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Abstract

A subset of the vertices in a hypergraph is a cover if it intersects every edge. Let τ(H)

denote the cardinality of a minimum cover in the hypergraph H, and let us denote by g(n) the

maximum of τ(H) taken over all hypergraphs H with n vertices and with no two hyperedges of

the same size. We show that

g(n) < 1.98
√
n(1 + o(1)).

A special case corresponds to an old problem of Erdős asking for the maximum number of edges

in an n-vertex graph with no two cycles of the same length. Denoting this maximum by n+f(n),

we can show that f(n) ≤ 1.98
√
n(1 + o(1)).

Generalizing the above, let g(n,C, k) denote the maximum of τ(H) taken over all hypergraphs

H with n vertices and with at most Cik edges with cardinality i for all i = 1, 2, ..., n. We prove

that

g(n,C, k) < (Ck! + 1)n(k+1)/(k+2).

These results have an interesting graph-theoretic application. For a family F of graphs, let

T (n, F, r) denote the maximum possible number of edges in a graph with n vertices, which

contains each member of F at most r − 1 times. T (n, F, 1) = T (n, F ) is the classical Turán

number. Using the results above, we can compute a non-trivial upper bound for T (n, F, r) for

many interesting graph families.
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1 Introduction

All graphs and hypergraphs considered here are finite, undirected and simple. For the standard

terminology used the reader is referred to [3]. Let H = (V,E) be a hypergraph. A subset T ⊂ V is
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a cover if it intersects all edges, namely T ∩ e 6= ∅ for each e ∈ E. Let τ(H) denote the cardinality

of a minimum cover.

Let C > 0 and let k be a nonnegative integer. Let H(n,C, k) be the family of all hypergraphs

with n vertices, having the property that there are at most Cik edges with cardinality i, for all

i = 1, 2, ..., n. In particular, H(n) = H(n, 1, 0) denotes the family of all n-vertex hypergraphs whose

edges have distinct cardinalities. Put g(n,C, k) = maxH∈H(n,C,k) τ(H), and put g(n) = g(n, 1, 0).

Theorem 1.1

g(n,C, k) < (Ck! + 1)n(k+1)/(k+2).

Theorem 1.1 gives g(n) < 2
√
n. In this interesting special case we invest some additional effort

to improve the upper bound, and supply a lower bound having the same order of magnitude.

Theorem 1.2 For n sufficiently large 1.5338
√
n < g(n) < 1.98

√
n.

The determination of g(n) seems to be related to the Turán type problem considered by Chvátal

and McDiarmid [7].

The families H(n,C, k) and H(n) have interesting graph-theoretic applications. Let F be a

family of graphs. Denote by T (n, F, r) the maximum number of edges in a graph on n vertices

containing no r isomorphic copies of a member of F . T (n, F, 1) = T (n, F ) is just the classical

Turán number and is among the most studied parameters in extremal graph theory ([2] Chapter 6

pp. 292-367, [10], [11] Chapter 24 pp.1293-1330). Erdős and Stone [9], and, later, Dirac [8] were

the first to raise questions concerning the graphs contained as subgraphs in a graph G on n vertices

and T (n, F ) + t edges, where t is a positive integer. The Erdős-Stone theorem states, roughly, that

with T (n,Kk)(1 + ε) edges one must have not only a copy of Kk but also a copy of the complete

k-partite graph with side length c(k) log n, and hence, in particular, many copies of Kk. Dirac’s

Theorem states that with T (n,Kk) + 1 edges there must exist a copy of K−k+1 and hence two copies

of Kk. Rademacher ([2] p. 301) posed the specific question of determining the minimum number

of triangles in a graph on n vertices and T (n,K3) + t edges, a problem that was much extended

and nearly completely solved years later by Lovász and Simonovits [17].

Our main goal is to present a method to tackle the repeated copies problem in case the growth

of |Fn| is bounded from above by a polynomial order, where Fn is the subset of F consisting of

graphs with n vertices. We say that F grows polynomially if there exist c > 0 and a nonnegative

integer k such that for every m, there are at most cmk members in F having exactly m edges.

Using Theorem 1.1 and some additional ideas we are able to prove the following theorem:

Theorem 1.3 Let F be a family of graphs which grows polynomially with parameters c and k.

