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Abstract

While the edges of every tournament can be covered with two spanning acyclic
subgraphs, this is not so if we set out to cover all acyclic H-subgraphs of a tourna-
ment with spanning acyclic subgraphs, even for very simple H such as the 2-edge
directed path or the 2-edge out-star. We prove new bounds for the minimum num-
ber of elements in such coverings and for some H our bounds determine the exact
order of magnitude.

A k-tournament is an orientation of the complete k-graph, where each k-set is
given a total order (so tournaments are 2-tournaments). As opposed to tournaments,
already covering the edges of a 3-tournament with the minimum number of spanning
acyclic subhypergraphs is a nontrivial problem. We prove a new lower bound for
this problem which asymptotically matches the known lower bound of covering all
ordered triples of a set.

Mathematics Subject Classifications: 05C20, 05C35, 05C70

1 Introduction

Our main objects of study are tournaments and, more generally, directed graphs and
directed hypergraphs A tournament with n vertices is obtained by assigning an orientation
to each edge of the complete graph Kn. For a tournament T = ([n], E) we have |E| =

(
n
2

)
where for any two distinct vertices i, j, either (i, j) ∈ E or (j, i) ∈ E, but not both. Every
n-vertex tournament is, in particular, a spanning subgraph of the complete directed n-
vertex graph D(n) which consists of all possible n(n− 1) edges.
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It is straightforward that the edge set of D(n) is the disjoint union of two acyclic (i.e.
transitive) tournaments. Indeed, consider some permutation π ∈ Sn of the vertices. Let
TL be the tournament where (i, j) ∈ E(TL) if and only if π(i) < π(j) and let TR be the
tournament where (i, j) ∈ E(TR) if and only if π(i) > π(j). Then E(TR) ∪ E(TL) =
E(D(n)). Observe that TR and TL are both transitive tournaments. In particular as
every n-vertex tournament T is a subgraph of D(n), we can cover the edges of T using
just two acyclic subgraphs of T (hereafter we use the terminology acyclic graph to refer
to a directed acyclic graph).

However, the aforementioned edge-covering observation becomes significantly more
involved if instead of just covering edges, we set out to cover all fixed H-subgraphs of a
tournament with as few as possible acyclic subgraphs. Of course, for this to be meaningful
we assume that H itself is an acyclic graph. We next state the problem formally.

Let T = ([n], E) be a tournament and let π ∈ Sn be a permutation of its vertices. The
spanning acyclic subgraph of T corresponding to π, denoted by Lπ(T ), consists of all the
edges (i, j) ∈ E(T ) with π(i) < π(j). We can visualize all the edges of Lπ(T ) as going
from “left to right”. We say that a subgraph of T is covered by the permutation π if it is
a subgraph of Lπ(T ).

Let H be a fixed acyclic graph with at least two edges (hence at least three vertices; we
also assume that H has no isolated vertices as these can be discarded in our problem). A
subgraph of T isomorphic to H is called an H-copy of T . What will then be the minimum
number of permutations required to cover all H-copies of T? Thus, we seek the smallest
integer t such that for every tournament T with n vertices the following holds: There are
permutations π1, . . . , πt ∈ Sn such that each H-copy of T is covered by at least one of
the πi. We denote this t by τH(n). Trivially, τH(n) exists as we can just consider all n!
permutations and use the fact that each H-copy, being an acyclic graph, has a topological
ordering. Hence our main problem is the following.

Problem 1. Let H be an acyclic graph with at least two edges. Determine τH(n).

1.1 Sequence covering arrays as upper bounds for τH(n)

Reasonable upper bounds for τH(n) can rather easily be obtained by considering a related
well-studied problem in the setting of permutations. Let Tk denote the transitive tour-
nament on k vertices. An (n, k)-sequence covering array (SCA) is a set of permutations
X ⊆ Sn such that each Tk-copy of D(n) is covered by at least one of the elements of X.
Let s(k, n) denote the smallest size of an (n, k)-SCA. Stated otherwise, we wish to find
the smallest set of permutations of [n] such that each sequence of k distinct elements of
[n] is a subsequence of at least one of the permutations.

While trivially s(2, n) = 2 by the earlier observation regarding D(n) (taking any
permutation and its reverse), even the asymptotic value of s(3, n), though well-studied,
is not known. A-priori, for a constant k, it is not entirely obvious that s(k, n) grows
to infinity with n, as each permutation contains

(
n
k

)
sequences of order k and there are

only k!
(
n
k

)
possible sequences to cover. However, more is known than this trivial k! lower

bound for s(k, n). The first to provide nontrivial bounds for s(k, n) was Spencer [14]
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and various improvements on the upper and lower bounds were sequentially obtained by
Ishigami [9, 10], Füredi [7], Radhakrishnan [13], and Tarui [16]. See also the paper [4]
for further results and references to many applications. The (asymptotic) state of the art
regarding s(3, n) is the upper bound of Tarui [16] and the lower bound of Füredi [7]:

2

log e
log n 6 s(3, n) 6 (1 + on(1))2 log n .1 (1)

We note that the limit s(3, n)/ log n exists [7, 16], but its value is not known. For gen-
eral fixed k, the best asymptotic upper and lower bounds are that of Spencer [14] and
Radhakrishnan [13], respectively:

(1− on(1))
(k − 1)!

log e
log n 6 s(k, n) 6

k

log( k!
k!−1)

log n . (2)

It is immediate to see that if H has k vertices, then τH(n) 6 s(k, n), hence (1) and (2)
serve as upper bounds for τH(n) when H has three vertices or, respectively, k vertices.

