Covering Graphs:

The covering problem solved
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Abstract

For every fixed graph H, we determine the H-covering number of K, for all n > ngo(H). We
prove that if h is the number of edges of H, and gcd(H) = d is the greatest common divisor of
the degrees of H, then there exists ng = ng(H), such that for all n > ny,

d7n n—1

C(H, K,) = [5r "=,

unless d is even, n = 1 mod d and n(n — 1)/d + 1 = 0 mod (2h/d), in which case

C(H,K,) = [%)1 41

Our main tool in proving this result is the deep decomposition result of Gustavsson.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the
standard graph-theoretic terminology the reader is referred to [4]. Let H be a graph without
isolated vertices. An H-covering of a graph G is a set L = {G1,...,Gs} of subgraphs of G, where
each subgraph is isomorphic to H, and every edge of G appears in at least one member of L. The
H -covering number of G, denoted by C'(H, G), is the minimum cardinality of an H-covering of G.
An H-packing of a graph G is a set L = {G1,...,G,} of edge-disjoint subgraphs of G, where each
subgraph is isomorphic to H. The H-packing number of G, denoted by P(H,G), is the maximum
cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing which is also
an H-covering. The H-covering and H-packing problems are, in general, NP-Complete as shown

by Dor and Tarsi [8]. In case G = K,,, the H-covering and H-packing problems have attracted
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much attention in the last forty years, and numerous papers were written on these subjects (cf.
[3, 7,10, 14, 17, 18, 21] for various surveys). In a recent paper [6] the authors solved the H-packing
problem, for K, where n > n(H). The purpose of this paper is to determine the H-covering
number of K,, for n > n(H). In particular, our solution settles several special cases of the H-

covering problem, which gained particular interest. Among them are:

1. C(Ky, K,,) which has been linked to the Schonheim bound and the Ttran numbers [3, 19].
Despite of much effort only the cases k = 3 [11] and k = 4 [15, 16] are solved. The case k =5
is still open [1, 17].

2. C(Cy, K,) which is the cycle-system covering problem, solved completely only for £ = 3 and
k=4 [20].

3. The overlap of an H-covering L of K, is defined as the maximum number of appearances of
an edge in members L. It is known [5] that if n > n(H) then there exists an H-covering of
K, with overlap at most 2. Etzion [5] has conjectured that CO(H, K,,) — C(H, K,,) < ¢(H)
where CO(H, K,,) is the minimum number of copies in an H-covering of K,, with overlap 2,

and c¢(H) is a constant depending only on H.

The H-decomposition problem of K, is solved, for n > n(H). This is due to the central theorem
of Wilson [22], which states that for sufficiently large n, K, has an H-decomposition if and only if
e(H) | (3) and ged(H) | n — 1 where ged(H) is the greatest common divisor of the degrees of H.
In particular, whenever Wilson’s conditions hold for K,,, the H-covering and H-packing numbers
are known.

Our main result is the following:

Theorem 1.1 Let H be a graph with h edges, and let ged(H)=d. Then there exists ng = no(H),

such that for all n > ng,
dn n—1

=y,
unless d is even, n =1 mod d and n(n —1)/d + 1 = 0 mod (2h/d), in which case

o k) = 12

C(H,Ky)

1+ 1

2 Proof of the main result

As mentioned in the abstract, our main tool is the following result of Gustavsson [13]:



Lemma 2.1 (Gustavsson’s Theorem [13]) Let H be a graph with h edges. There exists N =
N(H), and e = e(H) > 0, such that for alln > N, if G is a graph on n vertices and m edges, with
0(G)>n(l—¢), gcd(H) | ged(G), and h | m, then G has an H-decomposition. O

It is worth mentioning that N(H) in Gustavsson’s Theorem is a rather huge constant; in fact, it is
a highly exponential function of h.

A sequence of n positive integers dy > do > ... > d, is called graphic if there exists an n-vertex
graph whose degree sequence is {dy,...,d,}. We shall need the following theorem of Erdés and

Gallai [9], which gives a necessary and sufficient condition for a sequence to be graphic.

Lemma 2.2 (Erd6s and Gallai [9]) The sequence di > dy > ... > d,, of positive integers is

graphic if and only if its sum is even and for everyt =1,...,n

dodi <t(t—1)+ Zn: min{t,d;}. (1)
=1

i=t+1
|

Recall that a multigraph is a graph in which multiple edges and loops are allowed. During the rest
of this sequel, all multigraphs considered are assumed to have no loops. The degree of a vertex v in
a multigraph is defined as the number of edges adjacent to v, taking multiplicity into account (i.e.
an edge with multiplicity k contributes k to the degrees of its adjacent vertices). The next lemma,

which is somewhat technical, is crucial to our proof of Theorem 1.1.

