Covering Graphs:
 The covering problem solved

Yair Caro * Raphael Yuster ${ }^{\dagger}$

Abstract

For every fixed graph H, we determine the H-covering number of K_{n}, for all $n>n_{0}(H)$. We prove that if h is the number of edges of H, and $\operatorname{gcd}(H)=d$ is the greatest common divisor of the degrees of H, then there exists $n_{0}=n_{0}(H)$, such that for all $n>n_{0}$, $$
C\left(H, K_{n}\right)=\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil \text {, }
$$ unless d is even, $n=1 \bmod d$ and $n(n-1) / d+1=0 \bmod (2 h / d)$, in which case $$
C\left(H, K_{n}\right)=\left\lceil\frac{\binom{n}{2}}{h}\right\rceil+1 .
$$

Our main tool in proving this result is the deep decomposition result of Gustavsson.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the standard graph-theoretic terminology the reader is referred to [4]. Let H be a graph without isolated vertices. An H-covering of a graph G is a set $L=\left\{G_{1}, \ldots, G_{s}\right\}$ of subgraphs of G, where each subgraph is isomorphic to H, and every edge of G appears in at least one member of L. The H-covering number of G, denoted by $C(H, G)$, is the minimum cardinality of an H-covering of G. An H-packing of a graph G is a set $L=\left\{G_{1}, \ldots, G_{s}\right\}$ of edge-disjoint subgraphs of G, where each subgraph is isomorphic to H. The H-packing number of G, denoted by $P(H, G)$, is the maximum cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing which is also an H-covering. The H-covering and H-packing problems are, in general, NP-Complete as shown by Dor and Tarsi [8]. In case $G=K_{n}$, the H-covering and H-packing problems have attracted

[^0]much attention in the last forty years, and numerous papers were written on these subjects (cf. [3, $7,10,14,17,18,21]$ for various surveys). In a recent paper [6] the authors solved the H-packing problem, for K_{n} where $n \geq n(H)$. The purpose of this paper is to determine the H-covering number of K_{n}, for $n \geq n(H)$. In particular, our solution settles several special cases of the H covering problem, which gained particular interest. Among them are:

1. $C\left(K_{k}, K_{n}\right)$ which has been linked to the Schonheim bound and the Túran numbers $[3,19]$. Despite of much effort only the cases $k=3[11]$ and $k=4[15,16]$ are solved. The case $k=5$ is still open [1, 17].
2. $C\left(C_{k}, K_{n}\right)$ which is the cycle-system covering problem, solved completely only for $k=3$ and $k=4[20]$.
3. The overlap of an H-covering L of K_{n} is defined as the maximum number of appearances of an edge in members L. It is known [5] that if $n \geq n(H)$ then there exists an H-covering of K_{n} with overlap at most 2. Etzion [5] has conjectured that $C O\left(H, K_{n}\right)-C\left(H, K_{n}\right) \leq c(H)$ where $C O\left(H, K_{n}\right)$ is the minimum number of copies in an H-covering of K_{n} with overlap 2, and $c(H)$ is a constant depending only on H.

The H-decomposition problem of K_{n} is solved, for $n \geq n(H)$. This is due to the central theorem of Wilson [22], which states that for sufficiently large n, K_{n} has an H-decomposition if and only if $e(H) \left\lvert\,\binom{ n}{2}\right.$ and $g c d(H) \mid n-1$ where $g c d(H)$ is the greatest common divisor of the degrees of H. In particular, whenever Wilson's conditions hold for K_{n}, the H-covering and H-packing numbers are known.
Our main result is the following:
Theorem 1.1 Let H be a graph with h edges, and let $\operatorname{gcd}(H)=d$. Then there exists $n_{0}=n_{0}(H)$, such that for all $n>n_{0}$,

$$
C\left(H, K_{n}\right)=\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil,
$$

unless d is even, $n=1 \bmod d$ and $n(n-1) / d+1=0 \bmod (2 h / d)$, in which case

$$
C\left(H, K_{n}\right)=\left\lceil\frac{\binom{n}{2}}{h}\right\rceil+1 .
$$

2 Proof of the main result

As mentioned in the abstract, our main tool is the following result of Gustavsson [13]:

