
Almost given length cycles in digraphs

Raphael Yuster ∗

Department of Mathematics, University of Haifa, Haifa 31905, Israel

Abstract. A digraph is called k-cyclic if it cannot be made acyclic by removing less than k
arcs. It is proved that for every ε > 0 there are constants K and δ so that for every d ∈ (0, δn),
every εn2-cyclic digraph with n vertices contains a directed cycle whose length is between d and
d + K. A more general result of the same form is obtained for blow-ups of directed cycles.
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1. Introduction

All graphs and directed graphs (digraphs) considered here are finite and simple. For
standard terminology on graphs and digraphs the reader is referred to [3]. A feedback arc
set of a digraph is a set of arcs whose removal makes the digraph acyclic. A digraph is
called k-cyclic if it does not have a feedback arc set whose size is less than k. Thus, acyclic
digraphs are 0-cyclic and the directed triangle is 1-cyclic. It is not difficult to see that a
random n-vertex tournament is 1

4
n2(1− o(1))-cyclic, almost surely (see, e.g., [5]).

An r-blowup of a directed cycle is obtained by replacing each vertex with an indepen-
dent set of size r, and each arc (u, v) with the r2 arcs connecting the vertices blown up
from u to the vertices blown up from v. Let Cr

p denote the r-blowup of a p-cycle. Our
main result is the following.

Theorem 1. For every ε > 0, and every positive integer r, there are constants K and δ so
that for every n > K, and for every d ∈ (0, δn), every n-vertex digraph that is εn2-cyclic
has a Cr

p where d ≤ p ≤ d + K.

In the case r = 1 a simpler statement immediately follows.

Corollary 1. For every ε > 0, there are constants K and δ so that for every d ∈ (0, δn),
every n-vertex digraph that is εn2-cyclic has a cycle whose length is between d and d+K.

The proof of Theorem 1 is based on a version of Szemerédi’s regularity lemma for directed
graphs. There are some obvious bounds for the constants δ and K appearing in Theorem
1, already for the case r = 1. In Section 3 we will show that we must have K = Ω(ε−1/2)
and δ = O(ε).

Theorem 1 can be used to prove the following theorem.
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Theorem 2. For every ε > 0 there are constants K and δ so that for every n-vertex di-
graph and for every d ∈ (0, δn), the set of vertices can be partitioned to parts V0, V1, . . . , Vt

so that V0 induces a subgraph that can be made acyclic by removing εn2 arcs, and Vi in-
duces a hamiltonian digraph where d ≤ |Vi| ≤ d + K for i = 1, . . . , t.

We call a digraph with pr vertices r-hamiltonian if it contains a Cr
p . In Theorem 2 we

can replace the requirement that each Vi is hamiltonian with the stronger requirement of
being r-hamiltonian (assuming, of course, that n is sufficiently large and that δ and K
are also functions of r).

The rest of this paper is organized as follows. In Section 2 we introduce the regularity
lemma for directed graphs which is the main tool in the proof of Theorem 1. In Section
3 we prove Theorem 1. Section 4 consists of the proof of Theorem 2. Section 5 contains
some concluding remarks.

2. The regularity lemma for digraphs

An important tool used in the proof of Theorem 1 is the following version of Szemerédi’s
regularity lemma for directed graphs, that has been used implicitly in [4] and proved in
[2]. The proof is a modified version of the proof of the standard regularity lemma given
in [7]. We now give the definitions necessary to state this version of the regularity lemma.

Let G = (V, E) be a digraph, and let A and B be two disjoint subsets of V (G). If A
and B are non-empty and e(A, B) is the number of arcs from A to B, the density of arcs
from A to B is

d(A, B) =
e(A, B)

|A||B|
.

For γ > 0 the pair (A, B) is called γ-regular if for every X ⊂ A and Y ⊂ B satisfying
|X| > γ|A| and |Y | > γ|B| we have

|d(X, Y )− d(A, B)| < γ |d(Y,X)− d(B, A)| < γ.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vm

whose sizes are as equal as possible. An equitable partition of the set of vertices V of a
digraph G into the classes V1, . . . , Vm is called γ-regular if |Vi| ≤ γ|V | for every i and all

but at most γ
(

m
2

)
of the pairs (Vi, Vj) are γ-regular. The directed regularity lemma states

the following:

Lemma 1. For every γ > 0, there is an integer M(γ) > 0 such that every digraph G
with n > M vertices has a γ-regular partition of the vertex set into m classes, for some
1/γ < m < M .

3. Proof of the main result

Proof of Theorem 1. Let ε > 0, and let r be a positive integer. Let µ = 3ε and let γ be
sufficiently small so that (µ−γ)r > 2

√
γ. Let M = M(γ) be the constant from Lemma 1.

