming problem of constant
size, based on (7) and (8), and determines the optimal way of computing the weighted homomorphism
count of the current degree class. This is then repeated for all degree classes.

Therefore, the running time for computing the weighted homomorphism count for a degree class d
is O(nCk(d0,...,dk−1)), and so the total running time is Õ(nck), where

ck = max
d=(d0,...,dk−1)

Ck(d0, . . . , dk−1)13. (9)

Both (7) and (8) are defined by Dalirrooyfard et al. (see Section 5 in [13]) in the exact same manner,
as part of their description and analysis of the Yuster-Zwick algorithm [38].

We conclude that the w-hom-cnt ~C2k
problem can be solved in degenerate graphs in time Õ(nck). �

Proof of Theorem 1, Part (i). This is analogous to the proof of Part (ii), except that now we use
Theorem 7. So, let G be an n-vertex degenerate graph and let ~G be the DAG corresponding to a de-
generate ordering of G. We need to compute hom(C2k, G) in Õ(nck) time (the proof for hom(C2k+1, G)
is analogous). As in the proof of Part (ii), it suffices to show that for 2 ≤ ` ≤ k, w-hom-cnt ~C2`

can be

solved in time Õ(nck) in weighted degenerate digraphs. And this is indeed the case by Theorem 7. �

6 Counting Cycle Homomorphisms vs. Directed-Cycle Detection

In this section we prove Theorems 2 and 4 as they bear some similarity. An important ingredient
in the proof of Theorem 2 is the fact that the number of cycle transversals in partite graphs can be
computed efficiently using an inclusion-exclusion procedure. To make this statement precise we need
the following definition.

Definition 6.1. Let G be a p-partite graph with a given vertex partition P = {V1, . . . , Vp}. A P-cycle
transversal of G is a simple cycle of length p in G containing a single vertex from each part of P.

A family of graphs F is subgraph-closed if G ∈ F implies that every subgraph of G is also in F . For
example, d-degenerate graphs are subgraph-closed.

13The definition of ck in [13] (which corresponds to the one of Yuster and Zwick) has an additional component (which
comes from a certain combinatorial procedure, that is not applicable to our algorithm). More specifically, it is defined
as ck = maxd=(d0,...,dk−1) min {min0≤i≤k−1(2− di), Ck(d0, . . . , dk−1)}. Seemingly, this definition is not equivalent to ours,
and (possibly) gives a better running time. However, this is not the case. In particular, the upper bounds on ck (as
defined in [13]) are obtained by attaining upper bounds on Ck. Specifically, it is shown in [13], that for odd k and

arbitrary d0, . . . , dk−1, Ck(d0, . . . , dk−1) ≤ (k+1)ω
2ω+k−1

, and, for ω ≤ 2k
k−1

, a specific sequence d = (d0, . . . , dk−1) is presented

such that min0≤i≤k−1(2 − di) ≥ Ck(d0, . . . , dk−1) = (k+1)ω
2ω+k−1

(see Section 5.4 in [13]); and for even k and arbitrary

d0, . . . , dk−1, Ck(d0, . . . , dk−1) ≤ kω− 4
k

2ω+k−2− 4
k

, and, for ω = 2, a specific sequence d = (d0, . . . , dk−1) is presented such

that min0≤i≤k−1(2 − di) ≥ Ck(d0, . . . , dk−1) =
kω− 4

k

2ω+k−2− 4
k

(see Section 5.6 in [13]). Therefore, as the minimum between

min0≤i≤k−1(2−di) and Ck(d0, . . . , dk−1) is chosen, we conclude that the expression in our definition of ck is, in fact, equal
to the one presented in [13].
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Lemma 6.2. 14 Let p ≥ 3. Suppose that F is a subgraph-closed family of graphs and that hom-cntCp
can be computed in f(n) time for graphs in F . Then, given a p-partite n-vertex graph G ∈ F together
with a vertex partition P, the number of P-cycle transversals of G can be computed in O(f(n)) time.

