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Abstract

For every fixed k ≥ 4, it is proved that if an n-vertex directed graph has at most t pairwise

arc-disjoint directed k-cycles, then there exists a set of at most 2
3kt+ o(n2) arcs that meets all

directed k-cycles and that the set of k-cycles admits a fractional cover of value at most 2
3kt. It

is also proved that the ratio 2
3k cannot be improved to a constant smaller than k

2 . For k = 5

the constant 2k/3 is improved to 25/8 and for k = 3 it was recently shown by Cooper et al.

that the constant can be taken to be 9/5. The result implies a deterministic polynomial time
2
3k-approximation algorithm for the directed k-cycle cover problem, improving upon a previous

(k−1)-approximation algorithm of Kortsarz et al.

More generally, for every directed graph H we introduce a graph parameter f(H) for which

it is proved that if an n-vertex directed graph has at most t pairwise arc-disjoint H-copies,

then there exists a set of at most f(H)t + o(n2) arcs that meets all H-copies and that the

set of H-copies admits a fractional cover of value at most f(H)t. It is shown that for almost

all H it holds that f(H) ≈ |E(H)|/2 and that for every k-vertex tournament H it holds that

f(H) ≤ ⌊k2/4⌋.
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1 Introduction

Let H be a directed or undirected graph. For a directed (or undirected) multigraph G, let νH(G)

denote the maximum number of pairwise arc-disjoint (edge-disjoint) copies of H in G and let τH(G)

denote the minimum number of arcs (edges) whose removal from G results in a subgraph with no

copies of H. The fractional versions of these parameters (see Section 2 for a definition) are denoted

by ν∗H(G) and τ∗H(G), respectively. It is readily observed that τH(G) ≥ τ∗H(G) = ν∗H(G) ≥ νH(G)

and that τH(G) ≤ |E(H)|νH(G). These parameters can also be naturally extended to the weighted

setting where each arc (edge) of G is assigned a non-negative weight (see Section 2 for a definition).

The undirected case has substantial literature. The starting point of these problems is the

well-known and yet unsolved conjecture of Tuza [14] asserting that τC3(G) ≤ 2νC3(G) for every
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undirected graph G. Stated equivalently, the conjecture asserts that if a graph has at most t

pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most 2t edges.

The best known upper bound is by Haxell [8] who proved that τC3(G) ≤ 2.87νC3(G). Krivelevich

[11] proved a fractional version of Tuza’s conjecture, namely that τC3(G) ≤ 2ν∗C3
(G) (he also proved

that τ∗C3
(G) ≤ 2νC3(G)). It was later observed in [18] that using a method of Haxell and Rödl

[9], Krivelevich’s result implies that Tuza’s conjecture asymptotically holds in the dense setting,

specifically τC3(G) ≤ 2νC3(G) + o(n2) where n is the number of the vertices of G. There are

examples showing that the constant 2 in Tuza’s conjecture cannot be replaced with a smaller one,

even in the dense setting [3].

The aforementioned results concerning C3 have some nontrivial generalizations to additional

graphs. In [18] the author proved that τKk
(G) ≤ ⌊k2/4⌋ν∗Kk

(G) and that τKk
(G) ≤ ⌊k2/4⌋νKk

(G)+

o(n2). This is presently the best known upper bound for the case of Kk. Kortsarz, Langberg, and

Nutov [10] proved that τCk
(G) ≤ (k − 1)ν∗Ck

(G). Their main motivation came from the related

well-known natural optimization problem.

Definition 1.1 (The H-cover problem). Let H be a fixed (directed) graph. Given a (directed) graph

G, find a minimum size subset of edges (arcs) of G whose removal results in an H-free subgraph of

G.

It is well-known [16] that H-cover is NP-hard already for some small H (e.g. H = K3) thus we

seek a polynomial time approximation algorithm. One may similarly define the H-cover problem

in the weighted setting where the goal is to find a subset of edges (arcs) that covers all H-copies

and whose total weight is the minimum possible. The proof in [10], as well as Krivelevich’s proof

for C3, give a polynomial time (k−1)-approximation algorithm for Ck-cover. Similarly, the proof

in [18] can be shown to give a polynomial time ⌊k2/4⌋-approximation algorithm for Kk-cover.