Another known result is an upper bound for arguably the simplest nontrivial case
H = S+

2 , the directed out-star on two edges. Namely, H has vertices a, b, c and edges
(a, b), (a, c) (by symmetry, the same result holds for the in-star on two edges S−2 ). This
nontrivial upper bound, proved in [8, 14] is

τS+
2

(n) 6 log log n+

(
1

2
+ on(1)

)
log log log n . (3)

In fact, their construction is universal in the sense that the same construction holds for
all tournaments, as it even holds for covering all the S+

2 of D(n). The permutations in the
construction are such that for any a ∈ [n] and any two distinct elements b, c ∈ [n] \ {a}
there is a permutation in which a appears before b and before c. Their construction is
asymptotically tight for this latter requirement.

1.2 New results on τH(n)

Our first main result consists of lower bounds for τH(n) for each acyclic H on three
vertices. Thus we consider τH(n) for each H ∈ {S+

2 , S
−
2 , P3, T3} where P3 is the directed

path on two edges and T3 is the transitive tournament on three vertices.

Theorem 2. The following holds for all sufficiently large n.

1. For H ∈ {S+
2 , S

−
2 } we have that log log n− log log log n− 2 6 τH(n) so with (3) we

obtain:

log log n− log log log n− 2 6 τH(n) 6 log log n+

(
1

2
+ on(1)

)
log log log n .

1Unless stated otherwise, all logarithms are in base 2.
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2. For H ∈ {P3, T3} we have that log n/(3 + log log n) 6 τH(n) so with (1) we obtain:

log n

3 + log log n
6 τH(n) 6 (1 + on(1))2 log n .

Observe that for H ∈ {S+
2 , S

−
2 } the upper and lower bounds stated in Theorem 2

are tight up to the triply logarithmic error term. For H ∈ {P3, T3} the upper and lower
bounds in Theorem 2 are close, but not tight: the ratio between them is only doubly
logarithmic. Compare this to the upper and lower bounds for s(3, n) given in (1). The
latter are also not tight but the ratio there is a constant. Indeed, it is plausible that
covering all T3 (or all P3) of any given n-vertex tournament requires significantly fewer
elements than the number of elements required to cover all T3 of D(n).

Theorem 2 shows that τH(n) exhibits a dichotomy for acyclic graphs with at most three
vertices. It is either doubly logarithmic in the case of {S+

2 , S
−
2 } or else it is essentially

logarithmic (meaning it is Ω(log n/ log log n) and O(log n)) in the case of {P3, T3} or else,
if H is just a single edge, then it is a constant.

We next consider the general case of arbitrary fixed H. First notice that if H ′ is a
(not necessarily induced) subgraph of H, the inequality τH′(n) 6 τH(n) is not obvious
and may not be true. Nevertheless, we can prove the following lower bound based on
whether H has a subgraph consisting of two edges or a subgraph which is a directed path
with two edges.

Theorem 3. Let H be an acyclic graph with at least two edges. Then, for all n sufficiently
large, it holds that τH(n) > log log n − log log log n − 2. Furthermore, if H contains a
directed path on two edges, then τH(n) > log n/(3 + log log n).

So, we see from Theorem 3 and from (2) that τH(n) is essentially logarithmic if H
contains a directed path on two edges. In any case, already the existence of two edges
(even if H itself consists of just two disjoint edges) implies a doubly logarithmic lower
bound. Regarding graphs H which contain at least two edges and no directed path on two
edges (notice that such graphs are always bipartite), we do not know whether it is always
true that τH(n) is just doubly logarithmic, except for the following case. Let S+

k (S−k )
denote the directed out-star (in-star) on k edges. Recall that we have proved the doubly
logarithmic behavior of S+

2 and S−2 in Theorem 2. Generalizing (3), it has been proved by
Hajnal and Spencer [14] that τS+

k
(n) = τS−k

(n) = O(log log n). So, together with Theorem

3, we have that τS+
k

(n) = τS−k
(n) = Θ(log log n). The next theorem exhibits another basic

family of acyclic graphs for which the right order of magnitude of τH(n) is determined.
Let Pk denote the directed path on k vertices.

Theorem 4. For all k > 4, τPk(n) = Θ(log n).