Proof. Let P = {V1, . . . , Vp}. For a non-empty subset S ⊆ [p], let GS denote the |S|-partite induced
subgraph of G with partition PS = {Vi | i ∈ S}. Let M denote the number of homomorphisms that are
P-cycle transversals of G (the number of P-cycle transversals can be derived from the number of such
homomorphisms after dividing by 2p). By the inclusion-exclusion principle we have

M =
∑
S⊆[p]

(−1)p−|S| hom(Cp, GS) .

Since F is subgraph-closed and since GS has at most n vertices, we can compute hom(Cp, GS) in f(n)
time. Hence, M can be computed in O(2pf(n)) = O(f(n)) time, as required. �

Proof of Theorem 2. We assume that there is an algorithm that computes hom-cntC2k
in

2-degenerate graphs in O(nα) time. Let G be an arbitrary directed graph with m edges. Recall
that our goal is to decide if G has a simple Ck. We first describe a randomized algorithm, based on
the color-coding method [3]. Randomly partition the vertices of G into k parts V1, . . . , Vk. Let G′ be
the subgraph of G consisting only of the edges (u, v) such that there exists 1 ≤ i ≤ k where u ∈ Vi and
v ∈ Vi+1 (indices taken modulo k). Notice that G′ has no directed cycles whose length is shorter than
k, and with constant probability (at least k−k), G′ has a directed Ck if G has one.

Next, subdivide each edge (u, v) of G′ into two edges (u, zuv) and (zuv, v) where zuv is a new vertex,
and denote the newly obtained graph by G∗. Furthermore, ignore edge directions in G∗ and hence
G∗ is an undirected 2-degenerate graph with O(m) vertices. Also, G∗ is (2k)-partite as can be seen
from the partition of of its vertex set P = {V1, V1,2, V2, V2,3, . . . , Vk, Vk,1} where Vi,i+1 = {zuv |u ∈
Vi, v ∈ Vi+1 , (u, v) ∈ E(G′)}. The simple but crucial point now is that G′ has a directed Ck if
and only if G∗ has a P-cycle transversal. Indeed, every P-cycle transversal must be of the form
(u1, zu1u2 , u2, zu2u3 , . . . , uk, zuku1) where (u1, . . . , uk) is a directed Ck in G. Now, by Lemma 6.2, we
can decide if G∗ has a P-cycle transversal in O(|v(G∗)|α) = O(mα) time, implying that we can decide
if G′ has a Ck in the same time.

To make the algorithm deterministic we recall that the color-coding method can be derandomized.
In particular, it is shown in [3] that one can deterministically compute O(logm) partitions of the
vertices of G (the partitions can be computed in O(m logm) time), such that if G has a Ck, then for at
least one of the partitions, the corresponding G′ has a Ck. Hence, the (now deterministic) running time
to decide if G has a Ck is O(m logm+mα logm) = O(mα logm) as clearly we can assume that α ≥ 1.

Observe that in the statement of Theorem 2 we also claim a similar result for C2k+1, not just C2k

as we have just proved. Indeed, it is straightforward to modify the proof of Theorem 2 to obtain
the following slightly more general statement: Let k ≥ 3 and let p ≥ 2k. If there is an algorithm
that computes hom-cntCp in 2-degenerate graphs in O(nα) time, then there is an algorithm that
decides if an arbitrary directed m-edge graph has a Ck in time O(mα) (randomized) and O(mα logm)
(deterministic). One simple way to achieve this is to subdivide each edge (u, v) in G′ into a path of
length 2 as in the proof of Theorem 2, except for edges of the form (u, v) where u ∈ V1 and v ∈ V2

which are subdivided into a path of length p+ 2− 2k. �

Proof of Theorem 4. We prove for undirected degenerate graphs; the proof for directed degenerate
graphs is similar. Let k ≥ 6. Let G be an undirected degenerate graph with n vertices in which we wish

