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Abstract

For every fixed graph H, we determine the H-covering number of Kn, for all n > n0(H). We

prove that if h is the number of edges of H, and gcd(H) = d is the greatest common divisor of

the degrees of H, then there exists n0 = n0(H), such that for all n > n0,

C(H,Kn) = ddn
2h
dn− 1

d
ee,

unless d is even, n = 1 mod d and n(n− 1)/d+ 1 = 0 mod (2h/d), in which case

C(H,Kn) = d
(
n
2

)
h
e+ 1.

Our main tool in proving this result is the deep decomposition result of Gustavsson.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the

standard graph-theoretic terminology the reader is referred to [4]. Let H be a graph without

isolated vertices. An H-covering of a graph G is a set L = {G1, . . . , Gs} of subgraphs of G, where

each subgraph is isomorphic to H, and every edge of G appears in at least one member of L. The

H-covering number of G, denoted by C(H,G), is the minimum cardinality of an H-covering of G.

An H-packing of a graph G is a set L = {G1, . . . , Gs} of edge-disjoint subgraphs of G, where each

subgraph is isomorphic to H. The H-packing number of G, denoted by P (H,G), is the maximum

cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing which is also

an H-covering. The H-covering and H-packing problems are, in general, NP-Complete as shown

by Dor and Tarsi [8]. In case G = Kn, the H-covering and H-packing problems have attracted
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much attention in the last forty years, and numerous papers were written on these subjects (cf.

[3, 7, 10, 14, 17, 18, 21] for various surveys). In a recent paper [6] the authors solved the H-packing

problem, for Kn where n ≥ n(H). The purpose of this paper is to determine the H-covering

number of Kn, for n ≥ n(H). In particular, our solution settles several special cases of the H-

covering problem, which gained particular interest. Among them are:

1. C(Kk,Kn) which has been linked to the Schonheim bound and the Túran numbers [3, 19].

Despite of much effort only the cases k = 3 [11] and k = 4 [15, 16] are solved. The case k = 5

is still open [1, 17].

2. C(Ck,Kn) which is the cycle-system covering problem, solved completely only for k = 3 and

k = 4 [20].

3. The overlap of an H-covering L of Kn is defined as the maximum number of appearances of

an edge in members L. It is known [5] that if n ≥ n(H) then there exists an H-covering of

Kn with overlap at most 2. Etzion [5] has conjectured that CO(H,Kn)− C(H,Kn) ≤ c(H)

where CO(H,Kn) is the minimum number of copies in an H-covering of Kn with overlap 2,

and c(H) is a constant depending only on H.

The H-decomposition problem of Kn is solved, for n ≥ n(H). This is due to the central theorem

of Wilson [22], which states that for sufficiently large n, Kn has an H-decomposition if and only if

e(H) |
(n
2

)
and gcd(H) | n − 1 where gcd(H) is the greatest common divisor of the degrees of H.

In particular, whenever Wilson’s conditions hold for Kn, the H-covering and H-packing numbers

are known.

Our main result is the following:

Theorem 1.1 Let H be a graph with h edges, and let gcd(H)=d. Then there exists n0 = n0(H),

such that for all n > n0,

C(H,Kn) = ddn
2h
dn− 1

d
ee,

unless d is even, n = 1 mod d and n(n− 1)/d+ 1 = 0 mod (2h/d), in which case

C(H,Kn) = d
(n
2

)
h
e+ 1.

2 Proof of the main result

As mentioned in the abstract, our main tool is the following result of Gustavsson [13]:
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Lemma 2.1 (Gustavsson’s Theorem [13]) Let H be a graph with h edges. There exists N =

N(H), and ε = ε(H) > 0, such that for all n > N , if G is a graph on n vertices and m edges, with

δ(G) ≥ n(1− ε), gcd(H) | gcd(G), and h | m, then G has an H-decomposition. 2

It is worth mentioning that N(H) in Gustavsson’s Theorem is a rather huge constant; in fact, it is

a highly exponential function of h.

