Covering Graphs: The covering problem solved

Yair Caro * Raphael Yuster [†]

Abstract

For every fixed graph H, we determine the H-covering number of K_n , for all $n > n_0(H)$. We prove that if h is the number of edges of H, and gcd(H) = d is the greatest common divisor of the degrees of H, then there exists $n_0 = n_0(H)$, such that for all $n > n_0$,

$$C(H, K_n) = \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil,$$

unless d is even, $n = 1 \mod d$ and $n(n-1)/d + 1 = 0 \mod (2h/d)$, in which case

$$C(H, K_n) = \left\lceil \frac{\binom{n}{2}}{h} \right\rceil + 1.$$

Our main tool in proving this result is the deep decomposition result of Gustavsson.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the standard graph-theoretic terminology the reader is referred to [4]. Let H be a graph without isolated vertices. An H-covering of a graph G is a set $L = \{G_1, \ldots, G_s\}$ of subgraphs of G, where each subgraph is isomorphic to H, and every edge of G appears in at least one member of L. The H-covering number of G, denoted by C(H, G), is the minimum cardinality of an H-covering of G. An H-packing of a graph G is a set $L = \{G_1, \ldots, G_s\}$ of edge-disjoint subgraphs of G, where each subgraph is isomorphic to H. The H-packing number of G, denoted by P(H, G), is the maximum cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing which is also an H-covering. The H-covering and H-packing problems are, in general, NP-Complete as shown by Dor and Tarsi [8]. In case $G = K_n$, the H-covering and H-packing problems have attracted

^{*}Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il [†]Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

much attention in the last forty years, and numerous papers were written on these subjects (cf. [3, 7, 10, 14, 17, 18, 21] for various surveys). In a recent paper [6] the authors solved the *H*-packing problem, for K_n where $n \ge n(H)$. The purpose of this paper is to determine the *H*-covering number of K_n , for $n \ge n(H)$. In particular, our solution settles several special cases of the *H*-covering problem, which gained particular interest. Among them are:

- 1. $C(K_k, K_n)$ which has been linked to the Schonheim bound and the Túran numbers [3, 19]. Despite of much effort only the cases k = 3 [11] and k = 4 [15, 16] are solved. The case k = 5 is still open [1, 17].
- 2. $C(C_k, K_n)$ which is the cycle-system covering problem, solved completely only for k = 3 and k = 4 [20].
- 3. The overlap of an *H*-covering *L* of K_n is defined as the maximum number of appearances of an edge in members *L*. It is known [5] that if $n \ge n(H)$ then there exists an *H*-covering of K_n with overlap at most 2. Etzion [5] has conjectured that $CO(H, K_n) - C(H, K_n) \le c(H)$ where $CO(H, K_n)$ is the minimum number of copies in an *H*-covering of K_n with overlap 2, and c(H) is a constant depending only on *H*.

The *H*-decomposition problem of K_n is solved, for $n \ge n(H)$. This is due to the central theorem of Wilson [22], which states that for sufficiently large n, K_n has an *H*-decomposition if and only if $e(H) \mid \binom{n}{2}$ and $gcd(H) \mid n-1$ where gcd(H) is the greatest common divisor of the degrees of *H*. In particular, whenever Wilson's conditions hold for K_n , the *H*-covering and *H*-packing numbers are known.

Our main result is the following:

Theorem 1.1 Let H be a graph with h edges, and let gcd(H)=d. Then there exists $n_0 = n_0(H)$, such that for all $n > n_0$,

$$C(H, K_n) = \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil,$$

unless d is even, $n = 1 \mod d$ and $n(n-1)/d + 1 = 0 \mod (2h/d)$, in which case

$$C(H, K_n) = \lceil \frac{\binom{n}{2}}{h} \rceil + 1$$

2 Proof of the main result

As mentioned in the abstract, our main tool is the following result of Gustavsson [13]:

Lemma 2.1 (Gustavsson's Theorem [13]) Let H be a graph with h edges. There exists N = N(H), and $\epsilon = \epsilon(H) > 0$, such that for all n > N, if G is a graph on n vertices and m edges, with $\delta(G) \ge n(1-\epsilon)$, $gcd(H) \mid gcd(G)$, and $h \mid m$, then G has an H-decomposition. \Box

It is worth mentioning that N(H) in Gustavsson's Theorem is a rather huge constant; in fact, it is a highly exponential function of h.