Then, for n sufficiently large,

T (n, F, r) < T (n, F ) + (c · (r − 1) · k! + 1)T (n, F )
k+1
k+2 + 2(c · (r − 1) · k! + 1)2T (n, F )

k
k+2 . (1)
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(The constant 2 appearing in front of the final term in (1) can be improved to 1 + ε). There

are many interesting families of graphs which grow polynomially. Here are three examples:

• The family of cycles. In this case T (n, F ) = n− 1, c = 1 and k = 0 as there is only one cycle

with m edges for m ≥ 3. By putting r = 2 in Theorem 1.3 we get that, for n sufficiently

large, every graph with at least n+ 2
√
n− 1 + 7 edges has two cycles with the same length.

• The family of subdivisions of a graph. Let H be any fixed nonempty graph. Recall that a

subdivision of H is obtained by replacing some (or all) edges of H with paths. Let FH denote

the family of all subdivision of H. For example, FK3 is the family of cycles. If H has h edges,

then, clearly, FH contains at most
(
m−1
h−1
)

graphs with m edges (there may be less, depending

on the automorphism group of H). Thus, the family grows polynomially, with c = 1/(h− 1)!

and k = h− 1. In particular, we have that for n sufficiently large:

T (n, FH , 2) < T (n, FH) + 2T (n, FH)
h

h+1 + 8T (n, FH)
h−1
h+1 .

Mader has proved that T (n, FH) is a linear function of n [18].

• The Family C(n, t) composed of the cycle Cn in which each vertex is also connected to the

two vertices at distance t from it on the cycle. Note that the family C(n, bn/2c) is rather

interesting since for n ≡ 2 mod 4 it consists of bipartite graphs and hence (1) bounds a

non-trivial Turán number.

Erdős (see [3], p. 247) raised the following problem: Let n+ f(n) be the maximum number of

edges in an n-vertex graph having no two cycles with the same length. Determine f(n). Considering

a graph consisting of C3, C4, . . ., where Ci is a cycle of length i, and all these cycles have a common

vertex but are otherwise pairwise disjoint, one can see that f(n) ≥
√

2
√
n − O(1). Using a very

similar example Shi [21] proved that f(n) ≥ b(
√

8n− 15− 3)/2c and equality holds for 2 ≤ n ≤ 16.

By giving little more complicated examples, Lai improved the lower bound for lim inf f(n)/
√
n in

a series of notes to
√

32/15 ∼ 1.460 . . . [12, 13], then to
√

162/73 ∼ 1.489 . . . in [14], and finally

to
√

3249/1381 ∼ 1.53383 . . . in [15]. Concerning the upper bound, every graph with n vertices

contains at least |E(G)|−n+1 cycles, hence f(n) ≤ n−3. However, the order of magnitude of this

function is much smaller, as Lai [13] (see also [6]) proved f(n) ≤ O(
√
n log n). As shown above,

using Theorem 1.3 we can get f(n) < 2
√
n− 1 + 7, thus determining the right order of magnitude

of f(n). In fact, we are able to do somewhat better for cycles:

Theorem 1.4 For n sufficiently large, f(n) < 1.98
√
n.

Combining this with Lai’s lower bound we get

1.98 > lim sup f(n)/
√
n ≥ lim inf f(n)/

√
n > 1.5338.
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In Section 2 we consider the upper bound for g(n,C, k) and prove Theorem 1.1. The upper

and lower bounds for g(n), are handled in Section 3, where we prove Theorem 1.2. Section 3 also

considers the fractional covering analog for g(n). Polynomially growing families of graphs, and the

proof of Theorem 1.3 appear in Section 4. Section 5 contains the proof of Theorem 1.4. In Section

5 we also consider 2-connected graphs whose cycle lengths are all distinct. We prove that there are

such 2-connected graphs with at least n+
√
n(1− o(1)) edges, improving a result appearing in [6].

2 An upper bound for g(n,C, k)

For the proof of Theorem 1.1 let us use some formulations and results from nonlinear binary

optimization.

Assume that the set of vertices of the hypergraph H is [n], and let us associate to each subset

S ⊂ [n] its characteristic vector xS = (xS1 , . . . , x
S
n) ∈ {0, 1}n defined by xSi = 1 iff i ∈ S.