Lemma 2.3 Let H be a graph with h > 2 edges and no isolated vertices, let h > a > 1, and let
n > 13h3. Then, if R is an n-vertex multigraph with A(R) < a, then there exists an n-vertex
multigraph G with the following properties:

1. R is a spanning sub-multigraph of G.

2. G\ R is a graph (i.e. the edges of G not belonging to R have multiplicity one).
3. A(G) < 4h2.

4. G has an H-decomposition.

Proof: We shall prove the lemma by induction on e(R), the number of edges of R. In fact, we will
show that if e(R) = k, then one may construct G, having the properties guaranteed by the lemma,
and such that e(@) < kh, and dg(v) < h-dr(v) + 3h? < ha + 3h? < 4h? for every vertex v. The
basis of the induction, k = 0, holds since in this case G = R is the empty graph, and all properties
trivially hold. Now suppose e(R) = k+1. Put R’ = R\ {(a,b)} where (a,b) is an arbitrary edge of



R. Since e(R') = k, we have, according to the induction hypothesis, that there exists a multigraph
G’, with all the above properties, with respect to R'. If (a,b) € G', we may take G = G’, and we
are done. Assume, therefore, that (a,b) ¢ G’. Since e(G’) < kh, and since k = e(R') < na/2 we
have e(G’) < nah/2. Thus, there are at least n/2 vertices with degree at most 2ah in G’. Since
A(G") < 4h* we have, therefore, that there are is a set of vertices X, with |X| > n/2 — 8h? — 2,
such that for every v € X, dg/(v) < 2ah, v # a, v # b, (v,a) ¢ G’ and (v,b) ¢ G'. We claim that
there is an independent set in G’ containing 2h — 2 vertices of X. To see this, it suffices to show
that | X|/(2ah + 1) > 2h — 2. Indeed,

1X| > g —8h2 — 2> (2h — 2)(2ah + 1)

since n > 13h3 and a < h. Thus, if t denotes the number of vertices of H, then since t < 2h, we
have that there exists a set Y C X with ¢t — 2 vertices such that Z =Y U {a,b} is an independent
set of G', with ¢ elements. Embed a copy of H on the vertex set Z, such that (a,b) is an edge of this
copy. Let F denote the set of edges of this copy. Clearly, |F| = h and (a,b) € F. Put G =G ' UF.

Our construction shows that:
1. R is a spanning subgraph of G.

2. G\R=(G'\R')U(F \ {a,b}). This is a disjoint union of two graphs, and therefore G \ R
is a graph.

3. If v ¢ Z then dg(v) = dg(v) < h-dr(v) +3h? < h-dr(v) + 3h%. If v € Y then dg(v) <
de/(v)+h < 2ah+h < 2h2+h < h-dg(v)+3h%. Finally, if v € {a,b} then dg(v) < dg/(v)+h <
h-dg/(v)+3h%+h = h-dr(v)+3h% In any case, we have shown that dg(v) < h-dg(v)+ 3h>

for every vertex wv.

4. G has an H-decomposition since G’ has an H decomposition and since G = G’ U F where F

is a copy of H, and no edge of F' appears in G'.
5. ¢(G)=e(G")+h <kh+h=(k+1)h.

This completes the induction step, and hence the proof. O

Proof of Theorem 1.1: Given H, we choose ng = no(H) = max{N(H), 1;;%2 ,8h}, where N(H)
and e(H) are as in Lemma 2.1. Now let n > ng. Let n — 1 = —a mod d, where 0 < a < d —1. Let
n(n —1+4a)/d = —=bmod (2h/d), where 0 < b < 2h/d — 1. Note that since d = ged(H) and 2h is
the sum of the degrees of H, 2h/d must be an integer. Also note that (n — 1+ a)/d is an integer,

and so b is well-defined. We shall use the obvious fact that h > d(d + 1)/2, since 6(H) > d. This




means that
n > ng > 8h > 4d*> > (a + d)>.

Another useful fact is that bd + na is even since if d is even then a and n have different parity,
and if d is odd then 2h/d is even and so if b is odd then a and n are both odd, and if b is even
then either n is even or a is even. In the first part of the proof we shall give an upper bound for
C(H,K,), and in the second part we shall give a lower bound for C(H, K,,), and notice that the
upper and lower bounds coincide.