In this paper we consider the directed case, which has recently gained attention. Already when

posing his conjecture, Tuza [14] asked whether τ−→
C3
(D) ≤ 2ν−→

C3
(D) where

−→
Ck denotes the directed

cycle on k vertices and D is a directed graph. McDonald, Puleo and Tennenhouse [12] answered

Tuza’s question affirmatively proving that τ−→
C3
(D) ≤ 2ν−→

C3
(D) − 1 for any directed multigraph D.

In fact, they conjectured that a significantly stronger variant of Tuza’s conjecture holds in the
−→
C3

case. Specifically, they conjectured that τ−→
C3
(D) ≤ 1.5ν−→

C3
(D) for any directed multigraph D. They

also gave an example showing that if true, the constant 1.5 is best possible. Recently, Cooper

et al. [5] proved that the fractional version for
−→
C3 satisfies a factor better than 2. Specifically,

τ−→
C3
(D) ≤ 1.8ν∗−→

C3
(D) for any arc-weighted directed multigraph D. As in the undirected cases

mentioned above, this also implies that τ−→
C3
(D) ≤ 1.8ν−→

C3
(D) + o(n2) for any unweighted directed

graph D. In their paper [10] mentioned above, Kortsarz, Langberg, and Nutov stated and showed

that τ−→
Ck

(D) ≤ (k − 1)ν−→
Ck

(D) for all k ≥ 3 and that the
−→
Ck-cover problem admits a polynomial

time (k−1)-approximation algorithm.
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Our main result gives a general upper bound for τH(D) in terms of ν∗H(D) that applies to any

fixed directed graph H and to any directed weighted multigraph D. However, as a special case

of our result implies an improvement of the aforementioned result for
−→
Ck for all k ≥ 4, we prefer

to first state our results for directed k-cycles. To simplify some notation we use the subscript k

instead of the subscript
−→
Ck in the parameter definitions.

Theorem 1.2. If D is an arc-weighted directed multigraph, then τk(D) ≤ (2k/3)ν∗k(D). For k = 5

we further have τ5(D) ≤ (25/8)ν∗5(D).

Note that for k = 3 the result in [5] gives a better constant, but already for k ≥ 4 this improves

upon the state of the art. Our proof implies a deterministic approximation algorithm.

Corollary 1.3. The
−→
Ck-cover problem (also in the weighted multigraph setting) admits a deter-

ministic polynomial time (2k/3)-approximation algorithm. For k = 5 the approximation ratio is

25/8.

As in [5], this will also imply a non-fractional result in the dense setting.

Corollary 1.4. If D is an n-vertex directed graph, then τk(D) ≤ (2k/3)νk(D)+o(n2) and τ5(D) ≤
(25/8)ν5(D) + o(n2).

Given Theorem 1.2 and its corollaries, it is of interest to ask whether the constant 2k/3 (and

25/8 when k = 5) can be improved. We conjecture that it can.

Conjecture 1.5. Let k ≥ 3 be fixed. For all n sufficiently large, if D is an n-vertex directed graph,

then τk(D) ≤ (k/2)νk(D).

Note that the case k = 3 of Conjecture 1.5 is the aforementioned conjecture of McDonald, Puleo

and Tennenhouse [12]. The constant k/2 in Conjecture 1.5 cannot be made smaller. In fact, it

cannot be made smaller even if the host graph is a regular tournament.

Theorem 1.6. Let k ≥ 3 be fixed. For all n sufficiently large satisfying n ≡ 1 (mod 2k) there is a

regular n-vertex tournament T such that νk(T ) = ν∗k(T ) = n(n− 1)/2k and τk(T ) = n2/4− o(n2).