The theorems stated in this subsection are proved in Section 2.
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1.3 3-tournaments

Recall that Kk
n, the complete k-graph on n vertices, consists of vertex set [n] and edge

set
(
[n]
k

)
. Just as tournaments are orientations of Kn, k-tournaments are orientations of

Kk
n. That is, each edge of Kk

n is given a unique total order. An oriented k-graph is
a subgraph of a k-tournament. We refer to [2] for more information and references on
k-tournaments. Let D(n, k) denote the complete directed k-graph on n vertices, namely
each k-set of [n] corresponds to k! edges in D(n, k), one edge for each possible total
order. Observe that D(n) = D(n, 2) and that every k-tournament with n vertices is
a spanning sub(hyper)graph of D(n, k). As the edge set of D(n, k) is the set of all
sequences of k distinct elements of [n] (and hence corresponds bijectively to the Tk-copies
of D(n)) we have that s(k, n) can be defined equivalently as the smallest number of
permutations that cover all edges of D(n, k) (here an edge is covered by a permutation if
it is a subsequence of that permutation). Let τ(k, n) be the smallest integer t such that
the edges of each k-tournament with n vertices can be covered with t permutations (or,
equivalently, covered by t oriented spanning acyclic k-graphs2). Hence, τ(k, n) 6 s(k, n)
so (1) and (2) respectively serve as upper bounds for τ(3, n) and τ(k, n). But is τ(k, n)
significantly smaller than s(k, n)? We conjecture it is not.

Conjecture 5. There is an absolute constant Ck such that s(k, n) 6 τ(k, n) + Ck.

At least for k = 3, the stipulated closeness of both parameters is supported by the
following result, which shows that the lower bound for s(3, n) given in (1) holds asymp-
totically in a much more restrictive setting, and can be generalized to most oriented
3-graphs. To state the result in its general form, we consider the analogous model of the
Erdős-Rényi random graph to oriented k-graphs. Let ~Gk(n, p) be the probability space of
oriented k-graphs on vertex set [n] where each k-set of [n] is chosen independently to be
an edge with probability p and, once chosen, its orientation is chosen uniformly among all
possible k! total orders. Notice that when p = 1 this amounts to the uniform distribution
on labeled n-vertex k-tournaments. For an oriented k-graph, let τ(G) denote the smallest
number of permutations that cover all the edges of G.

Theorem 6. Fix 0 6 α < 1 and let G ∼ ~G3(n, n
−α).

Pr

[
τ(G) 6 (1− α)

2

log e
log n− 9 log log n

]
= on(1) .

In particular, for all sufficiently large n,

τ(3, n) >
2

log e
log n− 9 log log n .

Theorem 6 is proved in Section 3. The final section of the paper consists of some open
problems and concluding remarks among which is a simple improvement of the upper
bound for s(k, n) given in (2).

2Here we say that an oriented k-graph is acyclic if there is a total order of its vertex set which is
respected by each edge; we note that there are other notions of acyclicity for oriented k-graphs.
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2 Covering the acyclic subgraphs of a tournament

2.1 Covering acyclic graphs on three vertices

As mentioned in the introduction, the upper bounds stated in Theorem 2 are known. The
following three lemmata together yield the required lower bounds.

Lemma 7. log log n− log log log n− 2 6 τS+
2

(n).

Proof. Let ~G(n) be the symmetric probability space of all labeled tournaments on vertex

set [n] and let G = ([n], E) ∼ ~G(n).
Consider some X ⊂ [n] of 3k vertices, and let its vertices be v1, . . . , v3k where vi < vi+1

for i = 1, . . . , 3k − 1. We compute the probability of the event BX , that G[X] (the
subtournament of G induced by X) has no three vertices va, vb, vc with a < b < c such
that (vb, va) ∈ E and (vb, vc) ∈ E. In other words, for BX to occur, G[X] must have
no subgraph isomorphic to S+

2 where the root vertex is smaller than one leaf and larger
than another leaf. To estimate BX , let Bi,j denote the following event, defined for each
i = 1, . . . , k and for each j = 1, . . . , k: Bi,j occurs if (vk+j, vi) ∈ E and (vk+j, v2k+i) ∈ E.
Clearly Pr[Bi,j] = 1

4
and the k2 events Bi,j are independent since they involve distinct

edges. Finally, if BX occurs, then none of the Bi,j occur. Hence,

Pr[BX ] 6

(
3

4

)k2
.

In particular, choosing k = b8 log nc

Pr
[
∪X⊂[n] , |X|=3kBX

]
6

(
n

3k

)(
3

4

)k2
< n3k

(
3

4

)k2
< 1

where we have used the fact that b8 log nc > 3
log(4/3)

log n.

As this shows, we can now fix a tournament G = ([n], E) with the property P that
for each X ⊂ [n] of size b24 log nc, the subtournament G[X] has an S+

2 where the root
vertex is smaller than one leaf and larger than another leaf.