Lemma 2.1 (Gustavsson's Theorem [13]) Let H be a graph with h edges. There exists $N=$ $N(H)$, and $\epsilon=\epsilon(H)>0$, such that for all $n>N$, if G is a graph on n vertices and m edges, with $\delta(G) \geq n(1-\epsilon), \operatorname{gcd}(H) \mid \operatorname{gcd}(G)$, and $h \mid m$, then G has an H-decomposition.

It is worth mentioning that $N(H)$ in Gustavsson's Theorem is a rather huge constant; in fact, it is a highly exponential function of h.
A sequence of n positive integers $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ is called graphic if there exists an n-vertex graph whose degree sequence is $\left\{d_{1}, \ldots, d_{n}\right\}$. We shall need the following theorem of Erdös and Gallai [9], which gives a necessary and sufficient condition for a sequence to be graphic.

Lemma 2.2 (Erdös and Gallai [9]) The sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ of positive integers is graphic if and only if its sum is even and for every $t=1, \ldots, n$

$$
\begin{equation*}
\sum_{i=1}^{t} d_{i} \leq t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\} \tag{1}
\end{equation*}
$$

Recall that a multigraph is a graph in which multiple edges and loops are allowed. During the rest of this sequel, all multigraphs considered are assumed to have no loops. The degree of a vertex v in a multigraph is defined as the number of edges adjacent to v, taking multiplicity into account (i.e. an edge with multiplicity k contributes k to the degrees of its adjacent vertices). The next lemma, which is somewhat technical, is crucial to our proof of Theorem 1.1.

Lemma 2.3 Let H be a graph with $h \geq 2$ edges and no isolated vertices, let $h \geq a \geq 1$, and let $n \geq 13 h^{3}$. Then, if R is an n-vertex multigraph with $\Delta(R) \leq a$, then there exists an n-vertex multigraph G with the following properties:

1. R is a spanning sub-multigraph of G.
2. $G \backslash R$ is a graph (i.e. the edges of G not belonging to R have multiplicity one).
3. $\Delta(G) \leq 4 h^{2}$.
4. G has an H-decomposition.

Proof: We shall prove the lemma by induction on $e(R)$, the number of edges of R. In fact, we will show that if $e(R)=k$, then one may construct G, having the properties guaranteed by the lemma, and such that $e(G) \leq k h$, and $d_{G}(v) \leq h \cdot d_{R}(v)+3 h^{2} \leq h a+3 h^{2} \leq 4 h^{2}$ for every vertex v. The basis of the induction, $k=0$, holds since in this case $G=R$ is the empty graph, and all properties trivially hold. Now suppose $e(R)=k+1$. Put $R^{\prime}=R \backslash\{(a, b)\}$ where (a, b) is an arbitrary edge of
R. Since $e\left(R^{\prime}\right)=k$, we have, according to the induction hypothesis, that there exists a multigraph G^{\prime}, with all the above properties, with respect to R^{\prime}. If $(a, b) \in G^{\prime}$, we may take $G=G^{\prime}$, and we are done. Assume, therefore, that $(a, b) \notin G^{\prime}$. Since $e\left(G^{\prime}\right) \leq k h$, and since $k=e\left(R^{\prime}\right) \leq n a / 2$ we have $e\left(G^{\prime}\right) \leq n a h / 2$. Thus, there are at least $n / 2$ vertices with degree at most $2 a h$ in G^{\prime}. Since $\Delta\left(G^{\prime}\right) \leq 4 h^{2}$ we have, therefore, that there are is a set of vertices X, with $|X| \geq n / 2-8 h^{2}-2$, such that for every $v \in X, d_{G^{\prime}}(v) \leq 2 a h, v \neq a, v \neq b,(v, a) \notin G^{\prime}$ and $(v, b) \notin G^{\prime}$. We claim that there is an independent set in G^{\prime} containing $2 h-2$ vertices of X. To see this, it suffices to show that $|X| /(2 a h+1) \geq 2 h-2$. Indeed,