Let us further associate to H a multilinear polynomial f = fH in n binary variables, defined by

f(x1, . . . , xn) =

n∑
i=1

xi +
∑
e∈H

∏
j∈e

(1− xj). (2)

It is easy to see that f(xS) = |S| + t(S), where t(S) is the number of edges disjoint from S, and

that

τ(H) = min
(x1,x2,...,xn)∈{0,1}n

f(x1, x2, ..., xn).

Let us also observe that the equality

pif(p1, ..., pi−1, 1, pi+1, ..., pn) + (1− pi)f(p1, ..., pi−1, 0, pi+1, ..., pn) = f(p1, ..., pi−1, pi, pi+1, .., pn)

(3)

holds for all (p1, ..., pn) ∈ [0, 1]n and i = 1, ..., n, due to the multilinearity of f . Thus

min{f(p1, ..., pi−1, 1, pi+1, ..., pn), f(p1, ..., pi−1, 0, pi+1, ..., pn)} ≤ f(p1, ..., pi−1, pi, pi+1, .., pn)

follows, implying that a fractional component of a vector can always be switched to an integer value

without increasing the value of the function f . By repeating this “rounding” until there are no

fractional components, we can arrive from any real vector (p1, p2, ..., pn) ∈ [0, 1]n to a binary vector

(x1, x2, ..., xn) for which we have

f(x1, x2, ..., xn) ≤ f(p1, p2, ..., pn). (4)

In fact, one can implement the above “rounding” procedure to run in O(n +
∑

e∈H |e|) time (see

e.g. [4, 5]).

As an alternative interpretation, let us consider randomly selected subsets S ⊆ [n], in which the

elements are chosen independently with Prob(i ∈ S) = pi for i = 1, ..., n. Then Exp[|S| + t(S)] =
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f(p1, p2, ..., pn) follows by simple computation, and hence the existence of a subset S∗ for which

f(xS
∗
) = |S∗| + t(S∗) ≤ Exp[|S| + t(S)] = f(p1, ..., pn) is guaranteed. The above “rounding”

procedure therefore can also be viewed as a polynomial (in fact linear) time derandomization of

this existential statement (c.f. [1, 20]).

Proof of Theorem 1.1: Let k ≥ 0 be an integer, let C > 0, and let H be a hypergraph with n

vertices, where for each i, there are at most Cik edges in H having cardinality i. We need to show

that

τ(H) < (Ck! + 1)n(k+1)/(k+2).

Let us associate to H the function f = fH as in (2), and let us consider the subset S, whose

characteristic vector we can obtain by the above rounding procedure starting from the real vector

p = (α, . . . , α), for some 0 < α < 1. According to the above, we have

τ(H) ≤ |S|+ t(S) = f(xS) ≤ f(α, ..., α),

thus it is enough to show that for an appropriate choice of α we have

f(α, ..., α) < (Ck! + 1)n(k+1)/(k+2). (5)

Since in the hypergraph H there are at most Cik edges having cardinality i for every i =

1, 2, ..., n, we get from (2) by simple computation that

f(α, ..., α) ≤ nα+ C
(

(1− α) + 2k(1− α)2 + . . .+ nk(1− α)n
)
< nα+ C

∞∑
i=1

ik(1− α)i. (6)

Using the inequality
∞∑
i=1

ikxi < k!(1− x)−k−1

for 0 < x < 1, which is easy to show by induction on k using term by term derivation, we get from

(6) that

f(α, ..., α) < nα+ Ck!α−k−1.

By setting α = n−1/(k+2) yields (5), and hence concludes the proof. �

Let us remark again that the proof of Theorem 1.1 is algorithmic. Namely, given H ∈ H(n,C, k)

(where C and k are fixed), we can find in polynomial (in n) time a vertex cover whose cardinality

is less than the upper bound in the statement of the theorem.