Let K > rM/γ and let δ = 1/(2rM). Let G = (V, E) be a digraph with n vertices where
n > K, and assume that G is εn2-cyclic. Finally, let d ∈ (0, δn). We need to prove that G
has a Cr

p where d ≤ p ≤ d + K.
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We apply Lemma 1 to G and obtain a γ-regular partition of V (G) into m parts, where
1/γ < m < M . Denote the parts by V1, . . . , Vm. Notice that the size of each part is either
bn/mc or dn/me. For simplicity we may and will assume that ` = n/m is an integer, as
this assumption does not affect our result since it is asymptotic. We say that the set of
arcs E(Vi, Vj) is good if (Vi, Vj) is a γ-regular pair and also d(Vi, Vj) ≥ µ. Notice that it is
possible that E(Vi, Vj) is good while E(Vj, Vi) is not good (because it is too sparse).

Claim If E(Vi, Vj) is good, then for every X ⊂ Vi with |X| ≥ 2γ` and Y ⊂ Vj with
|Y | ≥ √

γ`, there exists X∗ ⊂ X with |X∗| = r and and Y ∗ ⊂ Y with |Y ∗| ≥ |Y |(µ− γ)r

so that for each x ∈ X∗ and y ∈ Y ∗, (x, y) ∈ E(Vi, Vj).

The proof of the claim is reminiscent of the key embedding lemma for applying the regular-
ity lemma in undirected graphs (see [6]). We prove the claim by induction on r. Namely,
we prove that for t = 0, . . . , r there exists Xt ⊂ X with |Xt| = t and Yt ⊂ Y with
|Yt| ≥ |Y |(µ − γ)t so that for each x ∈ Xt and y ∈ Yt, (x, y) ∈ E(Vi, Vj). This is clearly
true for t = 0 by setting X0 = ∅ and Y0 = Y . Assuming this holds for t, we prove it for
t+1. Let X ′ ⊂ X \Xt be those vertices that have less than (µ−γ)|Yt| outgoing neighbors
in Yt. We claim that |X ′| ≤ γ`. Indeed, if this were not the case, the ordered pair (X ′, Yt)
would have density less than µ− γ, while both |X ′| > γ` and

|Yt| ≥ |Y |(µ− γ)t ≥ √
γ`(µ− γ)r > γ`

thereby violating the γ-regularity of the pair (Vi, Vj). Now,

|X| − |Xt| − |X ′| ≥ 2γ`− t− γ` = γ`− t ≥ γ`− r > γ
K

M
− r > 0.

Thus, let x ∈ X \ (Xt ∪ X ′). Let Yt+1 ⊂ Yt be the outgoing neighbors of x in Yt. Hence,
|Yt+1| ≥ |Yt|(µ−γ) ≥ |Y |(µ−γ)t+1, and setting Xt+1 = Xt∪{x} completes the induction
step. Finally, setting X∗ = Xr and Y ∗ = Yr the claim follows.

Let G∗ be the spanning subgraph of G consisting of the union of the good sets of arcs.
That is, G∗ is obtained from G by discarding arcs inside the parts, within non-regular
pairs, within sparse pairs, or one-sided sparse pairs (a one-sided sparse pair is a pair with
only one direction having density less than µ). We claim that G∗ is not acyclic. To see
this, we must show that that |E(G)|−|E(G∗)| < εn2. Indeed, there are at most m(n2/m2)

arcs with both endpoints in the same vertex class, there are at most γ
(

m
2

)
2n2

m2 arcs within

non-regular pairs, and there are at most m(m−1)µ n2

m2 arcs within sparse pairs or one-sided
sparse pairs. Thus,

|E(G)| − |E(G∗)| ≤ m
n2

m2
+ γ

(
m

2

)
2n2

m2
+ m(m− 1)µ

n2

m2
< 3µn2 = εn2.

Let R denote the m-vertex digraph whose vertices are {1, . . . ,m} and (i, j) ∈ E(R) if
and only if E(Vi, Vj) is good. Notice that since G∗ is not acyclic, R is not acyclic either.
Assume, without loss of generality, that the shortest cycle of R consists of (1, 2, . . . , s).
Notice that, trivially, 2 ≤ s ≤ m. We will prove that for all 2 ≤ k ≤ bδn/s + 2c, G
has a Cr

ks. This clearly suffices, since, given d ∈ (0, δn), choose k ≥ 2 to be the smallest
integer so that p = ks ≥ d. Then, d ≤ p ≤ d + 2s ≤ d + 2m ≤ d + 2M ≤ d + K and
k = p/s ≤ d/s + 2 ≤ (δn)/s + 2.
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Let, therefore k be an integer satisfying 2 ≤ k ≤ δn/s+2 and let p = ks. We will prove,
by induction on i = 2, . . . , p − 1 that there are disjoint subsets of vertices U0, U1, . . . , Ui

so that the following conditions hold.