Assume that n is a double exponent of 2, that is, n = 22t for some nonnegative integer
t. We claim that we need at least t− log(t+5) permutations of Sn to cover all copies of S+

2

of G. In order to see this, suppose π1, . . . , πm are permutations with m 6 t−log(t+5). By
a theorem of Erdős and Szekeres [6], π1 has a monotone subsequence of length

√
n = 22t−1

.
As observed by de Bruijn (see [12]), by repeatedly applying this theorem, there is a subset
X of 22t−m vertices that appears as a monotone sequence in each of π1, . . . , πm. Of course,
in some of the permutations it may be monotone increasing while in others it may be
monotone decreasing. But now, by our assumption on m,

22t−m > 22log(t+5)

= 2t+5 = 32 · 2t = 32 log n > 24 log n .

So, by the property P of G, there is an S+
2 in G[X] that is not covered by any of the permu-

tations π1, . . . πm. Hence, we see that τS+
2

(n) > t−log(t+5) > log log n−log(log log n+5).
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If we omit the assumption that n is a double exponent of 2 we can use the largest
number smaller than n which is a double exponent of 2 and consequently obtain that
τS+

2
(n) > log log n− log log log n− 2.

Lemma 8. log n/(3 + log log n) 6 τT3(n).

Proof. As in the previous lemma, let G = ([n], E) ∼ ~G(n). We prove that

Pr

[
τT3(G) 6

log n

3 + log log n

]
= on(1)

where τH(G) is the number of permutations needed to cover all H-copies of G. Let
X ⊂ [n] be a set of vertices. We say that X has the midpoint property, if for any two
vertices u, v ∈ [n] \ X there exists some vertex x ∈ X such that {u, x, v} induce in G a
T3 in which x is the middle vertex. Equivalently, if (u, v) ∈ E, then (u, x), (x, v) ∈ E else
if (v, u) ∈ E, then (v, x), (x, u) ∈ E.

We claim that with high probability there exists X with the midpoint property and
with |X| = b5 log nc − 1. Consider two vertices u, v ∈ [n] \X. Because of symmetry, one
can assume (u, v) ∈ E. For a fixed x ∈ X, the probability that (u, x) /∈ E or (x, v) /∈ E
is 3

4
. Hence, the probability that there does not exist a vertex x ∈ X such that {u, x, v}

induce a transitive triple in which x is the middle vertex is (3/4)|X|. Here we use the
fact that the probability of this event is the product of the probabilities of |X| mutually
independent events, each with probability 3

4
. As there are less than

(
n
2

)
pairs u, v to

consider, we have that the probability that X does not have the midpoint property is at
most (

n

2

)(
3

4

)|X|
.

So when |X| = b5 log nc − 1, the latter probability is on(1).
We may now fix X with |X| = b5 log nc − 1 satisfying the midpoint property and set

r = |X|+ 1 = b5 log nc. It remains to prove that τT3(G) > logn
3+log logn

. Let π1, . . . , πm be m

permutations of Sn covering all T3-copies of G. To each v ∈ [n]\X we assign an m-vector
v ∈ [r]m as follows. Let pi,1 < pi,2 < · · · < pi,r−1 be the r − 1 locations of the elements of
X in πi, for i = 1 . . . ,m. Also define pi,0 = 0 and pi,r = n+1. Now, set the ith coordinate
of v as follows: v(i) = t if the location of v in πi is before pi,t and after pi,t−1. This defines
v uniquely in [r]m.

We next observe that if u, v ∈ [n] \X are two distinct vertices, then it must be that
u 6= v. Indeed, since X has the midpoint property, there is some x ∈ X such that the
triangle induced by {u, x, v} is a T3 and x is its midpoint vertex. But since each such
triangle is covered, this transitive triple is covered by some permutation πi. Hence, in πi,
the location of x is somewhere between the locations of u and v. In particular, v(i) 6= u(i).

But now, the number of possible vectors is at most rm. As each vertex of [n] \ X is
assigned to a distinct vector, we have that

(5 log n)m > rm > n− |X| > n

2
.
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Thus, we must have m > log n/(3 + log log n). It follows that τT3(n) > log n/(3 +
log log n).

Lemma 9. log n/(3 + log log n) 6 τP3(n).