14A similar lemma appears in [12].
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to detect a Ck. As in the proof of Theorem 2 we use color-coding. Randomly partition the vertices of
G into k parts V1, . . . , Vk. Let G′ be the subgraph of G consisting only of the edges (u, v) such that
there exists 1 ≤ i ≤ k where u ∈ Vi and v ∈ Vi+1 (indices taken modulo k). Notice that G′ has no
cycle transversal, unless G has a Ck, and conversely, if G has a Ck then G′ has a cycle transversal
with constant positive probability. By Lemma 6.2 and by Theorem 1, we can determine if G′ has a
cycle transversal in Õ(ndbk/2c) time. Again, as color-coding can be derandomized, we can also obtain a
deterministic algorithm in Õ(ndbk/2c) time. �

7 A Combinatorial Algorithm for Counting Cycle Homomorphisms
in General Graphs

As our final result, we use our methods to obtain a combinatorial algorithm for counting the number
of Ck-homomorphisms in a (general) directed or undirected graph with m edges in Õ(m2−1/dk/2e) time:

Theorem 8. For every k ≥ 3, there is an algorithm which, given an input (di)graph G with m edges,
computes the number of homomorphisms from Ck to G in time Õ(m2−1/dk/2e).

In the directed case, the Ck above denotes the directed k-cycle.

It should be pointed out that, as in the proof of Theorem 4, we can use Theorem 8 to obtain an
algorithm which detects if a directed or undirected graph has a Ck in Õ(m2−1/dk/2e) time. The proof
in the directed setting is particularly simple: given a digraph ~G, we randomly partition its vertices into
sets V1, . . . , Vk and only keep the edges going from Vi to Vi+1 (for some 1 ≤ i ≤ k), denoting the resulting
subdigraph by ~G′. If ~G contains a Ck then with constant positive probability so does ~G′. Moreover,
every Ck-homomorphism in ~G′ corresponds to a proper copy of Ck, so computing hom(Ck, ~G

′) suffices
in order to decide if ~G′ contains a Ck. Again, this can be derandomized at the cost of increasing the
runtime by a logarithmic factor.

The proof of Theorem 8 is similar to that of Theorem 6. To keep the presentation simple, we focus
on undirected graphs; the proof for digraphs is similar. Let Pr denote the path with r + 1 vertices
1, . . . , r + 1 (so Pr has r edges).

Lemma 7.1. There is an algorithm which, given integers r,∆ ≥ 1 and an input graph G with m edges,
computes the following:

1. For every x, y ∈ V (G), the number Nr,∆(x, y) of homomorphisms ϕ : Pr → G such that ϕ(1) = x,
ϕ(r + 1) = y, and dG(ϕ(t)) ≤ ∆ for every 2 ≤ t ≤ r.

2. For every x, y ∈ V (G) with dG(x) > ∆ and for every function f : {2, . . . , r + 1} → {low, high},
the number Mr,∆,f (x, y) of homomorphisms ϕ : Pr → G such that ϕ(1) = x and ϕ(r+1) = y, and
such that for every t ∈ {2, . . . , r + 1} it holds that dG(ϕ(t)) ≤ ∆ if f(t) = low and dG(ϕ(t)) > ∆
if f(t) = high.

The computation for Item 1 takes time Õ(m∆r−1) and the computation for Item 2 takes time Õ(m2/∆).
Furthermore, the number of pairs x, y with Nr,∆(x, y) > 0 is O(m∆r−1).