(1) Uj ⊂ Vj mod s for j = 0, . . . , i (for simplicity define V0 = Vs).
(2) |Uj| = r for j = 1, . . . , i− 1.
(3) |U0| ≥

√
γ`, |Ui| ≥ 2γ`.

(4) For j = 1, . . . , i and for every x ∈ Uj−1 and every y ∈ Uj, (x, y) ∈ E(G).

We first prove the case i = 2. We will show that for all t = 0, . . . , r, there is a set Xt of t
vertices of V1, a set Yt ⊂ V2 with |Yt| ≥ `(µ− γ)t and a set Zt ⊂ Vs with |Zt| ≥ `(µ− γ)t

so that for each x ∈ Xt, for each y ∈ Yt and for each z ∈ Zt, (x, y) ∈ E and (z, x) ∈ E.
Indeed, this is trivially true for t = 0. Assuming this is true for t < r with sets Xt, Yt

Zt, we prove it for t + 1. Let X ′ ⊂ V1 \ Xt be those vertices with less than (µ − γ)|Yt|
outgoing neighbors in Yt. We must have |X ′| ≤ γ` since otherwise, the pair (X ′, Yt) would
have density less than µ− γ, while both X ′ and Yt are larger than γ`, thus violating the
γ-regularity of the pair (V1, V2). Similarly, if X ′′ ⊂ V1 \ Xt are those vertices with less
than (µ− γ)|Zt| incoming neighbors in Zt we must have |X ′′| ≤ γ`. Since

|Xt|+ |X ′|+ |X ′′| < r + 2γ` < ` = |V1|

we can choose w ∈ V1 \ (Xt ∪ X ′ ∪ X ′′). Letting Yt+1 ⊂ Yt be the outgoing neighbors of
w in Yt and Zt+1 ⊂ Zt be the incoming neighbors of w in Zt we have |Yt+1| ≥ `(µ− γ)t+1

and |Zt+1| ≥ `(µ−γ)t+1. Defining Xt+1 = Xt∪{w} the induction step is completed. Now,
since we have

|Yr| ≥ `(µ− γ)r ≥ 2γ`

we may take U2 to be any subset of Yr with size d2γ`e. Defining U0 = Zr \ U2 (we must
be careful since we may have s = 2) we have

|U0| ≥ `(µ− γ)r − d2γ`e >
√

γ`.

We have therefore proved the case i = 2.
Assuming that our claim holds for i, we prove it for i + 1. Let Y = Vi+1 \U0 ∪ · · · ∪Ui.

Clearly, Vi+1 can only intersect Uj for j = i + 1− ts for some positive integer t. It follows
that

|Y | ≥ `− r
p

s
−√

γ` ≥ `(1− γ)− r(
δn

s
+ 2) >

`

2

= `(1− γ − rδm

s
)− 2r >

√
γ`.

Putting X = Ui we have |X| ≥ 2γ`. Thus, we have set X∗ ⊂ X and Y ∗ ⊂ Y as guaranteed
in Claim 3. We may therefore redefine Ui = X∗ and define Ui+1 = Y ∗ and, noticing that

|Ui+1| = |Y ∗| ≥ |Y |(µ− γ)r ≥ √
γ`(µ− γ)r ≥ 2γ`,

we have completed our induction step.
To complete the proof of Theorem 1 we consider U0 and Up−1. Since s 6= 1, they are

disjoint. By our construction, if we define Up−1 = X and U0 = Y we can again apply
Claim 3 and obtain set X∗ ⊂ Up−1 and Y ∗ ⊂ U0. Since |X∗| = r we redefine Up−1 = X∗,
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and we redefine U0 to be any r-subset of Y ∗. It follows that U0, . . . , Up−1 are now each
of size precisely r, and induce a copy of Cr

p in G. We have thus completed the proof of
Theorem 1.

The constant K = K(ε, r) in Theorem 1 is huge, and the constant δ = δ(ε, r) is very
small. It is not difficult to see that we must have δ = O(ε), even if r = 1. Consider a
random regular tournament of degree 2εn. It has 4εn+1 vertices, and it is 4ε2n2(1−o(1))-
cyclic. Hence, by taking roughly 1

4
ε−1 vertex-disjoint copies of such a tournament we get

an n-vertex digraph that is εn2(1 − o(1))-cyclic and no cycle has length greater than
4εn + 1. Thus, δ ≤ 4ε.