Proving an upper bound for C(H, K,,): We shall first assume that a # 0 or b > 1 (or both).
Our first goal is to show the existence of an n-vertex multigraph, R, which has b vertices with
degree d 4 a, and n — b vertices with degree a. In case a = 0 we can clearly construct R by taking
n — b isolated vertices, and b vertices which span a d-regular multigraph. This can be done since
bd + na = bd is even, as noted above, and since b > 1. Note that if b < d R must contain multiple
edges, but if b > d we can insist that R be a graph. In case a # 0 we shall show the existence of
R by using Lemma 2.2, with d; =a+dfori=1,...,band d; =a fori =0+ 1,...,n. (This will
imply that the resulting R is, in fact, a graph, and not a proper multigraph). Notice first that the
sum of the sequence is bd + na and this number is even as mentioned above. Let 1 <t <a+d. In

this case, (1) holds since

i tla+d)=tlt—1)+tla+d—t+1)<t{t—1)+(a+d)(at+d—1)=

tt—1)+(a+d)? —(a+d) <tlt—1)+n—(a+d) <tt—1)+n—t) <tlt—1)+ i min{¢,d;}.
i=t+1

For a + d <t < n we shall prove that (1) holds by induction on ¢, where the base case t = a + d

was proved above. If ¢ > a + d we use the induction hypothesis to derive that

t—1

Sdi=di+ Y di <dp+ (t—1)(t -2 +me{t di} =

=1 i=1

~

dy +min{t,dy} —2(t — 1)+ t(t — 1) + > min{t, d;}
i=t+1

n n
<(a+d)+(a+d) —2a+d)+tt—1)+ > min{t,d} =t{t—1)+ > min{t,d;}.
i=t+1 i=t+1
Thus, in any case, the desired multigraph R exists. Note that A(R) < d4a < 2d—1 < d(d+1)/2 <
h. According to Lemma 2.3, there exists a multigraph G on n vertices, which contains R as a

spanning submultigraph, 6(G) < 4h?, and G has an H-decomposition. Furthermore, the multigraph



F obtained from G by deleting the edges of R is, in fact, a graph. Let G* be the graph obtained
from K, by deleting the edges of F. We claim that d | ged(G*). To see this, note that the fact
that G has an H-decomposition implies that d | ged(G). Since the degree of every vertex of R is
a mod d, it follows that the degree of every vertex of F' is (—a) mod d. Since the degree of every
vertex of K, is n —1 = (—a) mod d, it follows that the degree of every vertex of G* is 0 mod d.
Now we claim that e(G*), the number of edges of G*, is 0 mod h. This is because e(G) = 0 mod h,

and

n)e(G)+bd+na g(n(n_l—l—a)+b))—e(G):Omodh.

e(G*) = (’;) —e(G) + e(R) = (2 . . v

Also note that 6(G*) > n —1—4h? = n(1 — %) > n(l —€e(H)), since n > ng > 1;[;1]}32. Thus,

G™* satisfies the conditions of Lemma 2.1, and therefore G* has an H-decomposition. The union of

the H-decomposition of G* and the H-decomposition of G yields a covering of K, in which all the
edges of K, but the edges of R, are covered once. Furthermore, if an edge of R has multiplicity
t, then this edge is covered ¢ + 1 times in the resulting H-covering of K,,. The overall number of

copies of H in both decompositions is, therefore, exactly ((3) + e(R))/h. Thus,

C(H,K,) < (5) +e(R) _ (3) + (bd + na)/2 _d nn-1+a) dn n—1

. A =g )=l =1l

We now deal with the case a = 0 and b = 0. Note that in this case K, satisfies the condition in
Wilson’s Theorem [22], (or according to Lemma 2.1), so, trivially,

(n)_dnn—l_ dn n—1
ool

C(H,K,) =

The only remaining case is @ = 0 and b = 1. This can only happen if d is even, since, recall, bd +na
is always even. In this case we create a graph R on 1 + % vertices which is d regular (we then
add to R aset of n — 1 — % isolated vertices to obtain an m-vertex graph). This can be done
since h > d(d + 1)/2 which implies d < 2% < 2 4 1. Once again, since A(R) = d < h, using
Lemma 2.3 we obtain an n-vertex graph G, containing R as a subgraph, A(G) < 4h?, and G has
an H-decomposition. As in the case where a # 0, the graph G* obtained from K, be first deleting
the edges of G and then returning the edges of R, satisfies the conditions of Lemma 2.1, and thus
G* has an H-decomposition, and the union of the H-decomposition of G and the H-decomposition
of G* forms a covering of K, where every edge is covered once, but the edges of R which are
covered twice. The overall number of copies of H in both decompositions is, therefore, exactly
((3) + e(R))/h. Thus,