A sequence of n positive integers d1 ≥ d2 ≥ . . . ≥ dn is called graphic if there exists an n-vertex

graph whose degree sequence is {d1, . . . , dn}. We shall need the following theorem of Erdös and

Gallai [9], which gives a necessary and sufficient condition for a sequence to be graphic.

Lemma 2.2 (Erdös and Gallai [9]) The sequence d1 ≥ d2 ≥ . . . ≥ dn of positive integers is

graphic if and only if its sum is even and for every t = 1, . . . , n

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min{t, di}. (1)

2

Recall that a multigraph is a graph in which multiple edges and loops are allowed. During the rest

of this sequel, all multigraphs considered are assumed to have no loops. The degree of a vertex v in

a multigraph is defined as the number of edges adjacent to v, taking multiplicity into account (i.e.

an edge with multiplicity k contributes k to the degrees of its adjacent vertices). The next lemma,

which is somewhat technical, is crucial to our proof of Theorem 1.1.

Lemma 2.3 Let H be a graph with h ≥ 2 edges and no isolated vertices, let h ≥ a ≥ 1, and let

n ≥ 13h3. Then, if R is an n-vertex multigraph with ∆(R) ≤ a, then there exists an n-vertex

multigraph G with the following properties:

1. R is a spanning sub-multigraph of G.

2. G \R is a graph (i.e. the edges of G not belonging to R have multiplicity one).

3. ∆(G) ≤ 4h2.

4. G has an H-decomposition.

Proof: We shall prove the lemma by induction on e(R), the number of edges of R. In fact, we will

show that if e(R) = k, then one may construct G, having the properties guaranteed by the lemma,

and such that e(G) ≤ kh, and dG(v) ≤ h · dR(v) + 3h2 ≤ ha + 3h2 ≤ 4h2 for every vertex v. The

basis of the induction, k = 0, holds since in this case G = R is the empty graph, and all properties

trivially hold. Now suppose e(R) = k+ 1. Put R′ = R \ {(a, b)} where (a, b) is an arbitrary edge of
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R. Since e(R′) = k, we have, according to the induction hypothesis, that there exists a multigraph

G′, with all the above properties, with respect to R′. If (a, b) ∈ G′, we may take G = G′, and we

are done. Assume, therefore, that (a, b) /∈ G′. Since e(G′) ≤ kh, and since k = e(R′) ≤ na/2 we

have e(G′) ≤ nah/2. Thus, there are at least n/2 vertices with degree at most 2ah in G′. Since

∆(G′) ≤ 4h2 we have, therefore, that there are is a set of vertices X, with |X| ≥ n/2 − 8h2 − 2,

such that for every v ∈ X, dG′(v) ≤ 2ah, v 6= a, v 6= b, (v, a) /∈ G′ and (v, b) /∈ G′. We claim that

there is an independent set in G′ containing 2h − 2 vertices of X. To see this, it suffices to show

that |X|/(2ah+ 1) ≥ 2h− 2. Indeed,

|X| ≥ n

2
− 8h2 − 2 ≥ (2h− 2)(2ah+ 1)

since n ≥ 13h3 and a ≤ h. Thus, if t denotes the number of vertices of H, then since t ≤ 2h, we

have that there exists a set Y ⊂ X with t− 2 vertices such that Z = Y ∪ {a, b} is an independent

set of G′, with t elements. Embed a copy of H on the vertex set Z, such that (a, b) is an edge of this

copy. Let F denote the set of edges of this copy. Clearly, |F | = h and (a, b) ∈ F . Put G = G′ ∪ F .

Our construction shows that:

1. R is a spanning subgraph of G.

2. G \ R = (G′ \ R′) ∪ (F \ {a, b}). This is a disjoint union of two graphs, and therefore G \ R
is a graph.

3. If v /∈ Z then dG(v) = dG′(v) ≤ h · dR′(v) + 3h2 ≤ h · dR(v) + 3h2. If v ∈ Y then dG(v) ≤
dG′(v)+h ≤ 2ah+h ≤ 2h2+h ≤ h·dR(v)+3h2. Finally, if v ∈ {a, b} then dG(v) ≤ dG′(v)+h ≤
h ·dR′(v) +3h2 +h = h ·dR(v) +3h2. In any case, we have shown that dG(v) ≤ h ·dR(v) +3h2

for every vertex v.