3 Covering hypergraphs whose edge sizes are all distinct

The family H(n) deserves special attention for two reasons. First, it is a very natural family,

consisting of all n-vertex hypergraphs whose edge cardinalities are all distinct. Second, given
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Theorem 1.1, we immediately have that
√
n is the right order of magnitude of g(n), as we have the

trivial example of a hypergraph whose edges are the following (1), (2, 3), (4, 5, 6), (7, 8, 9, 10), . . .,

giving g(n) >
√

2n(1− o(1)). Thus, it is interesting to close the gap between the upper and lower

bounds. Theorem 1.2 improves upon both.

Proof of the upper bound in Theorem 1.2: We need to show that if H ∈ H(n), and n is

sufficiently large, then τ(H) < 1.98
√
n. Clearly, we may assume that H has n edges e1, . . . , en

where |ei| = i. We need two lemmas:

Lemma 3.1 Let F be an n-vertex hypergraph with edges f1, . . . , fm where |fi| ≤ |fi+1|. Let a ≤ m
be the maximal index for which |f1|+ . . .+ |fa| ≤ n. Then, τ(F ) ≤ (m+ a)/2.

Proof: Cover m − a edges with at most (m − a)/2 vertices, until at most a edges remain

uncovered, and then cover each uncovered edge with one vertex. �

Lemma 3.2 Let y1, . . . , yn be positive reals, and suppose that there is an index γ such that

γ∑
i=1

i · yi ≤ n <
γ+1∑
i=1

i · yi.

Then, conditions 0 ≤ xi ≤ yi for i = 1, . . . , n and x1 + 2x2 + . . . + nxn ≤ n together imply that

x1 + . . .+ xn ≤ y1 + . . .+ yγ+1.

Proof: Consider the following knapsack problem:

x1 + x2 + · · ·+ xn → max

x1 + 2x2 + · · ·+ nxn ≤ n, and

0 ≤ xi ≤ yi for i = 1, 2, ..., n.

It is well known (see e.g. [19]) that for the optimal solution x∗ of this knapsack problem we must

have

x∗j =

{
yj for j ≤ γ,
0 for j ≥ γ + 2

and 0 ≤ x∗γ+1 ≤ yγ+1 for some index 0 ≤ γ ≤ n. Hence, x∗1+. . .+x∗n = x∗1+. . .+x∗γ+1 ≤ y1+. . .+yγ+1

follows, proving the lemma. �

We now proceed with the proof of the upper bound in Theorem 1.2. Assume again that the

vertex set of H is [n]. Let us consider a random subset X from [n] by including the vertices in

X independently with probability p, and let us denote the family of edges disjoint from X by

F (X) = {f1, . . . , ft}, where t = t(X), and where we assume |f1| ≤ |f2| ≤ · · · ≤ |ft|. Let us further

denote by a = a(X) (as in Lemma 3.1) the largest index (≤ t(X)) for which

a∑
j=1

|fj | ≤ n, (7)
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and let A(X) = {f1, . . . fa}. Applying Lemma 3.1 to F (X) we obtain

τ(H) ≤ |X|+ τ(F (X)) = |X|+ t(X) + a(X)

2
. (8)

To prove the theorem, we shall bound the expected value of the right hand side of (8).

First of all we have, as before that

Exp[|X|] = np and

Exp[t(X)] =
∑
e∈H

Prob[e ∈ F (X)] =
∑
e∈H

(1− p)|e| =
n∑
i=1

(1− p)i.
(9)

To estimate Exp[a(X)], let us introduce xi = Prob(ei ∈ A(X)) for i = 1, ..., n. We have

xi ≤ (1− p)i for i = 1, ..., n, (10)

since X ∩ ei = ∅ is necessary for ei ∈ A(X), and we also have

n∑
i=1

ixi ≤ n, (11)

implied by condition (7) in the definition of A(X). Let us finally define γ as the largest integer < n

for which
γ∑
i=1

i(1− p)i ≤ n. (12)

Then, by applying Lemma 3.2 with yi = (1− p)i, we get by (10) and (11) that

Exp[a(X)] =
n∑
i=1

xi ≤
γ+1∑
i=1

(1− p)i. (13)

Putting together (8) with (9) and (13) we obtain

τ(H) ≤ np+
1

2

(
n∑
i=1

(1− p)i
)

+
1

2

(
γ+1∑
i=1

(1− p)i
)

< np+
1

2p
+

1

2

(
γ∑
i=0

(1− p)i
)
.