Proof. The proof is almost identical to the proof of Lemma 8. The only difference is
that for the midpoint property to hold with respect to P3 instead of T3, the respective
probability is 1

2
instead of 3

4
, so we may take |X| to be even slightly smaller than b5 log nc−

1. The rest of the proof carries through identically.

Theorem 2 now follows by Lemmas 7, 8, 9.
It is worth noting that in all the above lemmas, the lower bounds were obtained by

considering random tournaments. Those have the property of being almost regular tour-
naments since the in-degree and out-degree of each vertex are almost the same. One might
stipulate that for every regular or almost regular tournament, the number of permutations
required to cover its 3-vertex acyclic subgraphs grows with n (observe that the number of
each of T3, P3, S

+
2 , S

−
2 in a tournament is determined only by the out-degree sequence of

the tournament, and in particular, for a regular tournament, it is Θ(n3) for each). This,
however, is false as there are arbitrarily large regular tournaments for which τT3(G) = 2.
Indeed, suppose n is odd and consider the regular tournament Rn on vertex set [n] where
(i, j) is an edge for j = i+ 1, . . . , i+ (n− 1)/2 (indices taken modulo n). It is immediate
to verify that the two permutations 1, 2 . . . , n and (n+ 1)/2, . . . , n, 1, . . . , (n− 1)/2 cover
all the T3 of Rn, so τT3(Rn) = 2.

Another interesting family of tournaments that contain some almost regular tourna-
ments but for which τP3(G) is bounded by a constant are r-majority tournaments. These
tournaments, which have applications in social choice theory, were studied by several re-
searchers (see [1] and the references therein). For an odd positive integer r, consider a set
of r permutations of [n]. The r-majority tournament on vertex set [n] generated by the
given set of permutations is defined as follows. Set (i, j) as an edge if i appears before j
in more than half of the permutations. Now, it is easy to verify that if G is an r-majority
tournament, then τP3(G) 6 r, and the permutations proving this upper bound are the
permutations that generate G. Indeed suppose (i, j) and (j, k) are two edges of G. Then
in at least (r+1)/2 permutations i appears before j and in a least (r+1)/2 permutations
j appears before k, so in at least one permutation i appears before j and j appears before
k. Hence, every P3 is covered by some permutation.

2.2 Larger H

Here we prove Theorem 3. To this end, the following lemma is useful.

Lemma 10. Let H be a given acyclic graph and let S be an induced subgraph of H. Then
the probability that in a random n-vertex tournament each copy of S is contained in some
copy of H is 1− on(1). Hence, with probability 1− on(1) it holds that τH(G) > τS(G).

Proof. Let r be a fixed positive integer. Consider a random tournament G = ([n], E) ∼
~G(n). For any two disjoint (possibly empty) sets R and Q of |R|+ |Q| 6 r vertices of G

the electronic journal of combinatorics 27(4) (2020), #P4.13 8



there are, with probability 1− on(1), Θ(n) vertices k ∈ [n] \ (R ∪Q) such that (i, k) ∈ E
for each i ∈ R, and (k, j) ∈ E for each j ∈ Q. Indeed, fixing R and Q, the number of
such vertices is the binomial distribution B(n−|R|− |Q|, (1/2)|R|+|Q|), and there are only
O(nr) choices of pairs (R,Q) to consider. By Chernoff’s large deviation approximation of
the Binomial distribution applied to the union of O(nr) events, we have with probability
1 − on(1), for any such sets R and Q, there are at least such 2r + r vertices k so that
(i, k) ∈ E for each i ∈ R, and (k, j) ∈ E for each j ∈ Q. Hence, from now on we will
assume that G has this latter property, denoting it P .

Let r denote the number of vertices of H. As H is acyclic, it has a total ordering
of its vertices, say h1, . . . , hr, where if (hi, hj) is an edge of H, then i < j. Since S is a
subgraph of H with s vertices, the vertex set of S is some subsequence hS1 , . . . , hSs with
the property that if (hSi , hSj) is an edge of S, then Si < Sj. Suppose that X is a subgraph
of G that is isomorphic to S, on vertex set {x1, . . . , xs}, such that the mapping hSi → xi
is an embedding of S. We now construct a copy of H in G that contains X.

Consider first the vertex x1 and recall that hS1 → x1. Pick an arbitrary set K of at
least 2S1−2 vertices that are in-neighbors to all the vertices {x1, . . . , xs}. We know such a
K exists as we may use property P with R = ∅ and Q = {x1, . . . , xs}. It is well-known
[15] that in any tournament, every set of 2t−1 vertices contains a transitive tournament
on t vertices. Hence, we can pick S1 − 1 vertices of K that form a transitive tournament
on S1−1 vertices. For each j, we let the jth vertex of this transitive tournament play the
role of vertex hj of H. We now continue the embedding by doing the following procedure
for t = 2, . . . , s. Consider vertex xt. Recall that hSt → xt. Now, if St = St−1 + 1,
there is nothing to do, as there are no vertices to place between xt−1 and xt. Otherwise,
pick an arbitrary set K of at least 2St−St−1−2 vertices of G such that each of them is an
out-neighbor of each of the previously embedded vertices (corresponding to h1, . . . , hSt−1)
and an in-neighbor of each vertex in {xt, xt+1, . . . , xs}, and such that the picked vertices
have not been used in prior stages. Since St − St−1 < r and since there were at most
St−1 previously embedded vertices used in the procedure, Property P of G ensures that
K exists. As before, we can find a transitive tournament of size St − St−1 − 1 vertices
within K. So, we may assign the jth vertex of this transitive tournament to play the
role of vertex hSt−1+j of H. Once we have completed our procedure, we still have to
take care of embedding the vertices that appear after hSs (if there are any). Recall that
hSs → xs. Pick an arbitrary set K of at least 2r−SS−1 vertices that are out-neighbors of
all previously embedded vertices. Hence, we can pick r − Ss vertices of K that form
a transitive tournament on r − Ss vertices. We let the jth vertex of this transitive
tournament play the role of vertex hSs+j of H. By construction, this embedding contains
a copy of H in G which contains X.