4. G has an H-decomposition since G′ has an H decomposition and since G = G′ ∪ F where F

is a copy of H, and no edge of F appears in G′.

5. e(G) = e(G′) + h ≤ kh+ h = (k + 1)h.

This completes the induction step, and hence the proof. 2

Proof of Theorem 1.1: Given H, we choose n0 = n0(H) = max{N(H), 1+4h2

ε(H) , 8h}, where N(H)

and ε(H) are as in Lemma 2.1. Now let n > n0. Let n− 1 = −a mod d, where 0 ≤ a ≤ d− 1. Let

n(n − 1 + a)/d = −b mod (2h/d), where 0 ≤ b ≤ 2h/d − 1. Note that since d = gcd(H) and 2h is

the sum of the degrees of H, 2h/d must be an integer. Also note that (n− 1 + a)/d is an integer,

and so b is well-defined. We shall use the obvious fact that h ≥ d(d + 1)/2, since δ(H) ≥ d. This
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means that

n > n0 ≥ 8h > 4d2 > (a+ d)2.

Another useful fact is that bd + na is even since if d is even then a and n have different parity,

and if d is odd then 2h/d is even and so if b is odd then a and n are both odd, and if b is even

then either n is even or a is even. In the first part of the proof we shall give an upper bound for

C(H,Kn), and in the second part we shall give a lower bound for C(H,Kn), and notice that the

upper and lower bounds coincide.

Proving an upper bound for C(H,Kn): We shall first assume that a 6= 0 or b > 1 (or both).

Our first goal is to show the existence of an n-vertex multigraph, R, which has b vertices with

degree d+ a, and n− b vertices with degree a. In case a = 0 we can clearly construct R by taking

n − b isolated vertices, and b vertices which span a d-regular multigraph. This can be done since

bd+ na = bd is even, as noted above, and since b > 1. Note that if b ≤ d R must contain multiple

edges, but if b > d we can insist that R be a graph. In case a 6= 0 we shall show the existence of

R by using Lemma 2.2, with di = a + d for i = 1, . . . , b and di = a for i = b + 1, . . . , n. (This will

imply that the resulting R is, in fact, a graph, and not a proper multigraph). Notice first that the

sum of the sequence is bd+ na and this number is even as mentioned above. Let 1 ≤ t ≤ a+ d. In

this case, (1) holds since

t∑
i=1

di ≤ t(a+ d) = t(t− 1) + t(a+ d− t+ 1) ≤ t(t− 1) + (a+ d)(a+ d− 1) =

t(t− 1) + (a+ d)2− (a+ d) < t(t− 1) +n− (a+ d) ≤ t(t− 1) + (n− t) ≤ t(t− 1) +
n∑

i=t+1

min{t, di}.

For a + d ≤ t ≤ n we shall prove that (1) holds by induction on t, where the base case t = a + d

was proved above. If t > a+ d we use the induction hypothesis to derive that

t∑
i=1

di = dt +
t−1∑
i=1

di ≤ dt + (t− 1)(t− 2) +
n∑
i=t

min{t, di} =

dt + min{t, dt} − 2(t− 1) + t(t− 1) +
n∑

i=t+1

min{t, di}

≤ (a+ d) + (a+ d)− 2(a+ d) + t(t− 1) +
n∑

i=t+1

min{t, di} = t(t− 1) +
n∑

i=t+1

min{t, di}.

Thus, in any case, the desired multigraph R exists. Note that ∆(R) ≤ d+a ≤ 2d−1 ≤ d(d+1)/2 ≤
h. According to Lemma 2.3, there exists a multigraph G on n vertices, which contains R as a

spanning submultigraph, δ(G) ≤ 4h2, and G has an H-decomposition. Furthermore, the multigraph
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F obtained from G by deleting the edges of R is, in fact, a graph. Let G∗ be the graph obtained

from Kn by deleting the edges of F . We claim that d | gcd(G∗). To see this, note that the fact

that G has an H-decomposition implies that d | gcd(G). Since the degree of every vertex of R is

a mod d, it follows that the degree of every vertex of F is (−a) mod d. Since the degree of every

vertex of Kn is n − 1 = (−a) mod d, it follows that the degree of every vertex of G∗ is 0 mod d.