(14)

Setting p = α√
n

for some 0 < α < 1, and introducing 1 < β ≤
√
n such that γ + 1 = β

√
n, and

using that for large enough n we have (1− α√
n

)β
√
n ≈ e−αβ, we get from (14) that

τ(H) < α
√
n+

√
n

2α
+

1

2

√
n

α
(1− exp(−αβ) + o(1)).
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Hence,
τ(H)√
n

< α+
1

α
− exp(−αβ)

2α
+ o(1). (15)

On the other hand, the definition of β and (12) implies that

1

α2
− 1 + αβ

α2
exp(−αβ) = 1 + o(1). (16)

We used here the fact that

γ∑
i=1

ixi = x
(x− 1)(γ + 1)xγ + 1− xγ+1

(1− x)2
.

Minimizing the r.h.s. of (15) subject to (16) we get that α = 0.808 . . . and β = 2.760 . . . yielding

1.97913 . . . for the r.h.s. of (15). Hence, for n sufficiently large, τ(H) < 1.98
√
n. �

Proof of the lower bound in Theorem 1.2: The proof of the lower bound is facilitated by the

following simple lemma:

Lemma 3.3 Let F be a polynomially growing family of graphs with parameters c and k. Then,

T (n, F, r) ≤ T (n, F ) + g(T (n, F, r), c · (r − 1), k).

In particular, f(n) ≤ g(n+ f(n))− 1.

Proof: Consider a graph G with n vertices and with T (n, F, r) edges, in which each member

of F appears as a subgraph of G at most r − 1 times. We create a hypergraph H whose vertices

are the edges of G and whose edges correspond to the edge sets of subgraphs of G which are

isomorphic to some member of F . Clearly, H ∈ H(T (n, F, r), c · (r− 1), k). Thus, there is a subset

of at most g(T (n, F, r), c · (r − 1), k) edges of G whose deletion from G makes it F -free. Thus,

T (n, F, r) − g(T (n, F, r), c · (r − 1), k) ≤ T (n, F ). The fact that f(n) ≤ g(n + f(n)) − 1 follows

by observing that if F is the family of cycles then n + f(n) = T (n, F, 2), c = 1, k = 0, and

T (n, F ) = n− 1. �

By Lemma 3.3 we get g(n + f(n)) ≥ f(n) + 1. As noted in the introduction, Lai has shown, that

for every sufficiently large n, f(n) > 1.53383
√
n. Hence, g(n+ 1.53383

√
n) ≥ 1.53383

√
n+ 1. This,

implies that g(n) > 1.5338
√
n for n sufficiently large. �

In fact, Lemma 3.3 shows that lim inf g(n)/
√
n ≥ lim inf f(n)/

√
n. It may be that the inequality

is strict, since the hypergraphs in H(n) do not need to possess any structure, and, in particular,

they may not have a back translation to a graph whose cycle lengths are all distinct. The authors

have, in fact, a construction which shows lim inf g(n)/
√
n ≥

√
22/9 = 1.5634. We omit the details.

An assignment of nonnegative weights to the vertices of a hypergraph is a fractional cover if

the sum of the weights of the vertices of each edge is at least 1. Let τ∗(H) be the smallest possible

sum of weights of a fractional cover. Clearly, τ∗(H) ≤ τ(H). Let g∗(n) denote the maximum value
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of τ∗(H) taken over all graphs in H(n). Clearly, g∗(n) ≤ g(n). Ron Holzman suggested that the

determination of g∗(n) might be easier than that of g(n). This is indeed the case, as shown in the

following proposition:

Proposition 3.4 g∗(n) =
√

2n+O(1).

Proof: Suppose r(r + 1)/2 ≤ n < (r + 1)(r + 2)/2. The lower bound g∗(n) ≥ r is obtained

from r disjoint sets. For the upper bound, assign a weight of 1/(r + 1) to each vertex. Every edge

with at least r + 1 vertices is covered. Add (r + 1 − |e|)/(r + 1) additional weight to each small

edge e. This gives τ(H) ≤ n/(r + 1) + r/2. In fact, we have shown g∗((r2 + r)/2) = r. �

The greedy algorithm for a cover in a hypergraph is defined as follows. At each stage, pick a

vertex of maximum degree and delete all edges incident with that vertex. Continue in the same

manner until all edges are covered. Let g′(n) denote the maximum size of a cover produced by the

greedy algorithm, where the maximum is taken over all graphs in H(n). The following proposition

shows that the greedy algorithm produces a relatively small covering:

Proposition 3.5 g′(n) ≤ 2.7
√
n.