Generalizing Theorem 1.2 to arbitraryH requires introducing a graph parameter. For a directed

graph L, the blowup of L, denoted by B(L), is obtained by replacing each vertex v ∈ V (L) with a

countably infinite independent set Iv, and having all possible arcs from Ia to Ib whenever (a, b) ∈
E(L). Let discH(L) denote the minimum number of arcs that should be added to B(L) so that a

copy of H is obtained. Let

f(H,L) = max

{
|E(H)|

(
1− |E(L)|

|V (L)|2

)
, |E(H)| − discH(L)

}
(1)

f(H) = inf
L

f(H,L) (2)
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where the infimum is taken over all nonempty directed graphs L. Notice that f(H) is a certain

measure of how much H embeds in a blowup of any possible directed graph. Our main result

follows.

Theorem 1.7. If D is an arc-weighted directed multigraph, then τH(D) ≤ f(H)ν∗H(D).

It is possible to provide good upper bounds, and sometimes determine f(H) for some particular

H or certain families of directed graphs. In fact, in many cases (but not all cases) the infimum

in (2) is a minimum, so that f(H) = f(H,L) is attained by some L. As we show in Section 3,

f(
−→
Ck) = 2k/3 except when k = 2 in which case f(

−→
C2) = 1 or k = 5 in which case f(

−→
C5) = 25/8.

Thus, Theorem 1.2 is a corollary of Theorem 1.7. As another example, f(H) ≤ ⌊k2/4⌋ for all k-

vertex tournaments. As we show, this implies the known undirected results τKk
(G) ≤ ⌊k2/4⌋ν∗Kk

(G)

[11, 18] also for the weighted multigraph setting. In all of these cases, the values are attained by

some L. The following proposition shows that almost all oriented graphs have f(H) no larger than

about half of the size of their arc set.

Proposition 1.8. Let G be an undirected graph with n vertices and Ω(n lnn) edges. Let H be a

randomly chosen orientation of G. Then, asymptotically almost surely, f(H) = (1+on(1))|E(H)|/2.
In particular, τH(D) ≤ (1 + on(1))|E(H)|ν∗H(D)/2 asymptotically almost surely.

Finally, Corollaries 1.3 and 1.4 are, in fact, special cases of the following more general corollaries

of Theorem 1.7.

Corollary 1.9. The problem of determining τH(D) admits a deterministic polynomial time f(H)-

approximation algorithm. For any nonempty directed graph L, the H-cover problem (also in the

weighted multigraph setting) admits a deterministic polynomial time f(H,L)-approximation algo-

rithm. In particular, if f(H) = f(H,L) for some L, then the H-cover problem admits a determin-

istic polynomial time f(H)-approximation algorithm.

Corollary 1.10. If D is an n-vertex directed graph, then τH(D) ≤ f(H)νH(D) + o(n2).

The rest of this paper is organized as follows. Some required definitions and lemma are given

in Section 2. In Section 3 we determine f(H) for k-cycles and some other special directed graphs

and prove Proposition 1.8. The proof of Theorem 1.7 is given in Section 4. Theorem 1.6 is proved

in Section 5.

2 Preliminaries

We set notation used throughout the paper. For a directed (multi)graph D, let V (D) denote its

vertex set and E(D) denote its arc set. Directed graphs are allowed to contain directed cycles

of length 2 and directed multigraphs are also allowed to contain more than one arc in the same
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direction between two vertices. An orientation of an undirected graph is a directed graph obtained

by orienting each edge in one of the possible directions. Equivalently, it is a directed graph with

no directed cycles of length 2. A tournament is an orientation of the complete graph. A directed

graph is acyclic if it has no directed cycles and it is H-free if it has no subgraph that is isomorphic

to H. Let Tk denote the unique transitive (i.e. acyclic) tournament on k vertices.

For a directed graph H we denote by C(H,D) the set of all subgraphs of D isomorphic to H

(namely, the set of H-copies in D). If F ⊆ E(D), then D \ F is the spanning subgraph of D

obtained by removing the arcs in F . If F = {e} we use the shorthand D \ e. We say that D is

arc-weighted if every arc e is assigned a non-negative weight w(e).