(5) +e®) () +h+d/2 (G +d2 ()
C(H, Ky) < 22— = 22— =+ 1=[] 41




Proving a lower bound for C(H, K,): Let L be an arbitrary H-covering of K,,. Let s denote the

cardinality of L. Let G be the n-vertex multigraph obtained by the edge-union of all the members

of L. That is, an edge of G has multiplicity k if it appears in k members of L. Clearly, G' contains

sh edges. Since K, is a spanning subgraph of G, we may define the multigraph G* = G \ K,,. G*
n

contains sh — (2) edges. The degree of every vertex in G is 0 mod d and so the degree of every

vertex in G* is @ mod d. Therefore, the number of edges in G* satisfies

sh (n) _ an + cd
2 2

for some non-negative integer c. In particular, (3) = (—“”T“d) mod h. This, in turn, implies that

n(n —1+a)/d = (—c) mod (2h/d). Thus, we must have ¢ > b. Therefore,

B (721) + an;cd . (TQL) + an;rbd B dn n —1
§ = > =[o 11
h h 2h’ d

Since L was an arbitrary H-covering, we have

n—1

O(H, K,) > ()

We must now show that in case a = 0 and b = 1, the last bound can be improved by 1. To see this,
note that in this case we cannot have ¢ = 1. This is because every non-isolated vertex of G* has
degree at least d, and therefore there are at least d(d + 1)/2 edges in G*, and since the number of
edges in G* is ¢d/2, we cannot have ¢ = 1. We must, therefore have ¢ > b+ 2h/d. Therefore,

n an+c n an+(b+2h/d)d n n
GG Qe @) d 6,
h = h h ' 2h h '

3 Concluding remarks

1. Theorem 1.1, applied to H = K}, yields, for n > ng(k), that
n.n—1

unless k —liseven and k — 1 |n—1and n(n —1)/(k — 1) + 1 = 0 mod k, in which case the

C(Kp, Kp) =1

above formula should be increased by 1.

2. Theorem 1.1, applied to H = C}, yields, for n > ng(k), that

11,

n—1
2

O(Cr Kn) = [

unless n is odd (3) +1 = 0 mod k.



3. If n > no(H) and ged(H) = 1, then C(H, K,,) = [e((%)ﬂ This bound can also be obtained from

the packing bound, as shown in [6] where it is proved that in this case, P(H, K,) = Le((Q))J.

4. The proof of the upper bound in Theorem 1.1 shows that whenever n — 1 # 0 mod d, or
whenever n — 1 = Omodd and b € {0,1,d + 1,d + 2,...} the multigraph R is, in fact,
a graph. Thus the obtained optimum covering has overlap 2. This shows that whenever
n > no(H), and n and b satisfy the above, CO(H, K,,) = C(H, K,). In case n —1 = 0 mod d
and 2 < b < d, we can replace the multigraph R which has b vertices with degree d, with a
graph R’ with b+ 2h/d vertices, which is d-regular, (as shown there in the case b = 1). Thus,
in this case, CO(H,K,) = C(H,K,) + 1. This solves and sharpens the problem posed by
Etzion, mentioned in the introduction. In fact, by modifying the proof of Lemma 2.3, we can
guarantee that G has an H-decomposition in which every copy of H contains ezactly one edge
from R. This, in turn, shows that an optimal 2-overlap covering with CO(H, K,,) copies can
be obtained with the additional property that every copy in the covering has at most one edge
which is covered twice. (See [2, 12] which deal with this type of covering). This can be done
by defining the graph R’ to be the multigraph obtained from the graph R by replacing each
edge with two multiple edges. Now, construct G, as in Lemma 2.3, which contains R’, has an
H-decomposition, and every copy of H in the decomposition contains exactly one edge from
R’. Now, as in the proof of Theorem 1.1, the graph K, \ (G \ R’) \ R, satisfies Gustavsson’s
Theorem, and its H-decomposition, together with the H-decomposition of G, is a covering
with CO(H, K,) members, where each member has at most one edge which is covered twice
(in fact, only the edges of R are covered twice). Note the interesting fact that there are
infinitely many values of d and n, in which d is even, n — 1 =0mod d, b = 2 < d, and thus
every realization of C(H, K,,) contains an edge which is covered d times (since in this case
R is a multigraph with 2 vertices having d multiple edges connecting them). However, since
CO(H,K,)=C(H, Ky)+1 in this case, it follows that at a price of one more copy of H, one
can obtain a covering with overlap 2, in which every copy contains at most one edge which is

covered twice.
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