$$
|X| \geq \frac{n}{2}-8 h^{2}-2 \geq(2 h-2)(2 a h+1)
$$

since $n \geq 13 h^{3}$ and $a \leq h$. Thus, if t denotes the number of vertices of H, then since $t \leq 2 h$, we have that there exists a set $Y \subset X$ with $t-2$ vertices such that $Z=Y \cup\{a, b\}$ is an independent set of G^{\prime}, with t elements. Embed a copy of H on the vertex set Z, such that (a, b) is an edge of this copy. Let F denote the set of edges of this copy. Clearly, $|F|=h$ and $(a, b) \in F$. Put $G=G^{\prime} \cup F$. Our construction shows that:

1. R is a spanning subgraph of G.
2. $G \backslash R=\left(G^{\prime} \backslash R^{\prime}\right) \cup(F \backslash\{a, b\})$. This is a disjoint union of two graphs, and therefore $G \backslash R$ is a graph.
3. If $v \notin Z$ then $d_{G}(v)=d_{G^{\prime}}(v) \leq h \cdot d_{R^{\prime}}(v)+3 h^{2} \leq h \cdot d_{R}(v)+3 h^{2}$. If $v \in Y$ then $d_{G}(v) \leq$ $d_{G^{\prime}}(v)+h \leq 2 a h+h \leq 2 h^{2}+h \leq h \cdot d_{R}(v)+3 h^{2}$. Finally, if $v \in\{a, b\}$ then $d_{G}(v) \leq d_{G^{\prime}}(v)+h \leq$ $h \cdot d_{R^{\prime}}(v)+3 h^{2}+h=h \cdot d_{R}(v)+3 h^{2}$. In any case, we have shown that $d_{G}(v) \leq h \cdot d_{R}(v)+3 h^{2}$ for every vertex v.
4. G has an H-decomposition since G^{\prime} has an H decomposition and since $G=G^{\prime} \cup F$ where F is a copy of H, and no edge of F appears in G^{\prime}.
5. $e(G)=e\left(G^{\prime}\right)+h \leq k h+h=(k+1) h$.

This completes the induction step, and hence the proof.
Proof of Theorem 1.1: Given H, we choose $n_{0}=n_{0}(H)=\max \left\{N(H), \frac{1+4 h^{2}}{\epsilon(H)}, 8 h\right\}$, where $N(H)$ and $\epsilon(H)$ are as in Lemma 2.1. Now let $n>n_{0}$. Let $n-1=-a \bmod d$, where $0 \leq a \leq d-1$. Let $n(n-1+a) / d=-b \bmod (2 h / d)$, where $0 \leq b \leq 2 h / d-1$. Note that since $d=g c d(H)$ and $2 h$ is the sum of the degrees of $H, 2 h / d$ must be an integer. Also note that $(n-1+a) / d$ is an integer, and so b is well-defined. We shall use the obvious fact that $h \geq d(d+1) / 2$, since $\delta(H) \geq d$. This
means that