A fractional H-packing of an arc-weighted directed multigraph D is a function m : C(H,D) →
[0,∞) such that for every arc e ∈ E(D), the sum of m(X) taken over all H-copies in D that contain

e is at most w(e). The value of m is the sum of m(X) taken over all H-copies. The maximum value

of a fractionalH-packing ofD is denoted by ν∗H(D). IfD is unweighted (equivalently, all arc weights

are 1) and m(X) ∈ {0, 1} for each X ∈ C(H,D) we say that m is an H-packing. The maximum

value of an H-packing of an unweighted directed multigraph D is denoted by νH(D). Equivalently,

νH(D) is the maximum number of pairwise arc-disjoint H-copies in D. Clearly, νH(D) ≤ ν∗H(D)

for every unweighted directed multigraph D.

A fractional H-cover of an arc-weighted directed multigraph D is a function c : E(D) → [0, 1]

such that for each X ∈ C(H,D), the sum of the values of c on the arcs of X is at least 1. The

value of c is the sum of w(e)c(e) taken over all arcs e ∈ E(D). The minimum value of the fractional

H-cover of D is denoted by τ∗H(D). If c(e) ∈ {0, 1} for each e ∈ E(D) we say that c is an H-cover.

The minimum value of an H-cover is denoted by τH(D). Equivalently, τH(D) is the minimum

sum of weights of a set of arcs F such that D \ F is H-free. Clearly, τH(D) ≥ τ∗H(D) for every

arc-weighted directed multigraph D.

Given an arc-weighted directed multigraph D, a minimum value fractional H-cover of D and a

maximal value fractional H-packing of D can be computed in polynomial time by linear program-

ming. Moreover, by linear programming duality, ν∗H(D) = τ∗H(D). In particular, τH(D) ≥ ν∗H(D)

and if D is unweighted then τH(D) ≥ τ∗H(D) = ν∗H(D) ≥ νH(D).

Suppose now that D is an unweighted directed graph. It is not difficult to provide examples

where τH(D) is larger than τ∗H(D) and to provide examples where νH(D) is smaller than ν∗H(D).

However, in a dense setting, the latter pair are always close. The following result of Nutov and

Yuster [13] is a directed version of a result of the author [17] which, in turn is a generalization

of a result of Haxell and Rödl [9] on the difference between a fractional and integral packing in

undirected graphs.

Lemma 2.1. Let H be a fixed directed graph. If D is a directed graph with n vertices, then

ν∗H(D) ≤ νH(D) + o(n2). Furthermore, there exists a polynomial time algorithm that produces an

H-packing of D of size at least ν∗H(D)− o(n2).
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Corollary 1.10 follows immediately from Lemma 2.1 and Theorem 1.7.

3 f(H) and f(H,L)

In this section we consider f(H) and f(H,L); we determine f(H) for certain families of directed

graphs and certain small H and provide some general upper bounds for it. To avoid trivial cases,

we assume that H is a directed graph with at least two arcs and that L is a nonempty directed

graph with r := |V (L)| vertices.

Proposition 3.1. f(H) = |E(H)| if and only if H has no directed path of length 2 and no directed

cycle of length 2.

Proof. Suppose first that H has no directed path of length 2 and no directed cycle of length 2.

Then H is an orientation of an undirected bipartite graph where all arcs are oriented from one

part to the other part. So, H is a subgraph of B(L) and therefore discH(L) = 0 implying that

f(H,L) = |E(H)| and that f(H) = |E(H)|. If H has a directed path of length 2 or a directed

cycle of length 2, then consider L = T2. As B(T2) has no path of length 2 and no directed cycle of

length 2, we have that discH(T2) ≥ 1, and so f(H) ≤ f(H,T2) ≤ max{3
4 |E(H)|, |E(H)| − 1}.

Proposition 3.1 is in sync with Theorem 1.7 in the sense that f(H) in the statement of Theorem

1.7 cannot be replaced by a smaller constant which depends only on H for any given directed graph

H with no directed path of length 2 and no directed cycle of length 2. Indeed, letD be an orientation

of Kn,n where all arcs go from one part to the other and where n ≥ |V (H)|. Recalling that the

Turán number of (undirected) bipartite graphs is o(n2), we have that τH(D) = n2(1− on(1)) while

ν∗H(D) = n2/|E(H)|.