Proof. As in Section 4, we save all computed information in a hash map. We start by proving Item 1.
Here we simply enumerate all homomorphisms ϕ : Pr → G such that dG(ϕ(t)) ≤ ∆ for every 2 ≤ t ≤ r.
Enumerating all such homomorphisms is clearly sufficient to produce the desired counts. To choose
such a homomorphism ϕ, we first choose the pair (ϕ(1), ϕ(2)), for which there are at most 2m choices,
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as this pair must be an edge. We only go over choices for which dG(ϕ(2)) ≤ ∆. Having chosen ϕ(2),
we have at most ∆ choices for ϕ(3), where again we only consider choices which satisfy dG(ϕ(3)) ≤ ∆.
Having chosen ϕ(3), there are at most ∆ choices for ϕ(4), and so on. Continuing in this fashion, we see
that there are at most ∆ choices for each of the vertices ϕ(3), . . . , ϕ(r + 1). Hence, the total number
of choices is O(m∆r−1). In particular, the number of pairs x, y with Nr,∆(x, y) > 0 (namely, which are
the endpoints in such a homomorphism) is O(m∆r−1).

We now establish Item 2 by induction on r. The base case r = 1 is trivial, since P1 is simply an
edge, and we can enumerate all edges in time m ≤ m2/∆. (We may assume that ∆ ≤ m, because
otherwise there are no vertices of degree larger than ∆.)

We now proceed to the induction step. Assume, by the induction hypothesis, that we have already
computed the desired counts for Pr−1. To achieve this for Pr, go over all choices for a vertex x ∈ V (G)
such that dG(x) > ∆ and a pair of vertices (u, y) such that {u, y} ∈ E(G). The number of such choices
is at most O(m2/∆), since there are 2m choices for (u, y) and O(m/∆) choices for x. For each function
g : {2, . . . , r} → {low, high}, we have already computed the number Mr−1,∆,g(x, u) of homomorphisms
ψ : Pr−1 → G such that ψ(1) = x and ψ(r) = u, and such that for every t ∈ {2, . . . , r} it holds
that dG(ϕ(t)) ≤ ∆ if g(t) = low and dG(ϕ(t)) > ∆ if g(t) = high. Now, for each such ψ and g, the
map ϕ : V (Pr) → V (G) which agrees with ψ on Pr[{1, . . . , r}] = Pr−1 and satisfies ϕ(r + 1) = y,
is a homomorphism from Pr to G satisfying ϕ(1) = x and ϕ(r + 1) = y. Furthermore, the function
f : {2, . . . , r + 1} → {low, high} corresponding to ϕ is simply the function which agrees with g on
{2, 3, . . . , r} and satisfies f(r+ 1) = low if dG(y) ≤ ∆ and f(r+ 1) = high if dG(y) > ∆. It is now easy
to see that in this manner we obtain the desired count for the pair x, y. �

Proof of Theorem 8. We may assume that G is connected, and hence m ≥ n−1, where n = |V (G)|.
Set ∆ := m1/dk/2e. Denote the vertices of Ck by v1, . . . , vk. In order to compute hom(Ck, G), we
will compute, for every function g : {v1, . . . , vk} → {low, high}, the number homg of homomorphisms
ϕ : Ck → G such that dG(ϕ(vi)) ≤ ∆ if g(vi) = low and dG(ϕ(vi)) > ∆ if g(vi) = high (for every
1 ≤ i ≤ k). Clearly, hom(Ck, G) =

∑
g homg. We consider two cases. Suppose first that g(vi) = low

for every 1 ≤ i ≤ k. It is easy to see that Ck consists of a copy of Pbk/2c and a copy of Pdk/2e, glued
together at their endpoints. It is now easy to see that for this particular g, one has

homg =
∑

x,y∈V ( ~G):
dG(x),dG(y)≤∆

Nbk/2c,∆(x, y) ·Ndk/2e,∆(x, y),

where Nr,∆(x, y) is as defined in Item 1 of Lemma 7.1. Since we can compute the counts
Nbk/2c,∆(x, y), Ndk/2e,∆(x, y) for all pairs of vertices x, y ∈ V (G) (simultaneously) in time Õ(m∆dk/2e−1),

and since the total number of pairs for which these counts are non-zero is O(m∆dk/2e−1), the above
sum can be computed in time Õ(m∆dk/2e−1) = Õ(m2−1/dk/2e), as required.