A sequence of n positive integers $d_1 \ge d_2 \ge \ldots \ge d_n$ is called *graphic* if there exists an n-vertex graph whose degree sequence is $\{d_1, \ldots, d_n\}$. We shall need the following theorem of Erdös and Gallai [9], which gives a necessary and sufficient condition for a sequence to be graphic.

Lemma 2.2 (Erdös and Gallai [9]) The sequence $d_1 \ge d_2 \ge \ldots \ge d_n$ of positive integers is graphic if and only if its sum is even and for every $t = 1, \ldots, n$

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}.$$
(1)

Recall that a *multigraph* is a graph in which multiple edges and loops are allowed. During the rest of this sequel, all multigraphs considered are assumed to have no loops. The degree of a vertex v in a multigraph is defined as the number of edges adjacent to v, taking multiplicity into account (i.e. an edge with multiplicity k contributes k to the degrees of its adjacent vertices). The next lemma, which is somewhat technical, is crucial to our proof of Theorem 1.1.

Lemma 2.3 Let H be a graph with $h \ge 2$ edges and no isolated vertices, let $h \ge a \ge 1$, and let $n \ge 13h^3$. Then, if R is an n-vertex multigraph with $\Delta(R) \le a$, then there exists an n-vertex multigraph G with the following properties:

- 1. R is a spanning sub-multigraph of G.
- 2. $G \setminus R$ is a graph (i.e. the edges of G not belonging to R have multiplicity one).
- 3. $\Delta(G) \leq 4h^2$.
- 4. G has an H-decomposition.

Proof: We shall prove the lemma by induction on e(R), the number of edges of R. In fact, we will show that if e(R) = k, then one may construct G, having the properties guaranteed by the lemma, and such that $e(G) \leq kh$, and $d_G(v) \leq h \cdot d_R(v) + 3h^2 \leq ha + 3h^2 \leq 4h^2$ for every vertex v. The basis of the induction, k = 0, holds since in this case G = R is the empty graph, and all properties trivially hold. Now suppose e(R) = k + 1. Put $R' = R \setminus \{(a, b)\}$ where (a, b) is an arbitrary edge of *R*. Since e(R') = k, we have, according to the induction hypothesis, that there exists a multigraph G', with all the above properties, with respect to R'. If $(a, b) \in G'$, we may take G = G', and we are done. Assume, therefore, that $(a, b) \notin G'$. Since $e(G') \leq kh$, and since $k = e(R') \leq na/2$ we have $e(G') \leq nah/2$. Thus, there are at least n/2 vertices with degree at most 2ah in G'. Since $\Delta(G') \leq 4h^2$ we have, therefore, that there are is a set of vertices X, with $|X| \geq n/2 - 8h^2 - 2$, such that for every $v \in X$, $d_{G'}(v) \leq 2ah$, $v \neq a$, $v \neq b$, $(v, a) \notin G'$ and $(v, b) \notin G'$. We claim that there is an independent set in G' containing 2h - 2 vertices of X. To see this, it suffices to show that $|X|/(2ah+1) \geq 2h-2$. Indeed,

$$|X| \ge \frac{n}{2} - 8h^2 - 2 \ge (2h - 2)(2ah + 1)$$

since $n \ge 13h^3$ and $a \le h$. Thus, if t denotes the number of vertices of H, then since $t \le 2h$, we have that there exists a set $Y \subset X$ with t - 2 vertices such that $Z = Y \cup \{a, b\}$ is an independent set of G', with t elements. Embed a copy of H on the vertex set Z, such that (a, b) is an edge of this copy. Let F denote the set of edges of this copy. Clearly, |F| = h and $(a, b) \in F$. Put $G = G' \cup F$. Our construction shows that:

- 1. R is a spanning subgraph of G.
- 2. $G \setminus R = (G' \setminus R') \cup (F \setminus \{a, b\})$. This is a disjoint union of two graphs, and therefore $G \setminus R$ is a graph.
- 3. If $v \notin Z$ then $d_G(v) = d_{G'}(v) \leq h \cdot d_{R'}(v) + 3h^2 \leq h \cdot d_R(v) + 3h^2$. If $v \in Y$ then $d_G(v) \leq d_{G'}(v) + h \leq 2ah + h \leq 2h^2 + h \leq h \cdot d_R(v) + 3h^2$. Finally, if $v \in \{a, b\}$ then $d_G(v) \leq d_{G'}(v) + h \leq h \cdot d_{R'}(v) + 3h^2 + h = h \cdot d_R(v) + 3h^2$. In any case, we have shown that $d_G(v) \leq h \cdot d_R(v) + 3h^2$ for every vertex v.
- 4. G has an H-decomposition since G' has an H decomposition and since $G = G' \cup F$ where F is a copy of H, and no edge of F appears in G'.
- 5. $e(G) = e(G') + h \le kh + h = (k+1)h$.

This completes the induction step, and hence the proof. \Box

Proof of Theorem 1.1: Given H, we choose $n_0 = n_0(H) = \max\{N(H), \frac{1+4h^2}{\epsilon(H)}, 8h\}$, where N(H) and $\epsilon(H)$ are as in Lemma 2.1. Now let $n > n_0$. Let $n - 1 = -a \mod d$, where $0 \le a \le d - 1$. Let $n(n-1+a)/d = -b \mod (2h/d)$, where $0 \le b \le 2h/d - 1$. Note that since d = gcd(H) and 2h is the sum of the degrees of H, 2h/d must be an integer. Also note that (n-1+a)/d is an integer, and so b is well-defined. We shall use the obvious fact that $h \ge d(d+1)/2$, since $\delta(H) \ge d$. This

means that

$$n > n_0 \ge 8h > 4d^2 > (a+d)^2$$

Another useful fact is that bd + na is even since if d is even then a and n have different parity, and if d is odd then 2h/d is even and so if b is odd then a and n are both odd, and if b is even then either n is even or a is even. In the first part of the proof we shall give an upper bound for $C(H, K_n)$, and in the second part we shall give a lower bound for $C(H, K_n)$, and notice that the upper and lower bounds coincide.

Proving an upper bound for $C(H, K_n)$: We shall first assume that $a \neq 0$ or b > 1 (or both). Our first goal is to show the existence of an *n*-vertex multigraph, R, which has b vertices with degree d + a, and n - b vertices with degree a. In case a = 0 we can clearly construct R by taking n - b isolated vertices, and b vertices which span a d-regular multigraph. This can be done since bd + na = bd is even, as noted above, and since b > 1. Note that if $b \leq d R$ must contain multiple edges, but if b > d we can insist that R be a graph. In case $a \neq 0$ we shall show the existence of R by using Lemma 2.2, with $d_i = a + d$ for $i = 1, \ldots, b$ and $d_i = a$ for $i = b + 1, \ldots, n$. (This will imply that the resulting R is, in fact, a graph, and not a proper multigraph). Notice first that the sum of the sequence is bd + na and this number is even as mentioned above. Let $1 \leq t \leq a + d$. In this case, (1) holds since

$$\sum_{i=1}^{t} d_i \le t(a+d) = t(t-1) + t(a+d-t+1) \le t(t-1) + (a+d)(a+d-1) = 0$$

$$t(t-1) + (a+d)^2 - (a+d) < t(t-1) + n - (a+d) \le t(t-1) + (n-t) \le t(t-1) + \sum_{i=t+1}^n \min\{t, d_i\}.$$

For $a + d \le t \le n$ we shall prove that (1) holds by induction on t, where the base case t = a + d was proved above. If t > a + d we use the induction hypothesis to derive that

$$\sum_{i=1}^{t} d_i = d_t + \sum_{i=1}^{t-1} d_i \le d_t + (t-1)(t-2) + \sum_{i=t}^{n} \min\{t, d_i\} = d_t + \min\{t, d_t\} - 2(t-1) + t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}$$
$$\le (a+d) + (a+d) - 2(a+d) + t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\} = t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}.$$