In some cases the infimum in the definition of f(H) is not attained by any L. Although there

are infinitely many examples, the simplest is H =
−→
C2. On the one hand, f(

−→
C2, L) > 1 for any L.

Indeed, if L has a directed cycle of length 2 then f(
−→
C2, L) = 2. Otherwise, disc−→

C2
(L) = 1 and L is

a subgraph of some tournament on r vertices so f(
−→
C2, L) ≥ 2(1− r(r − 1)/2r2) = 1 + 1/r. If L is

a tournament then f(
−→
C2, L) = 1 + 1/r. Taking r to infinity, we have that f(

−→
C2) = 1.

Let γ(H) denote the maximum number of arcs in an acyclic subgraph of H. Equivalently, a

minimum feedback arc set is a set of |E(H)| − γ(H) arcs of H whose removal makes H acyclic. It

is not difficult to show that for every directed graph H, γ(H) ≥ |E(H)|/2 where equality holds if

and only if each pair of vertices of H either induce a directed cycle of length 2 or an empty graph.

Let b(H) be the maximum number of arcs in a bipartite subgraph of H. Clearly b(H) > |E(H)|/2.

Lemma 3.2. |E(H)|/2 ≤ f(H) ≤ min{γ(H) , b(H)} .
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Proof. Let L = Tr where r ≥ |V (H)|. By the definition of γ(H) we have that discH(Tr) =

|E(H)| − γ(H). We therefore have f(H,Tr) = max{|E(H)|(1− r(r − 1)/2r2), γ(H)}. Taking r to

infinity we obtain f(H) ≤ γ(H).

Let L =
−→
C2. By the definition of b(H) we have that discH(

−→
C2) = |E(H)| − b(H). We therefore

have f(H,
−→
C2) = max{|E(H)|(1− 2/4), b(H)} = b(H) whence f(H) ≤ b(H).

For the lower bound, consider any nonempty directed graph L. Consider first the case where L

has a directed cycle of length 2. Since every H has a bipartite subgraph containing at least half of

its arcs, and since any bipartite subgraph of H is a subgraph of B(L) (as L has a directed cycle of

length 2) we have that discH(L) ≤ |E(H)|/2 so f(H,L) ≥ |E(H)|/2. If L has no directed cycle of

length 2 then |E(L)| ≤ r(r − 1)/2 so f(H,L) ≥ |E(H)|(1− r(r − 1)/2r2) ≥ |E(H)|/2.

Proof of Proposition 1.8. Suppose that G is an undirected graph with n vertices and Ω(n lnn)

edges. Let H be obtained by randomly and independently orienting each edge of G. It is well-

known (and a simple exercise to prove) that γ(H) = (1 + on(1))|E(H)|/2 asymptotically almost

surely. By Lemma 3.2 we obtain that asymptotically almost surely, f(H) = (1+on(1))|E(H)|/2.

In some cases, as well as some classes of directed graphs, Lemma 3.2 is far from tight. Consider

the class of directed cycles. Observe that γ(
−→
Ck) = k − 1 and b(

−→
Ck) ≥ k − 1 so Lemma 3.2 (while

tight for k = 2) gives a very poor upper bound for f(
−→
Ck). The following proposition determines

f(
−→
Ck).

Proposition 3.3. For all k ≥ 3 we have f(
−→
Ck) = 2k/3 unless k = 5 where f(

−→
C5) =

25
8 .

Proof. Any directed path in B(Tr) has length at most r−1. So, in order to obtain a directed k-cycle

in B(Tr) one must add at least ⌈k/r⌉ arcs. Thus, disc−→
Ck

(Tr) = ⌈k/r⌉ and therefore f(
−→
Ck, Tr) =

max{k(12 +
1
2r ), k− ⌈k/r⌉} . Using r = 3 we obtain that f(

−→
Ck) ≤ 2k/3 and when k = 5 we can use

r = 4 to obtain f−→
C5

≤ 25
8 .