It is not difficult to see that we must have K = Ω(ε−1/2), even if r = 1. Consider the
digraph obtained by taking ε−1/2 disjoint sets V1, . . . , Vε−1/2 of size ε1/2n each, and adding
all possible arcs from Vi to Vi+1 (indices modulo ε−1/2). The length of every cycle in this
graph is a multiple of ε−1/2 and it cannot be made acyclic by removing less than εn2 arcs.
Thus, K ≥ ε−1/2.

4. An application

As mentioned in the introduction, we prove the following stronger version of Theorem 2.

Theorem 3. For every ε1 > 0, and every positive integer r, there are constants K1 and
δ1 so that for all n > K1, and for all d ∈ (0, δ1n), the set of vertices of every digraph
with n vertices can be partitioned into parts V0, V1, . . . , Vt so that V0 induces a subgraph
that can be made acyclic by removing at most ε1n

2 arcs and Vi induces an r-hamiltonian
digraph where d ≤ |Vi| ≤ d + K1 for i = 1, . . . , t.

Proof: First notice that in the case r = 1 the requirement that n > K1 is not necessary.
This simply follows from the fact that if n ≤ K1 we can simply take as many vertex-
disjoint cycles as we can, and then remain with an acyclic subgraph. Thus, the case r = 1
in Theorem 3 simply amounts to Theorem 2.

Let ε1 > 0, and let r be a positive integer. Define ε = ε1/2. Let K = K(ε) and
δ = δ(ε) be as in Theorem 1. Define K1 = Kr/ε and δ1 = rδε. Let G = (V, E) be a
digraph with n > K1 vertices, and let d ∈ (0, δ1). Greedily pick vertex-disjoint r-blowups
of cycles as long as their number of vertices is between d and d + K1. Assume that when
the process ends, we remain with an induced subgraph G[W ] of G on the vertex set
W ⊂ V . Starting with i = 1, as long as G[W ] has a vertex wi with minimum out-degree
(in G[W \ {w1, . . . , wi−1}]) less than εn, we remove wi and continue in the same manner.
Once this process ends, we remain with an induced subgraph G[U ] of G on the vertex set
U ⊂ W . If U can be made acyclic by removing at most εn2 arcs we are done since by
removing these arcs and the arcs going from wi to U ∪ {wi+1, . . . , w|W |−|U |} (there are at
most εn2 such arcs), we get a spanning acyclic sub-digraph of G[W ] showing that G[W ]
can be made acyclic by removing at most ε1n

2 arcs. We claim that, indeed, U can be
made acyclic by removing at most εn2 arcs. Indeed, assuming otherwise, we must have,
in particular, |U | ≥ εn. This implies that |U | > εK1 ≥ Kr ≥ K and that, trivially, U is
ε|U |2-cyclic. Furthermore,

0 <
d

r
≤ δ1n

r
= δεn ≤ δ|U |.
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Thus, by Theorem 1, G[U ] contains a Cr
p with d/r ≤ p ≤ d/r + K, that is, an r-blowup

of a cycle whose number of vertices is between d and d + K1, a contradiction.

5. Concluding remarks

– It would be interesting to obtain a direct proof for the case r = 1 in Theorem 1 that
does not use the regularity lemma, and that yields Corollary 1 with the correct orders
of magnitude of δ and K as functions of ε. For the more general case r > 1 proved in
Theorem 1 we suspect that the regularity lemma is indispensable.

– The proof of Theorem 1 is algorithmic, and can be implemented in polynomial time.
Given an n-vertex graph, and d ∈ (0, δn), the algorithm either finds a set of εn2 arcs
whose removal makes the graph acyclic, or else finds a Cr

p with d ≤ p ≤ d+K. The only
non-constructive part in the proof of Theorem 1 is obtaining the γ-regular partition.
This, in turn, can be done in polynomial time using the method from [1].

– Using a proof similar to the proof of Theorem 1 we can obtain the following result.

Proposition 1. For every ε > 0, and every positive integer r, there are constants K
and δ so that for every n > K, and for every d ∈ (0, δn), every n-vertex digraph with
minimum out-degree at least εn has a Cr

p where d ≤ p ≤ d + K.

– Unlike Theorem 1 and corollary 1 that give conditions guaranteeing a Cr
p whose size

deviates from a given number only by a constant, the problem of finding long cycles
in kn-cyclic digraphs is significantly easier. Indeed, every kn-cyclic digraph has a sub-
digraph with minimum out-degree greater than k; as long as there is a vertex with
out-degree at most k, delete it, and continue. The process must halt while there are
vertices still remaining, forming a subdigraph with minimum out-degree at least k +1.
This subgraph has a cycle of length at least k + 2.

Acknowledgements. I wish to thank Noga Alon and the referees for insightful sugges-
tions.
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