Notice that the requirement that S is an induced subgraph of H is important since we
do not have to worry about the directions of edges connecting vertices of X. For example,
if H = T3 and S = P3, then P3 is a subgraph of T3, but not an induced one. But it is
certainly false that every P3 in a random graph is contained in some T3, since it may be
that the P3 induces a cyclic triangle in G.

Let M denote the graph consisting of two independent directed edges, say (a, b), (c, d).
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Computing τM(n) is closely related to the problem of computing the separation dimension
of the complete graph (see [3]). It is easy to adjust the lower bound proof for S+

2 given
in Lemma 7 to the case of M and obtain using a similar proof that τM(n) > log log n −
log log log n− 2. We state this and sketch the proof in the following lemma.

Lemma 11. log log n− log log log n− 2 6 τM(n).

Proof (sketch). Let G = ([n], E) ∼ ~G(n) and consider some X ⊂ [n] of 2k vertices
consisting of v1, . . . , v2k where vi < vi+1 for i = 1, . . . , 2k−1. We compute the probability
of the event BX , that G[X] has no two disjoint edges (va, vb), (vd, vc) with a < b and c < d.
In particular, for Bx to occur it must be that all

(
k−2
2

)
edges induced by {v3, . . . , vk} are

either all from the lower indexed vertex to the higher, or all from the higher to the lower.
Hence,

Pr[BX ] 6

(
1

2

)(k−2
2 )

.

In particular, choosing k = b8 log nc

Pr
[
∪X⊂[n] , |X|=2kBX

]
6

(
n

2k

)(
1

2

)k2/3
< n2k

(
1

2

)k2/3
< 1 .

We can now fix a tournament G = ([n], E) with the property that for each X ⊂ [n] of
size b16 log nc, the subtournament G[X] has two disjoint edges, where one edge is from
a smaller vertex to a larger and the other edge is from a larger vertex to a smaller. The
remainder of the proof is essentially identical to the argument in Lemma 7.

By Lemma 10, and by the random tournament constructions in Lemmas 7,8,9,11, we
have the following corollary, which is a restatement of Theorem 3.

Corollary 12. Let H be an acyclic graph with at least two edges. Then, for all n suffi-
ciently large, it holds that τH(n) > log log n− log log log n−2. Furthermore, if H contains
a directed path on at least two edges, then τH(n) > log n/(3 + log log n).

Proof. Since H is an acyclic graph with at least two edges, it contains as an induced
subgraph some graph K ∈ {S+

2 , S
−
2 ,M, P3, T3}. By Lemma 10, if n is sufficiently large,

then a random graph G almost surely satisfies τH(G) > τK(G). But by the proofs of
Lemma 7 for K ∈ {S+

2 , S
−
2 }, Lemma 8 for K = T3, Lemma 9 for K = P3, and Lemma 11

for K = M , we have that almost surely τK(G) > log log n − log log log n − 2 in the case
where K ∈ {S+

2 , S
−
2 ,M} and τK(G) > log n/(3+log log n) in the case where K ∈ {P3, T3}.

Notice that the latter case holds whenever H contains a directed path on at least two
edges.

2.3 Paths

Proof of Theorem 4. Since τPk(n) 6 s(k, n), the upper bound in (2) implies τPk(n) =
O(log n). The lower bound construction proceeds as follows. For simplicity, we shall
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assume that n is an odd multiple of 3, as this does not affect the asymptotic claim since
τPk(n) is monotone in n. Recall again the regular tournament Rn on vertex set [n] where
(i, j) is an edge for j = i + 1, . . . , i + (n − 1)/2 (indices taken modulo n). Let u = n/3,
v = 2n/3 and w = n. We claim that for any two vertices x, y ∈ [n] \ {u, v, w} there is a
Pk in Rn containing both x and y, and the sub-path between x and y passes through at
least one of u, v, w. Indeed, we can assume without loss of generality that 1 6 x < n/3
by the cyclic structure of Rn and by the equidistant choice of u, v, w. Suppose first that
n/3 < y < 2n/3. Then take the path (x, u, y) which is a P3. We can make it into a Pk
by arbitrarily continuing the path from y with an additional path of k − 3 vertices (this
is trivially possible if, say, n > 3k). Suppose next that 2n/3 < y < n. Then take the
path (y, w, x) which is a P3 and continue as in the previous case to construct a Pk. So, we
remain with the case where 1 < y < n/3. Assume without loss of generality that x < y.
If y > n/6 then take the path (y, v, w, x) which is a P4 and continue if necessary to create
a Pk. If y < n/6 then take the path (y, u, v, x) which is a P4 and continue if necessary to
create a Pk.