$$
n>n_{0} \geq 8 h>4 d^{2}>(a+d)^{2} .
$$

Another useful fact is that $b d+n a$ is even since if d is even then a and n have different parity, and if d is odd then $2 h / d$ is even and so if b is odd then a and n are both odd, and if b is even then either n is even or a is even. In the first part of the proof we shall give an upper bound for $C\left(H, K_{n}\right)$, and in the second part we shall give a lower bound for $C\left(H, K_{n}\right)$, and notice that the upper and lower bounds coincide.
Proving an upper bound for $C\left(H, K_{n}\right)$: We shall first assume that $a \neq 0$ or $b>1$ (or both). Our first goal is to show the existence of an n-vertex multigraph, R, which has b vertices with degree $d+a$, and $n-b$ vertices with degree a. In case $a=0$ we can clearly construct R by taking $n-b$ isolated vertices, and b vertices which span a d-regular multigraph. This can be done since $b d+n a=b d$ is even, as noted above, and since $b>1$. Note that if $b \leq d R$ must contain multiple edges, but if $b>d$ we can insist that R be a graph. In case $a \neq 0$ we shall show the existence of R by using Lemma 2.2, with $d_{i}=a+d$ for $i=1, \ldots, b$ and $d_{i}=a$ for $i=b+1, \ldots, n$. (This will imply that the resulting R is, in fact, a graph, and not a proper multigraph). Notice first that the sum of the sequence is $b d+n a$ and this number is even as mentioned above. Let $1 \leq t \leq a+d$. In this case, (1) holds since

$$
\begin{gathered}
\sum_{i=1}^{t} d_{i} \leq t(a+d)=t(t-1)+t(a+d-t+1) \leq t(t-1)+(a+d)(a+d-1)= \\
t(t-1)+(a+d)^{2}-(a+d)<t(t-1)+n-(a+d) \leq t(t-1)+(n-t) \leq t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\} .
\end{gathered}
$$

For $a+d \leq t \leq n$ we shall prove that (1) holds by induction on t, where the base case $t=a+d$ was proved above. If $t>a+d$ we use the induction hypothesis to derive that

$$
\begin{gathered}
\sum_{i=1}^{t} d_{i}=d_{t}+\sum_{i=1}^{t-1} d_{i} \leq d_{t}+(t-1)(t-2)+\sum_{i=t}^{n} \min \left\{t, d_{i}\right\}= \\
d_{t}+\min \left\{t, d_{t}\right\}-2(t-1)+t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\} \\
\leq(a+d)+(a+d)-2(a+d)+t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\}=t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\} .
\end{gathered}
$$

Thus, in any case, the desired multigraph R exists. Note that $\Delta(R) \leq d+a \leq 2 d-1 \leq d(d+1) / 2 \leq$ h. According to Lemma 2.3, there exists a multigraph G on n vertices, which contains R as a spanning submultigraph, $\delta(G) \leq 4 h^{2}$, and G has an H-decomposition. Furthermore, the multigraph
F obtained from G by deleting the edges of R is, in fact, a graph. Let G^{*} be the graph obtained from K_{n} by deleting the edges of F. We claim that $d \mid \operatorname{gcd}\left(G^{*}\right)$. To see this, note that the fact that G has an H-decomposition implies that $d \mid \operatorname{gcd}(G)$. Since the degree of every vertex of R is $a \bmod d$, it follows that the degree of every vertex of F is $(-a) \bmod d$. Since the degree of every vertex of K_{n} is $n-1=(-a) \bmod d$, it follows that the degree of every vertex of G^{*} is $0 \bmod d$. Now we claim that $e\left(G^{*}\right)$, the number of edges of G^{*}, is $0 \bmod h$. This is because $e(G)=0 \bmod h$, and

$$
\left.e\left(G^{*}\right)=\binom{n}{2}-e(G)+e(R)=\binom{n}{2}-e(G)+\frac{b d+n a}{2}=\frac{d}{2}\left(\frac{n(n-1+a)}{d}+b\right)\right)-e(G)=0 \bmod h .
$$