Proof: Let g′(n, r) be the maximum size of a vertex cover produced by the greedy algorithm,

where the maximum is taken over all hypergraphs in H(n) having precisely r edges. Clearly,

g′(n, r) = r whenever r(r + 1)/2 ≤ n. Considering the average degree we get that

g′(n, r) ≤ 1 + g′(n− 1, r − dr(r + 1)

2n
e).

One can now prove by induction that

g′(n) = g′(n, n) ≤
√

2n
n∑
i=0

√
i+ 1−

√
i

i+ 1
< 2.7

√
n. �

It is interesting to find a nontrivial lower bound for g′(n), namely, one that is significantly larger

than the lower bound for g(n).

4 An upper bound for T (n, F, r)

Proof of Theorem 1.3: Let G have n vertices and m edges where

m = dT (n, F ) + (c · (r − 1) · k! + 1)T (n, F )
k+1
k+2 + 2(c · (r − 1) · k! + 1)2T (n, F )

k
k+2 e.

We need to show that there exists some member of F which appears at least r times in G. As in

the proof of Lemma 3.3, it suffices to show that m− g(m, c · (r− 1), k) > T (n, F ). By Theorem 1.1

it suffices to show that

m > T (n, F ) + (c · (r − 1) · k! + 1)m(k+1)/(k+2).
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By the definition of m, it suffices to show that for n sufficiently large:

(c · (r − 1) · k! + 1)T (n, F )
k+1
k+2 + 2(c · (r − 1) · k! + 1)2T (n, F )

k
k+2 >

(c · (r− 1) · k! + 1)(T (n, F ) + (c · (r− 1) · k! + 1)T (n, F )
k+1
k+2 + 2(c · (r− 1) · k! + 1)2T (n, F )

k
k+2 )

k+1
k+2 .

To simplify notation put D = c(r− 1)k! + 1, T = T (n, F ) and β = (k+ 1)/(k+ 2). We must show:

DT β + 2D2T 2β−1 > D(T +DT β + 2D2T 2β−1)β.

Dividing by DT β the last inequality is equivalent to:

1 + 2DT β−1 > (1 +DT β−1 + 2D2T 2β−2)β.

Since β < 1 it suffices to show that

1 + 2DT β−1 > 1 +DT β−1 + 2D2T 2β−2.

The last inequality is equivalent to

T 1−β > 2D

which clearly holds for n (and, thus, also T = T (n, F )) sufficiently large. �

5 Graphs whose cycles have distinct lengths

Proof of Theorem 1.4: According to Lemma 3.3 f(n) ≤ g(n + f(n)) − 1. By Theorem 1.2,

g(n) < 1.98
√
n, (in fact 1.97914, as shown in the proof) if n is sufficiently large. Thus, f(n) <

1.97914
√
n+ f(n)− 1. Hence, f(n) < 1.98

√
n for n sufficiently large. �

The proof of Theorem 1.2, however, does not assume any structure of the hypergraph in question.

However, if the hypergraph H is formed, as in Lemma 3.3, from a graph G whose cycle lengths are

all distinct, then there is a structure imposed. This structure enables us to slightly improve upon

the 1.98 upper bound. More precisely, after selecting the random set X in the proof of Theorem

1.1 we proceed as follows. If we find a vertex of H incident with at least three remaining edges of

H, we pick it for the cover and by that we eliminate at least three edges. We continue doing so

until every vertex is on one or two edges. This means that in G, the 2-connected components of the

remaining edges are either cycles or Θ-graphs. Consequently, this means that the edges of H can

be partitioned into blocks where each block contains either a single edge (whose vertices appear

nowhere else; this corresponds to a 2-connected component of G which is a cycle), or three edges

where every vertex which appears in one of the three, appears also in another one, and nowhere

else (this corresponds to a 2-connected component of G which is a Θ-graph). Utilizing this special

structure we can get a bound of 1.945
√
n. We omit the precise details.
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For completeness, here is a simple construction which shows lim inf f(n)/
√
n ≥