Thus, in any case, the desired multigraph R exists. Note that $\Delta(R) \leq d+a \leq 2d-1 \leq d(d+1)/2 \leq h$. According to Lemma 2.3, there exists a multigraph G on n vertices, which contains R as a spanning submultigraph, $\delta(G) \leq 4h^2$, and G has an H-decomposition. Furthermore, the multigraph

F obtained from G by deleting the edges of R is, in fact, a graph. Let G^* be the graph obtained from K_n by deleting the edges of F. We claim that $d \mid gcd(G^*)$. To see this, note that the fact that G has an H-decomposition implies that $d \mid gcd(G)$. Since the degree of every vertex of R is $a \mod d$, it follows that the degree of every vertex of F is $(-a) \mod d$. Since the degree of every vertex of K_n is $n - 1 = (-a) \mod d$, it follows that the degree of every vertex of G^* is $0 \mod d$. Now we claim that $e(G^*)$, the number of edges of G^* , is $0 \mod h$. This is because $e(G) = 0 \mod h$, and

$$e(G^*) = \binom{n}{2} - e(G) + e(R) = \binom{n}{2} - e(G) + \frac{bd + na}{2} = \frac{d}{2}(\frac{n(n-1+a)}{d} + b)) - e(G) = 0 \mod h.$$

Also note that $\delta(G^*) \ge n - 1 - 4h^2 = n(1 - \frac{1+4h^2}{n}) \ge n(1 - \epsilon(H))$, since $n > n_0 \ge \frac{1+4h^2}{\epsilon(H)}$. Thus, G^* satisfies the conditions of Lemma 2.1, and therefore G^* has an *H*-decomposition. The union of the *H*-decomposition of G^* and the *H*-decomposition of *G* yields a covering of K_n in which all the edges of K_n , but the edges of *R*, are covered once. Furthermore, if an edge of *R* has multiplicity t, then this edge is covered t + 1 times in the resulting *H*-covering of K_n . The overall number of copies of *H* in both decompositions is, therefore, exactly $\binom{n}{2} + e(R)/h$. Thus,

$$C(H, K_n) \le \frac{\binom{n}{2} + e(R)}{h} = \frac{\binom{n}{2} + (bd + na)/2}{h} = \frac{d}{2h} (\frac{n(n-1+a)}{d} + b)) = \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil.$$

We now deal with the case a = 0 and b = 0. Note that in this case K_n satisfies the condition in Wilson's Theorem [22], (or according to Lemma 2.1), so, trivially,

$$C(H, K_n) = \frac{\binom{n}{2}}{h} = \frac{dn}{2h} \frac{n-1}{d} = \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil.$$

The only remaining case is a = 0 and b = 1. This can only happen if d is even, since, recall, bd + nais always even. In this case we create a graph R on $1 + \frac{2h}{d}$ vertices which is d regular (we then add to R a set of $n - 1 - \frac{2h}{d}$ isolated vertices to obtain an n-vertex graph). This can be done since $h \ge d(d+1)/2$ which implies $d < \frac{2h}{d} < \frac{2h}{d} + 1$. Once again, since $\Delta(R) = d \le h$, using Lemma 2.3 we obtain an n-vertex graph G, containing R as a subgraph, $\Delta(G) \le 4h^2$, and G has an H-decomposition. As in the case where $a \ne 0$, the graph G^* obtained from K_n be first deleting the edges of G and then returning the edges of R, satisfies the conditions of Lemma 2.1, and thus G^* has an H-decomposition, and the union of the H-decomposition of G and the H-decomposition of G^* forms a covering of K_n where every edge is covered once, but the edges of R which are covered twice. The overall number of copies of H in both decompositions is, therefore, exactly $(\binom{n}{2} + e(R))/h$. Thus,

$$C(H, K_n) \le \frac{\binom{n}{2} + e(R)}{h} = \frac{\binom{n}{2} + h + d/2}{h} = \frac{\binom{n}{2} + d/2}{h} + 1 = \lceil \frac{\binom{n}{2}}{h} \rceil + 1.$$