We can now use a similar idea as in the proof of Lemma 8. Let π1, . . . , πm be m
permutations of Sn covering all the Pk subgraphs of Rn. To each x ∈ [n] \ {u, v, w} we
assign an m-vector x ∈ [4]m as follows. Let pi,1 < pi,2 < pi,3 be the three locations of
u, v, w in πi, for i = 1 . . . ,m. Also define pi,0 = 0 and pi,4 = n + 1. Now, set the ith
coordinate of x as follows: x(i) = t if the location of x in πi is before pi,t and after pi,t−1.
This defines x uniquely in [4]m.

We next observe that if x, y ∈ [n] \ {u, v, w} are two distinct vertices, then it must be
that x 6= y. Indeed, there is a Pk in Rn which contains x, y and the sub-path between
x and y passes through at least one of u, v, w. But since each Pk is covered, then this
particular Pk is covered by some permutation πi. Hence, in πi, the location of at least one
of {u, v, w} is somewhere between the locations of x and y. In particular, x(i) 6= y(i).

But now, the number of possible vectors is at most 4m. As each vertex of [n]\{u, v, w}
is assigned to a distinct vector, we have that 4m > n − 3. Thus, we must have m >
log(n− 3)/2. It follows that τPk(n) > log(n− 3)/2.

3 Covering the edges of 3-tournaments and random oriented
3-graphs

In this section we prove Theorem 6. Our main ingredient will be the method of hypergraph
entropy used by Füredi [7] to prove his lower bound for s(3, n). However, while the proof
for s(3, n) uses the fact that for each vertex x and for any two additional vertices u, v,
there is an edge of D(n, 3) consisting of u, v, x where x is the middle vertex, this is of

course not so if we consider elements of ~G3(n, 1) (3-tournaments) moreover elements of
~G3(n, n

−α).
To overcome this obstacle, we first need to prove that a certain property holds for

G ∼ ~G3(n, n
−α) with high probability. Recall that G is an oriented 3-graph so every 3-set

of [n] either does not induce any edge or induces a single directed edge. We say that a
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vertex x ∈ [n] has the k-midpoint property if for any K ⊂ [n] \ {x} with |K| = k, there
exists an edge of G of the form (u, x, v) where u, v ∈ K.

We now claim that G ∼ ~G3(n, n
−α) has the property that every vertex of G has the

k-midpoint property for k = b6nα log nc, with high probability. Indeed, let x ∈ [n] be an
arbitrary vertex and let K ⊂ [n]\{x} be an arbitrary set of size k. What is the probability
of having no edge of the form (u, x, v) where u, v ∈ K? For two given vertices u, v ∈ K,
the probability of having one of the edges (u, x, v) or (v, x, u) in G is precisely n−α/3, since
we must first make sure that the 3-set u, x, v induces an edge, and conditioning on that,
we must ensure that the direction of that edge puts x in the middle. So, the probability

of having no edge of the form (u, x, v) where u, v ∈ K is (1 − n−α/3)(
k
2). Hence, the

probability that every vertex of G has the k-midpoint property is at least

1− n ·
(
n− 1

k

)(
1− n−α

3

)(k2)
> 1− 1

n
.

Indeed, the last inequality holds for k = b6nα log nc as for this value we have that

n2 ·
(
n− 1

k

)(
1− n−α

3

)(k2)
< nk+2

(
1− n−α

3

)(k2)

< nk+2e−
k(k−1)
6nα

<
(

21.1 logn− k−1
5nα

)k
< (20)k = 1 .

So, for the remainder of the proof we may consider a given oriented 3-graph G with
the property that every vertex of G has the k-midpoint property for k = b6nα log nc. We
prove that for such a graph,

τ(G) > (1− α)
2

log e
log n− 9 log log n .

Consider the entropy function H : [0, 1] → [0, 1] defined as H(y) = −y log(y) − (1 −
y) log(1− y) for y ∈ (0, 1) and H(0) = H(1) = 0. A multihypergraph F is a collection of
(possibly empty) subsets of a vertex set V where with each subset (edge) there is associated
a positive integer which is its multiplicity (i.e. the number of times the edge appears). Let
µ(F) denote the maximum multiplicity of an edge of F . The following lemma was proved
for µ(F) = 1 by Kleitman, Shearer, and Sturtevant [11], and as observed by Füredi in [7],
the same proof holds for larger µ.

Lemma 13. [11, 7] Let F be a multihypergraph with m edges on vertex set V . For each
x ∈ V , let p(x) denote the fraction of the edges that contain x. Then,

∑
x∈V H(p(x)) >

log(m/µ(F)).