Also note that $\delta\left(G^{*}\right) \geq n-1-4 h^{2}=n\left(1-\frac{1+4 h^{2}}{n}\right) \geq n(1-\epsilon(H))$, since $n>n_{0} \geq \frac{1+4 h^{2}}{\epsilon(H)}$. Thus, G^{*} satisfies the conditions of Lemma 2.1, and therefore G^{*} has an H-decomposition. The union of the H-decomposition of G^{*} and the H-decomposition of G yields a covering of K_{n} in which all the edges of K_{n}, but the edges of R, are covered once. Furthermore, if an edge of R has multiplicity t, then this edge is covered $t+1$ times in the resulting H-covering of K_{n}. The overall number of copies of H in both decompositions is, therefore, exactly $\left(\binom{n}{2}+e(R)\right) / h$. Thus,

$$
\left.C\left(H, K_{n}\right) \leq \frac{\binom{n}{2}+e(R)}{h}=\frac{\binom{n}{2}+(b d+n a) / 2}{h}=\frac{d}{2 h}\left(\frac{n(n-1+a)}{d}+b\right)\right)=\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil .
$$

We now deal with the case $a=0$ and $b=0$. Note that in this case K_{n} satisfies the condition in Wilson's Theorem [22], (or according to Lemma 2.1), so, trivially,

$$
C\left(H, K_{n}\right)=\frac{\binom{n}{2}}{h}=\frac{d n}{2 h} \frac{n-1}{d}=\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil .
$$

The only remaining case is $a=0$ and $b=1$. This can only happen if d is even, since, recall, $b d+n a$ is always even. In this case we create a graph R on $1+\frac{2 h}{d}$ vertices which is d regular (we then add to R a set of $n-1-\frac{2 h}{d}$ isolated vertices to obtain an n-vertex graph). This can be done since $h \geq d(d+1) / 2$ which implies $d<\frac{2 h}{d}<\frac{2 h}{d}+1$. Once again, since $\Delta(R)=d \leq h$, using Lemma 2.3 we obtain an n-vertex graph G, containing R as a subgraph, $\Delta(G) \leq 4 h^{2}$, and G has an H-decomposition. As in the case where $a \neq 0$, the graph G^{*} obtained from K_{n} be first deleting the edges of G and then returning the edges of R, satisfies the conditions of Lemma 2.1, and thus G^{*} has an H-decomposition, and the union of the H-decomposition of G and the H-decomposition of G^{*} forms a covering of K_{n} where every edge is covered once, but the edges of R which are covered twice. The overall number of copies of H in both decompositions is, therefore, exactly $\left(\binom{n}{2}+e(R)\right) / h$. Thus,

$$
C\left(H, K_{n}\right) \leq \frac{\binom{n}{2}+e(R)}{h}=\frac{\binom{n}{2}+h+d / 2}{h}=\frac{\binom{n}{2}+d / 2}{h}+1=\left\lceil\frac{\binom{n}{2}}{h}\right\rceil+1 .
$$

Proving a lower bound for $C\left(H, K_{n}\right)$: Let L be an arbitrary H-covering of K_{n}. Let s denote the cardinality of L. Let G be the n-vertex multigraph obtained by the edge-union of all the members of L. That is, an edge of G has multiplicity k if it appears in k members of L. Clearly, G contains sh edges. Since K_{n} is a spanning subgraph of G, we may define the multigraph $G^{*}=G \backslash K_{n} . G^{*}$ contains sh $-\binom{n}{2}$ edges. The degree of every vertex in G is $0 \bmod d$ and so the degree of every vertex in G^{*} is $a \bmod d$. Therefore, the number of edges in G^{*} satisfies

$$
s h-\binom{n}{2}=\frac{a n+c d}{2}
$$

for some non-negative integer c. In particular, $\binom{n}{2}=\left(-\frac{a n+c d}{2}\right) \bmod h$. This, in turn, implies that $n(n-1+a) / d=(-c) \bmod (2 h / d)$. Thus, we must have $c \geq b$. Therefore,

$$
s=\frac{\binom{n}{2}+\frac{a n+c d}{2}}{h} \geq \frac{\binom{n}{2}+\frac{a n+b d}{2}}{h}=\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil .
$$