We prove that the upper bound 2k/3 is tight for all even k ≥ 4, k ̸= 5. A similar argument shows

tightness for the 25/8 bound in the case k = 5. So let k ≥ 4, k ̸= 5 and consider some nonempty

directed graph L. If L has a directed cycle of length 2 then
−→
Ck is a subgraph of B(L) so we have

disc−→
Ck

(L) = 0 and f(
−→
Ck, L) = k. So, we may assume that L is an orientation. If L has a directed

path of length 3 then disc−→
Ck

(L) ≤ ⌈k/4⌉ implying that f(
−→
Ck, L) ≥ k − ⌈k/4⌉ ≥ 2k/3. Otherwise,

the underlying graph of L does not have a K4, so |E(L)| ≤ r2/3 and therefore f(
−→
Ck, L) ≥ 2k/3 as

well.

4 Fractional packing and integral covering

Throughout this section, let H be a given directed graph with at least two arcs. We need the

following simple lemma, analogous to Lemma 3 of [5].
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Lemma 4.1. Let D be an arc-weighted directed multigraph with weight function w, let c : E(D) →
[0, 1] be an optimal fractional H-cover of D, and let α > 0. Suppose that there exists an arc e such

that c(e) ≥ α > 0. If τH(D \ e) ≤ α−1ν∗H(D \ e), then τH(D) ≤ α−1ν∗H(D).

Proof. Since c restricted to E(D) \ {e} is a fractional H-cover of D \ e, it follows that

τ∗H(D \ e) ≤ τ∗H(D)− c(e)w(e) ≤ τ∗H(D)− αw(e) .

In particular, α−1τ∗H(D \ e) + w(e) ≤ α−1τ∗H(D).

By the assumption of the lemma, there exists a set F of arcs of weight at most α−1ν∗H(D \ e) =
α−1τ∗H(D \ e) such that F is an H-cover of D \ e. Since the set F ∪ {e} is an H-cover of D and its

weight is at most α−1τ∗H(D \ e) + w(e) ≤ α−1τ∗H(D) = α−1ν∗H(D), the lemma follows.

Let L be a given nonempty directed graph with r := |V (L)|, ℓ := |E(L)|, and assume that

V (L) = [r]. Let

α =
1

|E(H)| − discH(L)

and observe that 0 < α ≤ 1 since 0 ≤ discH(L) < |E(H)| as L is nonempty.

Lemma 4.2. Let D be an arc-weighted directed multigraph and c : E(D) → [0, 1] be a fractional

H-cover of D such that c(e) < α for every arc e. Let V1, . . . , Vr be a partition of V (D) (some parts

may be empty). Let F be the set of all arcs e = (x, y) with c(e) > 0 and that further satisfy the

following: If x ∈ Vi and y ∈ Vj (possibly i = j) then (i, j) /∈ E(L). Then F is an H-cover of D.

Proof. Let F ∗ be the set of all arcs e = (x, y) that satisfy the following: If x ∈ Vi and y ∈ Vj

(possibly i = j) then (i, j) /∈ E(L). Observe that F ⊆ F ∗ and that e ∈ F ∗ \ F has c(e) = 0.

By the definition of F ∗, the set of arcs E(D) \ F ∗ is a subgraph of B(L). Let X be some H-

copy in D. Then E(X) \ F ∗ is a subgraph of B(L), so by the definition of discH(L), we have

that |E(X) ∩ F ∗| ≥ discH(L). Since c(e) < α for every arc e, it cannot be that discH(L) arcs

of E(X) ∩ F ∗ all have c(e) = 0 as otherwise the total value of c over all arcs of X is less than

α(|E(H)| − discH(L)) = 1, contradicting the assumption that c is a fractional H-cover of D. It

therefore follows that |E(X) ∩ F | > 0.

Proof of Theorem 1.7. Let c be an optimal fractional H-cover of D and let m be an optimal frac-

tionalH-packing. We will show that there exists anH-cover with total value at most f(H,L)ν∗H(D).