√
7/3 =

1.527 . . . . Although slightly less than Lai’s lower bound of 1.5338 . . . , this construction is very

simple. We show that for any integer k ≥ 1 there exists a graph Gk on n = 21k2 − 4k vertices

with n+ 7k− 2 edges containing all cycles of lengths from 3 to 10k exactly once. Gk consists of 2-

connected blocks, B`, 3 ≤ ` ≤ 5k. These blocks all have a common vertex x, otherwise their vertex

sets are pairwise disjoint. For ` ≤ 4k the block B` is simply a cycle of length `. For ` = 4k+ 1 + i,

0 ≤ i ≤ k − 1, the block B` is obtained by taking two cycles C4k+2i+1 and C4k+2i+2 with a single

common vertex x, taking points x4k+2i+1 ∈ V (C4k+2i+1), x4k+2i+2 ∈ V (C4k+2i+2) such that their

distance from x is exactly 2k + i and, finally, connecting x4k+2i+1 and x4k+2i+2 by a new path

consisting of 2k+ 2i+ 1 edges. This block has 10k+ 6i+ 4 edges and contains six cycles of lengths

4k + 2i+ 1, 4k + 2i+ 2 and 6k + 4i+ α, α = 1, 2, 3, 4.

Let f2(n) + n be the maximum number of edges in a simple, 2-connected graph on n vertices

with the property that any two cycles have distinct lengths. Shi [21] proved, using the well-known

ear-decomposition, that every 2-connected graph with n vertices and n+ b edges contains at least(
b+2
2

)
cycles. This implies f2(n) ≤ (

√
8n− 15 − 3)/2 ∼

√
2
√
n. On the other hand, it is shown

in [6], that f2(n) ≥
√
n/2(1 − o(1)). In the following Proposition we improve this lower bound

significantly:

Proposition 5.1 f2(n) ≥
√
n−O(n9/20).

Proof: A sequence of integers, a1, . . . , ak, forms a Sidon sequence if all the
(
k+1
2

)
sums of the

form ai + aj (where 1 ≤ i ≤ j ≤ k) are distinct. Let b2(n) denote the size of the largest Sidon

subsequence of [n]. An old Theorem of Erdős and Turán [16] states, that b2(n) ∼
√
n. The lower

bound in this theorem is supplied by Singer’s Theorem [22], which states: For every prime power p

there exists a sequence of integers a1, a2, . . . , ap+1, such that the (p+ 1)p differences ai− aj (i 6= j)

produce all the numbers 1, 2, . . . , p(p+ 1) modulo p2 + p+ 1. Such a sequence is called a difference

set mod p2 + p+ 1.

Now let p be a prime
√
n < p <

√
n+O(n2/5), so for m = p2 +p+ 1 we have m−n = O(n9/10).

Let a1, a2, . . . , ap+1 be a difference set modulo m. There exists a unique solution of the equation

ai+ (n−2) ≡ aj (mod m). Observe, that for any integer r the sequence {ai+ r} is a difference set,

too (addition is mod m). So we may suppose, that after an appropriate shifting, a1 = 1 < a2 <

· · · < ak = n−1 < · · · < ap+1 ≤ m. We have that p+1−k ≤ b2(m−(n−1)) = (1+o(1))
√
m− n =

O(n9/20), by the Erdős Turán Theorem.

We construct a 2-connected graphG as follows. E(G) consists of a Hamilton cycle {v0, v1, . . . , vn−1}
(in this order) and the edges v0vai , 1 < i < k. By construction, it has no two cycles with the same

length and has n+ k − 2 = n+
√
n−O(n9/20) edges. �

Combining the last proposition with Shi’s result we get:

Corollary 5.2
√

2 ≥ lim sup f2(n)/
√
n ≥ lim inf f2(n)/

√
n ≥ 1.
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We make the following Conjecture:

Conjecture 5.3 lim f2(n)/
√
n = 1.

It is easy to see that Conjecture 5.3 implies the (difficult) upper bound in the Erdős Turán

Theorem.
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