Now we claim that e(G∗), the number of edges of G∗, is 0 mod h. This is because e(G) = 0 mod h,

and

e(G∗) =

(
n

2

)
− e(G) + e(R) =

(
n

2

)
− e(G) +

bd+ na

2
=
d

2
(
n(n− 1 + a)

d
+ b))− e(G) = 0 mod h.

Also note that δ(G∗) ≥ n − 1 − 4h2 = n(1 − 1+4h2

n ) ≥ n(1 − ε(H)), since n > n0 ≥ 1+4h2

ε(H) . Thus,

G∗ satisfies the conditions of Lemma 2.1, and therefore G∗ has an H-decomposition. The union of

the H-decomposition of G∗ and the H-decomposition of G yields a covering of Kn in which all the

edges of Kn, but the edges of R, are covered once. Furthermore, if an edge of R has multiplicity

t, then this edge is covered t + 1 times in the resulting H-covering of Kn. The overall number of

copies of H in both decompositions is, therefore, exactly (
(n
2

)
+ e(R))/h. Thus,

C(H,Kn) ≤
(n
2

)
+ e(R)

h
=

(n
2

)
+ (bd+ na)/2

h
=

d

2h
(
n(n− 1 + a)

d
+ b)) = ddn

2h
dn− 1

d
ee.

We now deal with the case a = 0 and b = 0. Note that in this case Kn satisfies the condition in

Wilson’s Theorem [22], (or according to Lemma 2.1), so, trivially,

C(H,Kn) =

(n
2

)
h

=
dn

2h

n− 1

d
= ddn

2h
dn− 1

d
ee.

The only remaining case is a = 0 and b = 1. This can only happen if d is even, since, recall, bd+na

is always even. In this case we create a graph R on 1 + 2h
d vertices which is d regular (we then

add to R a set of n − 1 − 2h
d isolated vertices to obtain an n-vertex graph). This can be done

since h ≥ d(d + 1)/2 which implies d < 2h
d < 2h

d + 1. Once again, since ∆(R) = d ≤ h, using

Lemma 2.3 we obtain an n-vertex graph G, containing R as a subgraph, ∆(G) ≤ 4h2, and G has

an H-decomposition. As in the case where a 6= 0, the graph G∗ obtained from Kn be first deleting

the edges of G and then returning the edges of R, satisfies the conditions of Lemma 2.1, and thus

G∗ has an H-decomposition, and the union of the H-decomposition of G and the H-decomposition

of G∗ forms a covering of Kn where every edge is covered once, but the edges of R which are

covered twice. The overall number of copies of H in both decompositions is, therefore, exactly

(
(n
2

)
+ e(R))/h. Thus,

C(H,Kn) ≤
(n
2

)
+ e(R)

h
=

(n
2

)
+ h+ d/2

h
=

(n
2

)
+ d/2

h
+ 1 = d

(n
2

)
h
e+ 1.
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Proving a lower bound for C(H,Kn): Let L be an arbitrary H-covering of Kn. Let s denote the

cardinality of L. Let G be the n-vertex multigraph obtained by the edge-union of all the members

of L. That is, an edge of G has multiplicity k if it appears in k members of L. Clearly, G contains

sh edges. Since Kn is a spanning subgraph of G, we may define the multigraph G∗ = G \Kn. G∗

contains sh −
(n
2

)
edges. The degree of every vertex in G is 0 mod d and so the degree of every

vertex in G∗ is a mod d. Therefore, the number of edges in G∗ satisfies

sh−
(
n

2

)
=
an+ cd

2

for some non-negative integer c. In particular,
(n
2

)
= (−an+cd

2 ) mod h. This, in turn, implies that

n(n− 1 + a)/d = (−c) mod (2h/d). Thus, we must have c ≥ b. Therefore,

s =

(n
2

)
+ an+cd

2

h
≥
(n
2

)
+ an+bd

2

h
= ddn

2h
dn− 1

d
ee.