Since L was an arbitrary H-covering, we have

$$
C\left(H, K_{n}\right) \geq\left\lceil\frac{d n}{2 h}\left\lceil\frac{n-1}{d}\right\rceil\right\rceil .
$$

We must now show that in case $a=0$ and $b=1$, the last bound can be improved by 1 . To see this, note that in this case we cannot have $c=1$. This is because every non-isolated vertex of G^{*} has degree at least d, and therefore there are at least $d(d+1) / 2$ edges in G^{*}, and since the number of edges in G^{*} is $c d / 2$, we cannot have $c=1$. We must, therefore have $c \geq b+2 h / d$. Therefore,

$$
s=\frac{\binom{n}{2}+\frac{a n+c d}{2}}{h} \geq \frac{\binom{n}{2}+\frac{a n+(b+2 h / d) d}{2}}{h}=\frac{\binom{n}{2}}{h}+\frac{d}{2 h}+1=\left\lceil\frac{\binom{n}{2}}{h}\right\rceil+1 .
$$

3 Concluding remarks

1. Theorem 1.1, applied to $H=K_{k}$ yields, for $n \geq n_{0}(k)$, that

$$
C\left(K_{k}, K_{n}\right)=\left\lceil\frac{n}{k}\left\lceil\frac{n-1}{k-1}\right\rceil\right\rceil,
$$

unless $k-1$ is even and $k-1 \mid n-1$ and $n(n-1) /(k-1)+1=0 \bmod k$, in which case the above formula should be increased by 1 .
2. Theorem 1.1, applied to $H=C_{k}$ yields, for $n \geq n_{0}(k)$, that

$$
C\left(C_{k}, K_{n}\right)=\left\lceil\frac{n}{k}\left\lceil\frac{n-1}{2}\right\rceil\right\rceil,
$$

unless n is odd $\binom{n}{2}+1=0 \bmod k$.
3. If $n \geq n_{0}(H)$ and $\operatorname{gcd}(H)=1$, then $C\left(H, K_{n}\right)=\left\lceil\frac{\binom{n}{2}}{e(H)}\right\rceil$. This bound can also be obtained from the packing bound, as shown in [6] where it is proved that in this case, $P\left(H, K_{n}\right)=\left\lfloor\frac{\binom{n}{2}}{e(H)}\right\rfloor$.
4. The proof of the upper bound in Theorem 1.1 shows that whenever $n-1 \neq 0 \bmod d$, or whenever $n-1=0 \bmod d$ and $b \in\{0,1, d+1, d+2, \ldots\}$ the multigraph R is, in fact, a graph. Thus the obtained optimum covering has overlap 2. This shows that whenever $n \geq n_{0}(H)$, and n and b satisfy the above, $C O\left(H, K_{n}\right)=C\left(H, K_{n}\right)$. In case $n-1=0 \bmod d$ and $2 \leq b \leq d$, we can replace the multigraph R which has b vertices with degree d, with a graph R^{\prime} with $b+2 h / d$ vertices, which is d-regular, (as shown there in the case $b=1$). Thus, in this case, $C O\left(H, K_{n}\right)=C\left(H, K_{n}\right)+1$. This solves and sharpens the problem posed by Etzion, mentioned in the introduction. In fact, by modifying the proof of Lemma 2.3, we can guarantee that G has an H-decomposition in which every copy of H contains exactly one edge from R. This, in turn, shows that an optimal 2-overlap covering with $C O\left(H, K_{n}\right)$ copies can be obtained with the additional property that every copy in the covering has at most one edge which is covered twice. (See $[2,12]$ which deal with this type of covering). This can be done by defining the graph R^{\prime} to be the multigraph obtained from the graph R by replacing each edge with two multiple edges. Now, construct G, as in Lemma 2.3, which contains R^{\prime}, has an H-decomposition, and every copy of H in the decomposition contains exactly one edge from R^{\prime}. Now, as in the proof of Theorem 1.1, the graph $K_{n} \backslash\left(G \backslash R^{\prime}\right) \backslash R$, satisfies Gustavsson's Theorem, and its H-decomposition, together with the H-decomposition of G, is a covering with $C O\left(H, K_{n}\right)$ members, where each member has at most one edge which is covered twice (in fact, only the edges of R are covered twice). Note the interesting fact that there are infinitely many values of d and n, in which d is even, $n-1=0 \bmod d, b=2 \leq d$, and thus every realization of $C\left(H, K_{n}\right)$ contains an edge which is covered d times (since in this case R is a multigraph with 2 vertices having d multiple edges connecting them). However, since $C O\left(H, K_{n}\right)=C\left(H, K_{n}\right)+1$ in this case, it follows that at a price of one more copy of H, one can obtain a covering with overlap 2, in which every copy contains at most one edge which is covered twice.