The argument in Füredi’s lower bound proof for s(3, n) proceeds as follows. Suppose
π1, . . . , πr are permutations of [n]. For each x ∈ [n], define a multihypergraph Fx on vertex
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set [r] as follows. For each v ∈ [n]\{x} there is an edge of Fx consisting of all indices i such
that πi(v) < πi(x). Observe that this hypergraph has m = n− 1 edges. For each i ∈ [r],
the number of edges containing i is precisely πi(x)− 1. Hence, p(i) = (πi(x)− 1)/(n− 1).
By Lemma 13 (see [7]) we have that

log
n− 1

µ(Fx)
6

r∑
i=1

H(
πi(x)− 1

n− 1
) .

Now, let ` = maxx∈[n] µ(Fx). So the last inequality remains valid if we replace µ(Fx) with
`. Summing up this revised inequality over all vertices x ∈ [n] and using some calculus,
Füredi showed that

n log
n− 1

`
< r(n− 1)

log e

2

which in turn implies that ` > (n− 1) exp(−r(n− 1)/(2n)).
But what is ` in our case? Suppose that the π1, . . . , πr cover all edges of G. We claim

that for each vertex x we have µ(Fx) 6 b6nα log nc. Indeed, recall that each edge of Fx
corresponds to some v ∈ [n] \ {x} and consists of all permutations in which v precedes
x. So having µ(Fx) multiple edges means that there are µ(Fx) vertices of G that appear
in each permutation either all before x or all after x. But since we assume that x has
the b6nα log nc-midpoint property, we must have that µ(Fx) 6 b6nα log nc. In particular,
` 6 6nα log n. Thus,

6nα log n > (n− 1)e−
r(n−1)

2n > ne−
r
2 .

It follows that r > (1− α) 2
log e

log n− 9 log log n.

4 Concluding remarks and open problems

There are a few natural open problems that may be more accessible than Problem 1 in
its full general form.

Problem 14. Determine a function f(n) such that τP3(n) = Θ(f(n)).

Theorem 2 shows that f(n) = Ω(log n/ log log n) and (1) shows that f(n) = O(log n).

Problem 15. Determine a function fH(n) such that τH(n) = Θ(fH(n)) for acyclic graphs
H with at least two edges that do not contain P3 as a subgraph. Can fH(n) be the same
function for all such H (with the possible exception of the directed in-star and directed
out-star)?

Currently, we know the answer to Problem 15 only for the directed out-star and
directed in-star, in which case it is doubly logarithmic. Also recall that by Theorem 3 we
must have fH(n) = Ω(log log n) for any H other than the single edge.

We end this paper with a simple improvement of the upper bound for s(k, n). It
follows from an application of the symmetric case of the Lovász Local Lemma and can be
presented in a more general form as follows. Suppose that G is a spanning subhypergraph
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of D(n, k). Namely, it only contains some ordered k-sets of [n], not necessarily all of them.
The degree of a vertex of G is the number of edges of G containing that vertex. As a
special case, notice that the degree of every vertex of D(n, k) is k!

(
n−1
k−1

)
= Θ(nk−1).

Proposition 16. Let G be a directed k-graph with n vertices and with maximum degree
at most d. Then τ(G) 6 ln 2 ·k! log(edk). In particular, s(k, n) 6 Ck +ln 2 ·k!(k−1) log n
where Ck is a constant that only depends on k.

Proof. LetG be a directed k-graph on vertex set [n] and with maximum degree d. Consider
a set S of m independently chosen random permutations of Sn (choices made uniformly
with repetition). For an edge e of G, let Ae be the event that e is not covered by S.
Then, Pr[Ae] = (1 − 1/k!)m. Now, as each v ∈ [n] has degree at most d, the event Ae
is independent of all other events but at most kd. By the Lovász Local Lemma [5], if it
holds that (

1− 1

k!

)m
· e · kd < 1 (4)

then with positive probability, S is such that none of the events hold. In other words,
there exists a set of m elements of Sn that covers all edges of G, showing that τ(G) 6 m.
Now, when m > ln 2 · k! log(edk), then (4) holds. Therefore, τ(G) 6 ln 2 · k! log(edk).
Observing that for D(n, k) we have d = k!

(
n−1
k−1

)
< knk−1 we have that s(k, n) 6 ln 2 ·

k!(k − 1) log n+ Ck where Ck 6 ln 2 · k! log(ek2).

For every fixed k > 3, the upper bound for s(k, n) given in Proposition 16 is better
than the upper bound in (2) by a constant factor depending on k (but notice that for k = 3
we still have a better upper bound in (1)). For example, if k = 4, the bound for s(k, n)
attained by Proposition 16, divided by log n, approaches 72 ln 2 ≈ 49.9. Comparatively,
the constant attained by the union bound probabilistic argument in [14] giving the upper
bound in (2) is 4/ log(24/23) ≈ 65.14.
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