Suppose now that g(vi) = high for some 1 ≤ i ≤ k. We proceed similarly to the previous case.
Decompose Ck into a copy P of Pbk/2c and a copy P ′ of Pdk/2e, such that vi is an endpoint of both of
these paths. Let f, f ′ be the “low/high signatures” corresponding the paths P, P ′, respectively. Again,
it is not hard to see that

homg =
∑

x,y∈V (G) : dG(x)>∆

Mbk/2c,∆,f (x, y) ·Mdk/2e,∆,f ′(x, y).

By Item 2 of Lemma 4.1, one can compute Mbk/2c,∆,f (x, y) and Mdk/2e,∆,f ′(x, y) for all pairs x, y ∈ V (G)

with dG(x) > ∆ in time Õ(m2/∆). Furthermore, the number of such pairs x, y is O(m2/∆), because
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there are O(m/∆) choices for x and n = O(m) choices for y. We conclude that the above sum can be
computed in time Õ(m2/∆) = Õ(m2−1/dk/2e), as required. This completes the proof of the theorem. �
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[30] J. Nešetřil and P. O. De Mendez, Sparsity: graphs, structures, and algorithms (Vol. 28),
Springer Science & Business Media, 2012.
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A Proof of Lemma 3.1

The proof of Lemma 3.1 uses the notion of tensor product of digraphs, which we now recall.

Definition A.1 (tensor product of directed graphs). Let G1 and G2 be directed graphs. The tensor
product of G1 and G2, denoted G1×G2, is a directed graph with vertex set V (G1×G2) = V (G1)×V (G2),
and edge set

E(G1 ×G2) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ E(G1) and (x2, y2) ∈ E(G2)}.

A key property of the directed tensor product is that the parameter hom( ~H, ·) is multiplicative with
respect to it (for any digraph ~H). That is, for every pair of directed graphs ~G1, ~G2, it holds that

hom( ~H, ~G1 × ~G2) = hom( ~H, ~G1) · hom( ~H, ~G2). (10)

To see that (10) holds, simply observe that for functions ϕi : V ( ~H) → V ( ~Gi) (where i ∈ {1, 2}), the
function v 7→ (ϕ1(v), ϕ2(v)) is a homomorphism from ~H to ~G1× ~G2 if and only if ϕi is a homomorphism
from ~H to ~Gi for each i ∈ {1, 2}.

We will also need the following (trivial) observation regarding tensor products and degeneracy.

Observation A.2. Let ~F , ~G be directed graphs. If the out-degree of every vertex in G is at most d,
then the out-degree of every vertex in ~F × ~G is at most v(~F ) · d.

Proof. For each x ∈ V (~F ) and y ∈ V (~G), the out-degree of (x, y) in ~F × ~G is out-deg~F× ~G((x, y)) =

out-deg~F (x) · out-deg ~G(y) < v(~F ) · d. �
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The last ingredient in the proof of Lemma 3.1 is the following directed version of a lemma of Erdős,
Lovász and Spencer [16] (see also Proposition 5.44(b) in [24]). For completeness, we give its proof at
the end of this appendix (this proof is essentially identical to the undirected case).

Lemma A.3 ([24]). Let ~H1, . . . , ~Hk be pairwise non-isomorphic directed graphs, and let c1, . . . , ck be
non-zero constants. Then, there exist directed graphs ~F1, . . . , ~Fk such that the k × k matrix
Mi,j = cj · hom( ~Hj , ~Fi), 1 ≤ i, j ≤ k, is invertible.