4 Acknowledgment

The authors wish to thank N. Alon, A. Assaf, N. Caro, T. Etzion, R. Mullin and Y. Roditty for useful discussions, helpful information, and sending important references.

References

[1] A. Assaf, Private communication.
[2] R.A. Bailey, Designs: Mappings between structured sets (section 5), In: survey in combinatorics (1989), J. Siemons ed. LMS series 141, pp. 22-51.
[3] A.E. Brouwer, Block Designs, in: Chapter 14 in "Handbook of Combinatorics", R. Graham, M. Grötschel and L. Lovász Eds. Elsevier, 1995.
[4] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
[5] Y. Caro, J. Schonheim and Y. Roditty, Covering designs with minimum overlap, submitted.
[6] Y. Caro and R. Yuster, Packing graphs: The packing problem solved, Elect. J. of Combin. 4 (1997), \#R1.
[7] C.J. Colbourn and J.H. Dinitz, CRC Handbook of Combinatorial Design, CRC press 1996.
[8] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer's conjecture, Proc. 20th ACM STOC, ACM Press (1992), 252-263.
[9] P. Erdös and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Math. Lapok 11 (1960), 264-274.
[10] Z. Füredi, Matchings and covers in hypergraphs, Graphs and Combinatorics 4 (1988), 115-206.
[11] M.U. Fort and G.A. Hedlund, Minimal coverings of pairs by triangles, Pacific J. Math. 8 (1958), 709-719.
[12] H.D.O.F. Gronau and J. Nesëtril, On $2-(v, 4, \lambda)$-Design without pair intersections, Ars Combinatoria 39 (1995), 161-165.
[13] T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, Doctoral Dissertation, Dept. of Mathematics, Univ. of Stockholm, 1991.
[14] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[15] W.H. Mills, On the covering of pairs by quadruples-I, Journal Combin. Theory 13 (1972), 55-78.
[16] W.H. Mills, On the covering of pairs by quadruples-II, Journal Combin. Theory 15 (1973), 138-166.
[17] W.H. Mills and R.C. Mullin, Coverings and packings, in: Contemporary Design Theory: A collection of Surveys, 371-399, edited by J. H. Dinitz and D. R. Stinson. Wiley, 1992.
[18] Y. Roditty, Packing and covering of the complete graph with a graph G of four vertices or less, J. Combin. Theory, Ser. A 34 (1983), 231-243.
[19] J. Schonheim, On coverings, Pacific J. Math. 14 (1964), 1405-1411.
[20] J. Schonheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canadian Math. Bull. 18 (1975), 703-708.
[21] R.G. Stanton, J.G. Kalbfleisch and R.C. Mullin, Covering and packing designs, Proc. $2^{\text {nd }}$ Chapel Hill Conf. on Combinatorial Mathematics and its applications. Univ. North Carolina, Chapel Hill (1970) 428-450.
[22] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.

[^0]: *Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
 ${ }^{\dagger}$ Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