Since L was an arbitrary H-covering, we have

C(H,Kn) ≥ ddn
2h
dn− 1

d
ee.

We must now show that in case a = 0 and b = 1, the last bound can be improved by 1. To see this,

note that in this case we cannot have c = 1. This is because every non-isolated vertex of G∗ has

degree at least d, and therefore there are at least d(d+ 1)/2 edges in G∗, and since the number of

edges in G∗ is cd/2, we cannot have c = 1. We must, therefore have c ≥ b+ 2h/d. Therefore,

s =

(n
2

)
+ an+cd

2

h
≥
(n
2

)
+ an+(b+2h/d)d

2

h
=

(n
2

)
h

+
d

2h
+ 1 = d

(n
2

)
h
e+ 1.

2

3 Concluding remarks

1. Theorem 1.1, applied to H = Kk yields, for n ≥ n0(k), that

C(Kk,Kn) = dn
k
dn− 1

k − 1
ee,

unless k − 1 is even and k − 1 | n− 1 and n(n− 1)/(k − 1) + 1 = 0 mod k, in which case the

above formula should be increased by 1.

2. Theorem 1.1, applied to H = Ck yields, for n ≥ n0(k), that

C(Ck,Kn) = dn
k
dn− 1

2
ee,

unless n is odd
(n
2

)
+ 1 = 0 mod k.
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3. If n ≥ n0(H) and gcd(H) = 1, then C(H,Kn) = d (n2)
e(H)e. This bound can also be obtained from

the packing bound, as shown in [6] where it is proved that in this case, P (H,Kn) = b (n2)
e(H)c.

4. The proof of the upper bound in Theorem 1.1 shows that whenever n − 1 6= 0 mod d, or

whenever n − 1 = 0 mod d and b ∈ {0, 1, d + 1, d + 2, . . .} the multigraph R is, in fact,

a graph. Thus the obtained optimum covering has overlap 2. This shows that whenever

n ≥ n0(H), and n and b satisfy the above, CO(H,Kn) = C(H,Kn). In case n− 1 = 0 mod d

and 2 ≤ b ≤ d, we can replace the multigraph R which has b vertices with degree d, with a

graph R′ with b+ 2h/d vertices, which is d-regular, (as shown there in the case b = 1). Thus,

in this case, CO(H,Kn) = C(H,Kn) + 1. This solves and sharpens the problem posed by

Etzion, mentioned in the introduction. In fact, by modifying the proof of Lemma 2.3, we can

guarantee that G has an H-decomposition in which every copy of H contains exactly one edge

from R. This, in turn, shows that an optimal 2-overlap covering with CO(H,Kn) copies can

be obtained with the additional property that every copy in the covering has at most one edge

which is covered twice. (See [2, 12] which deal with this type of covering). This can be done

by defining the graph R′ to be the multigraph obtained from the graph R by replacing each

edge with two multiple edges. Now, construct G, as in Lemma 2.3, which contains R′, has an

H-decomposition, and every copy of H in the decomposition contains exactly one edge from

R′. Now, as in the proof of Theorem 1.1, the graph Kn \ (G \R′) \R, satisfies Gustavsson’s

Theorem, and its H-decomposition, together with the H-decomposition of G, is a covering

with CO(H,Kn) members, where each member has at most one edge which is covered twice

(in fact, only the edges of R are covered twice). Note the interesting fact that there are

infinitely many values of d and n, in which d is even, n − 1 = 0 mod d, b = 2 ≤ d, and thus

every realization of C(H,Kn) contains an edge which is covered d times (since in this case

R is a multigraph with 2 vertices having d multiple edges connecting them). However, since

CO(H,Kn) = C(H,Kn) + 1 in this case, it follows that at a price of one more copy of H, one

can obtain a covering with overlap 2, in which every copy contains at most one edge which is

covered twice.
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