Proof of Lemma 3.1. The “if” part of the lemma is immediate. Let us prove the “only if” part. So
assume that hom-cntc1 ~H1+···+ck ~Hk can be solved in time O(nα) in n-vertex degenerate digraphs. Our

goal is to show that hom-cnt ~Hi
can be solved in time O(nα) for all 1 ≤ i ≤ k. Let ~G be an n-vertex

degenerate digraph for which we would like to compute hom( ~Hi, ~G) for all 1 ≤ i ≤ k. By Lemma A.3,
there are digraphs ~F1, . . . , ~Fk such that the k × k matrix Mi,j := cj · hom( ~Hj , ~Fi) (for 1 ≤ i, j ≤ k)

is invertible. For each 1 ≤ i ≤ k, we set bi := c1 · hom( ~H1, ~Fi × ~G) + · · · + ck · hom( ~Hk, ~Fi × ~G) and
observe that

bi =
k∑
j=1

cj · hom( ~Hj , ~Fi × ~G) =
k∑
j=1

cj · hom( ~Hj , ~Fi) · hom( ~Hj , ~G) =
k∑
j=1

Mi,j · hom( ~Hj , ~G) (11)

where we have used (10). We will treat (11) (for 1 ≤ i ≤ k) as a system of linear equations, where
hom( ~H1, ~G), . . . ,hom( ~Hk, ~G) are the variables, M is the matrix of the system, and b1, . . . , bk are the
constant terms. Since M is invertible (as guaranteed by our choice of ~F1, . . . , ~Fk), knowing b1, . . . , bk
would enable us to find hom( ~H1, ~G), . . . ,hom( ~Hk, ~G).

Note that for each 1 ≤ i ≤ k, the digraph ~Fi × ~G can be constructed in time O(n), is O(1)-
degenerate (see Observation A.2), and has v(~Fi) · n = O(n) vertices. Hence, since by our assumption
hom-cntc1 ~H1+···+ck ~Hk can be solved in time O(nα), we can compute b1, . . . , bk in time O(nα) by feeding

the graphs ~F1 × ~G, . . . , ~Fk × ~G to an algorithm which solves hom-cntc1H1+···+ckHk in time O(nα) in

degenerate digraphs. This in turn enables us to compute hom( ~H1, ~G), . . . ,hom( ~Hk, ~G), as required.

�

Proof of Lemma A.3. Since multiplying the rows of an invertible matrix by non-zero scalars leaves it
invertible, we may assume, without loss of generality, that c1 = · · · = ck = 1. We will also assume that

v(H1) + e(H1) ≤ v(H2) + e(H2) ≤ · · · ≤ v(Hk) + e(Hk), (12)

where, as always, v(G), e(G) denote the number of vertices and the number of edges in G, respectively.
For every 1 ≤ i ≤ k, we define a suitable blowup of Hi, denoted Fi, as follows. Every vertex v ∈ V (Hi)
is replaced by an independent set Ii,v of size xi,v ≥ 1, and every edge (u, v) ∈ E(Hi) is replaced by a
directed complete bipartite graph, connecting Ii,u to Ii,v. The resulting graph is Fi. We will consider
the values {xi,v | i ∈ [k], v ∈ V (Hi)} as variables taking positive integer values, and show that there is
an assignment to these variables for which the matrix Mi,j = hom(Hi, Fj) is invertible. (This matrix
is the transpose of the matrix appearing in the statement of the lemma, so this will be sufficient.)

We claim that D := det(M) is a non-zero polynomial in the variables {xi,v | i ∈ [k], v ∈ V (Hi)}.
In what follows, it will be convenient to use the following notation: for graphs H,G, Hom(H,G)
denotes the set of all homomorphisms from H to G, and Inj(H,G) denotes the set of all injective
homomorphisms from H to G (so hom(H,G) = |Hom(H,G)| and inj(H,G) = |Inj(H,G)|). We start
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by observing that for all i, j ∈ [k],

hom(Hi, Fj) =
∑

ϕ∈Hom(Hi,Hj)

∏
v∈V (Hj)

x
|ϕ−1(v)|
j,v . (13)

Indeed, it is easy to see that every homomorphism ψ : Hi → Fj corresponds to some homomorphism
ϕ : Hi → Hj (if αj : Fj → Hj denotes the “natural map” mapping Ij,v to v for all v ∈ V (Hj), then
ϕ can be expressed as ϕ = αj ◦ ψ). Moreover, the number of homomorphisms ψ : Hi → Fj which
correspond to a given homomorphism ϕ : Hi → Hj is exactly the number of ways to choose a vertex
from Ij,ϕ(u) for each u ∈ V (Hi); this number is exactly the product on the right-hand side of (13).