Using induction on the number of edges of D, observe that the theorem trivially holds when D

is empty. By Lemma 4.1, we can assume that c(e) < f(H,L)−1 ≤ α for every arc e ∈ E(D), as

otherwise we can repeatedly apply Lemma 4.1 and the induction hypothesis, removing edges of

weight at least f(H,L)−1 until none are left.
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Randomly partition V (D) into r parts V1, . . . , Vr where each vertex chooses its part uniformly

at random and independently of other vertices. Using the obtained random partition, we apply

Lemma 4.2 to obtain an H-cover F .

Next, we upper-bound the expected weight of F , i.e. the sum of the weights of its arcs.

First observe that by the definition of F , all arcs e ∈ F have c(e) > 0. Consider some arc

e = (x, y) ∈ E(D) with c(e) > 0. The probability that e /∈ F is precisely the probability that

x ∈ Vi, y ∈ Vj and (i, j) ∈ E(L). Equivalently, Pr[e ∈ F ] = 1− ℓ/r2. By complementary slackness,

we have that if c(e) > 0, then the sum of m(X) over all H-copies X in D for which e ∈ E(X)

equals w(e). The expected weight of F is therefore(
1− ℓ

r2

) ∑
e∈E(D)
c(e)>0

w(e) =

(
1− ℓ

r2

) ∑
e∈E(D)
c(e)>0

∑
X∈H(D)
e∈E(X)

m(X)

≤ |E(H)|
(
1− ℓ

r2

) ∑
X∈H(D)

m(X)

≤ f(H,L)ν∗H(D) .

Thus, there exists a choice of F such that |F | ≤ f(H,L)ν∗H(D) and in particular, τH(D) ≤
f(H,L)ν∗H(D). Now, let ε > 0. By the definition of f(H), there exists a nonempty directed

graph L such that f(H,L) ≤ f(H) + ε, so we have that τH(D) ≤ (f(H) + ε)ν∗H(D). As this holds

for all ε > 0, we obtain that τH(D) ≤ f(H)ν∗H(D), as required.

Proof of Corollary 1.9. To obtain a deterministic polynomial time algorithm for approximating

τH(D), we compute ν∗H(D) using any polynomial time algorithm for linear programming. By

Theorem 1.7, the approximation ratio is at most f(H).

For the second part of the corollary, first construct (using linear programming) an optimal

fractional cover c, so its total value is τ∗H(D) = ν∗H(D). Let L be any fixed nonempty directed

graph. We compute discH(L) in constant time since in order to determine discH(L) it suffices to

consider only induced subgraphs of the blowup B(L) with at most |V (H)| vertices in each part.

With discH(L) given, we compute f(H,L) in constant time. By Lemma 4.1, we can eliminate

from D all arcs with c(e) ≥ f(H,L)−1 so we can now assume that all arcs have c(e) < f(H,L)−1.

By the proof of Theorem 1.7, the random set F (which is constructed in linear time as L is

fixed), has expected weight at most f(H,L)ν∗H(D), so we return F , which is an H-cover, as our

algorithm’s answer. This gives a randomized polynomial time f(H,L)-approximation algorithm for

H-cover. To make our algorithm deterministic, we use the derandomization method of conditional

expectation. Indeed, observe that the precise expected value f(H,L)ν∗H(D) is known to us. Now,

when we construct F , we consider the vertices v ∈ V (D) one by one. In order to decide in which

part Vi to place v, we simply compute the conditional expectation of the expected value of |F | for
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each of the possible r choices. As one of these choices must yield a value at most f(H,L)ν∗H(D)

for the conditional expectation, we take that choice.

Corollary 4.3. Let G be an edge-weighted undirected multigraph. Then, τKk
(G) ≤ ⌊k2/4⌋ν∗Kk

(G).

Proof. Let H be a tournament on k vertices. Clearly, b(H) = ⌊k2/4⌋ so by Lemma 3.2 we have that

f(H) ≤ ⌊k2/4⌋. Now, suppose that G is an undirected edge-weighted multigraph and let D be an

acyclic orientation of G. Then any copy of Kk in G is a copy of Tk in D and thus ρKk
(G) = ρTk

(D)

for any ρ ∈ {τ, ν, τ∗, ν∗}. In particular, we obtain from Theorem 1.7 that τKk
(G) ≤ ⌊k2/4⌋ν∗Kk

(G).