Proving a lower bound for $C(H, K_n)$: Let L be an arbitrary H-covering of K_n . Let s denote the cardinality of L. Let G be the n-vertex multigraph obtained by the edge-union of all the members of L. That is, an edge of G has multiplicity k if it appears in k members of L. Clearly, G contains sh edges. Since K_n is a spanning *subgraph* of G, we may define the multigraph $G^* = G \setminus K_n$. G^* contains $sh - \binom{n}{2}$ edges. The degree of every vertex in G is 0 mod d and so the degree of every vertex in G^* is $a \mod d$. Therefore, the number of edges in G^* satisfies

$$sh - \binom{n}{2} = \frac{an + cd}{2}$$

for some non-negative integer c. In particular, $\binom{n}{2} = \left(-\frac{an+cd}{2}\right) \mod h$. This, in turn, implies that $n(n-1+a)/d = (-c) \mod (2h/d)$. Thus, we must have $c \ge b$. Therefore,

$$s = \frac{\binom{n}{2} + \frac{an+cd}{2}}{h} \ge \frac{\binom{n}{2} + \frac{an+bd}{2}}{h} = \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil.$$

Since L was an arbitrary H-covering, we have

$$C(H, K_n) \ge \lceil \frac{dn}{2h} \lceil \frac{n-1}{d} \rceil \rceil.$$

We must now show that in case a = 0 and b = 1, the last bound can be improved by 1. To see this, note that in this case we cannot have c = 1. This is because every non-isolated vertex of G^* has degree at least d, and therefore there are at least d(d+1)/2 edges in G^* , and since the number of edges in G^* is cd/2, we cannot have c = 1. We must, therefore have $c \ge b + 2h/d$. Therefore,

$$s = \frac{\binom{n}{2} + \frac{an+cd}{2}}{h} \ge \frac{\binom{n}{2} + \frac{an+(b+2h/d)d}{2}}{h} = \frac{\binom{n}{2}}{h} + \frac{d}{2h} + 1 = \lceil \frac{\binom{n}{2}}{h} \rceil + 1.$$

3 Concluding remarks

1. Theorem 1.1, applied to $H = K_k$ yields, for $n \ge n_0(k)$, that

$$C(K_k, K_n) = \left\lceil \frac{n}{k} \left\lceil \frac{n-1}{k-1} \right\rceil \right\rceil$$

unless k - 1 is even and $k - 1 \mid n - 1$ and $n(n - 1)/(k - 1) + 1 = 0 \mod k$, in which case the above formula should be increased by 1.

2. Theorem 1.1, applied to $H = C_k$ yields, for $n \ge n_0(k)$, that

$$C(C_k, K_n) = \lceil \frac{n}{k} \lceil \frac{n-1}{2} \rceil \rceil,$$

unless n is odd $\binom{n}{2} + 1 = 0 \mod k$.

- 3. If $n \ge n_0(H)$ and gcd(H) = 1, then $C(H, K_n) = \lceil \frac{\binom{n}{2}}{e(H)} \rceil$. This bound can also be obtained from the packing bound, as shown in [6] where it is proved that in this case, $P(H, K_n) = \lfloor \frac{\binom{n}{2}}{e(H)} \rfloor$.
- 4. The proof of the upper bound in Theorem 1.1 shows that whenever $n-1 \neq 0 \mod d$, or whenever $n-1 = 0 \mod d$ and $b \in \{0, 1, d+1, d+2, \ldots\}$ the multigraph R is, in fact, a graph. Thus the obtained optimum covering has overlap 2. This shows that whenever $n \ge n_0(H)$, and n and b satisfy the above, $CO(H, K_n) = C(H, K_n)$. In case $n - 1 = 0 \mod d$ and $2 \leq b \leq d$, we can replace the multigraph R which has b vertices with degree d, with a graph R' with b + 2h/d vertices, which is d-regular, (as shown there in the case b = 1). Thus, in this case, $CO(H, K_n) = C(H, K_n) + 1$. This solves and sharpens the problem posed by Etzion, mentioned in the introduction. In fact, by modifying the proof of Lemma 2.3, we can guarantee that G has an H-decomposition in which every copy of H contains exactly one edge from R. This, in turn, shows that an optimal 2-overlap covering with $CO(H, K_n)$ copies can be obtained with the additional property that every copy in the covering has at most one edge which is covered twice. (See [2, 12] which deal with this type of covering). This can be done by defining the graph R' to be the multigraph obtained from the graph R by replacing each edge with two multiple edges. Now, construct G, as in Lemma 2.3, which contains R', has an H-decomposition, and every copy of H in the decomposition contains exactly one edge from R'. Now, as in the proof of Theorem 1.1, the graph $K_n \setminus (G \setminus R') \setminus R$, satisfies Gustavsson's Theorem, and its H-decomposition, together with the H-decomposition of G, is a covering with $CO(H, K_n)$ members, where each member has at most one edge which is covered twice (in fact, only the edges of R are covered twice). Note the interesting fact that there are infinitely many values of d and n, in which d is even, $n-1 = 0 \mod d$, $b = 2 \le d$, and thus every realization of $C(H, K_n)$ contains an edge which is covered d times (since in this case R is a multigraph with 2 vertices having d multiple edges connecting them). However, since $CO(H, K_n) = C(H, K_n) + 1$ in this case, it follows that at a price of one more copy of H, one can obtain a covering with overlap 2, in which every copy contains at most one edge which is covered twice.