Since every entry of M is a polynomial in {xi,v | i ∈ [k], v ∈ V (Hi)}, so is D = det(M). Our goal
is to prove that D is not the zero polynomial. To this end, we will show that the multilinear part of
D is non-zero (which clearly implies that D is non-zero). For convenience, let us write ML(p) for the
multilinear part of a polynomial p (i.e., the sum of all multilinear monomials of p). Observe that for
every pair i, j ∈ [k] and for every homomorphism ϕ : V (Hi)→ V (Hj), the monomial∏

v∈V (Hj)

x
|ϕ−1(v)|
j,v

is multilinear if and only if |ϕ−1(v)| ≤ 1 for all v, which is equivalent to ϕ being injective. Thus, using
(13), we conclude that the multilinear part of hom(Hi, Fj) is

Li,j := ML(hom(Hi, Fj)) =
∑

ϕ∈Inj(Hi,Hj)

∏
v∈V (Hj)

x
|ϕ−1(v)|
j,v . (14)

Observe that for each 1 ≤ i ≤ k, Li,i 6= 0 (as a polynomial). Indeed, injective homomorphisms from
Hi to itself are simply automorphisms of Hi, so (14) becomes

Li,i = aut(Hi) ·
∏

v∈V (Hi)

xi,v.

We now claim that for every pair 1 ≤ j < i ≤ k, one has Inj(Hi, Hj) = ∅, and hence Li,j ≡ 0. Fix
any 1 ≤ j < i ≤ k. If there exists an injective homomorphism from Hi to Hj , then we must have
v(Hi) ≤ v(Hj) and e(Hi) ≤ e(Hj). On the other hand, we have assumed in (12) that v(Hj) + e(Hj) ≤
v(Hi) + e(Hi), as j < i. It follows that v(Hi) = v(Hj) and e(Hi) = e(Hj), which implies that Hi

and Hj are isomorphic, contradicting our assumption that H1, . . . ,Hk are pairwise non-isomorphic.
Therefore, Inj(Hi, Hj) = ∅, which immediately implies that Li,j ≡ 0.

Now consider the k × k matrix L whose entries are Li,j (1 ≤ i, j ≤ k). In the previous paragraph
we established that L is upper-triangular, and that its diagonal entries are non-zero (as polynomi-
als). It follows that det(L) is a non-zero polynomial. Finally, we show that the multilinear part of
D = det(M) is ML(D) = det(L). To this end, we recall that

D =
∑
σ∈Sk

sgn(σ) ·
k∏
i=1

Mi,σ(i) =
∑
σ∈Sk

sgn(σ) ·
k∏
i=1

hom(Hi, Fσ(i)). (15)

Now, since the sets of variables of hom(H1, Fσ(1)), . . . ,hom(Hk, Fσ(k)) are pairwise-disjoint (recall that
the variables of hom(Hi, Fj) are xj,v, v ∈ V (Hj)), we have

ML

(
k∏
i=1

hom(Hi, Fσ(i))

)
=

k∏
i=1

ML(hom(Hi, Fσ(i))) =

k∏
i=1

Li,σ(i). (16)
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By combining (15) and (16), we get

ML(D) =
∑
σ∈Sk

sgn(σ) ·
k∏
i=1

Li,σ(i) = det(L),

as required. As det(L) is a non-zero polynomial, D is a non-zero polynomial as well. It follows that there
is an assignment of positive natural numbers to the variables {xi,v | i ∈ [k], v ∈ V (Hi)} for which D 6= 0.
Evidently, for this assignment, the matrix M is invertible (as D = det(M)). This completes the proof.

�
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