4 Acknowledgment

The authors wish to thank N. Alon, A. Assaf, N. Caro, T. Etzion, R. Mullin and Y. Roditty for useful discussions, helpful information, and sending important references.

References

- [1] A. Assaf, *Private communication*.
- [2] R.A. Bailey, *Designs: Mappings between structured sets (section 5)*, In: survey in combinatorics (1989), J. Siemons ed. LMS series 141, pp. 22-51.
- [3] A.E. Brouwer, *Block Designs*, in: Chapter 14 in "Handbook of Combinatorics", R. Graham, M. Grötschel and L. Lovász Eds. Elsevier, 1995.
- [4] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
- [5] Y. Caro, J. Schonheim and Y. Roditty, Covering designs with minimum overlap, submitted.
- [6] Y. Caro and R. Yuster, Packing graphs: The packing problem solved, Elect. J. of Combin. 4 (1997), #R1.
- [7] C.J. Colbourn and J.H. Dinitz, CRC Handbook of Combinatorial Design, CRC press 1996.
- [8] D. Dor and M. Tarsi, Graph decomposition is NPC A complete proof of Holyer's conjecture, Proc. 20th ACM STOC, ACM Press (1992), 252-263.
- [9] P. Erdös and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Math. Lapok 11 (1960), 264-274.
- [10] Z. Füredi, Matchings and covers in hypergraphs, Graphs and Combinatorics 4 (1988), 115-206.
- [11] M.U. Fort and G.A. Hedlund, Minimal coverings of pairs by triangles, Pacific J. Math. 8 (1958), 709-719.
- [12] H.D.O.F. Gronau and J. Nesëtril, $On \ 2 (v, 4, \lambda)$ -Design without pair intersections, Ars Combinatoria 39 (1995), 161-165.
- [13] T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, Doctoral Dissertation, Dept. of Mathematics, Univ. of Stockholm, 1991.
- [14] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
- [15] W.H. Mills, On the covering of pairs by quadruples-I, Journal Combin. Theory 13 (1972), 55-78.

- [16] W.H. Mills, On the covering of pairs by quadruples-II, Journal Combin. Theory 15 (1973), 138-166.
- [17] W.H. Mills and R.C. Mullin, *Coverings and packings*, in: Contemporary Design Theory: A collection of Surveys, 371-399, edited by J. H. Dinitz and D. R. Stinson. Wiley, 1992.
- [18] Y. Roditty, Packing and covering of the complete graph with a graph G of four vertices or less, J. Combin. Theory, Ser. A 34 (1983), 231-243.
- [19] J. Schonheim, On coverings, Pacific J. Math. 14 (1964), 1405-1411.
- [20] J. Schonheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canadian Math. Bull. 18 (1975), 703-708.
- [21] R.G. Stanton, J.G. Kalbfleisch and R.C. Mullin, *Covering and packing designs*, Proc. 2nd Chapel Hill Conf. on Combinatorial Mathematics and its applications. Univ. North Carolina, Chapel Hill (1970) 428-450.
- [22] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.