Furthermore, Corollary 1.9 shows that there is a polynomial time ⌊k2/4⌋-approximation algorithm

for Kk-cover.

5 Lower bound construction for directed cycles

Before presenting the construction which proves Theorem 1.6, we need the following result of

Häggkvist and Thomassen [7]. For completeness, we present a simplified proof of it. We mention

that the case k = 3 of the following lemma was first proved Brown and Harary [4].

Lemma 5.1. Let k ≥ 2 and let D be a directed graph with n vertices. If D has no directed k-cycle,

then D has at most n(n− 1)/2 + (k − 2)n/2 arcs.

Proof. Fixing k ≥ 3 (the case k = 2 is trivial), the proof proceeds by induction on n. As the cases

n ≤ k − 1 clearly hold, we assume that n ≥ k. Since every n-vertex undirected graph with more

than n(k − 2)/2 edges has a path on k vertices, we may assume that D has a path P = v1, . . . , vk

such that all consecutive pairs on this path induce directed cycles of length 2. Furthermore, if the

subgraph induced by v1, . . . , vk does not contain a directed k-cycle, then the sum of the out-degrees

of v1 and vk inside this subgraph is at most k− 1 and the sum of the in-degrees of v1 and vk inside

this subgraph is at most k − 1. So, without loss of generality, we can assume that in the subgraph

induced by P ′ = v2, . . . , vk, the number of arcs incident with vk is at most k−1. The number of arcs

incident with either v2 or vk in P ′ is therefore at most (k− 1) + 2(k− 3) = 3k− 7. If there is some

vertex outside of P ′ that is an in-neighbor of v2 and an out-neighbor of vk or vice versa, we have a

directed k-cycle in D. Thus, assume that the sum of the in-degree of v2 and the out-degree of vk

with respect to the vertices outside of P ′ is at most n−k+1. Similarly, the sum of the in-degree of

vk and the out-degree of v2 with respect to the vertices outside of P ′ is at most n−k+1. Thus, the

total number of arcs incident with v2 or vk in all of D is at most 2(n−k+1)+3k− 7 = 2n+k− 5.

By induction, the directed graph obtained from D by deleting the vertices v2 and vk either has a

directed k-cycle, or has at most (n−2)(n−3)/2+(k−2)(n−2)/2 arcs. It follows that the number

of arcs of D is at most

(n− 2)(n− 3)

2
+

(k − 2)(n− 2)

2
+ 2n+ k − 5 =

n(n− 1)

2
+

(k − 2)n

2
.
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We construct a probability space of tournaments having the property that a sampled element

of it satiates the statement of Theorem 1.6. We require a classical theorem of Wilson [15] that

proves, in particular, that for all sufficiently large n satisfying n ≡ 1 (mod 2k), the edges of Kn

can be decomposed into pairwise edge-disjoint copies of Ck. Given such an n and a decomposition

of its edges into a set C of edge-disjoint copies of Ck, independently orient each element of C to

obtain a directed k-cycle, where each of the two possible directions is chosen at random. The

obtained n-vertex tournament T is therefore regular and, by definition, νk(T ) = n(n − 1)/2k. As

trivially ν∗k(T ) ≤ |E(Kn)|/|E(Ck)| = n(n−1)/2k, we also have ν∗k(T ) = n(n−1)/2k. We next show

that asymptotically almost surely, τk(T ) = n2/4 − o(n2), thus proving Theorem 1.6. Since every

directed graph has an acyclic subgraph consisting of at least half of its arcs, it suffices to prove that

asymptotically almost surely, τk(T ) ≥ n2/4 − o(n2). To this end, we need the following lemma in

which the notation e(A,B) denotes the number of arcs of going from vertex set A to vertex set B.

Lemma 5.2. Asymptotically almost surely, for every pair of disjoint sets A,B of vertices of T of

order at least n2/3 each, both e(A,B) and e(B,A) are at most (1 + on(1))|A||B|/2.

Proof. We prove that e(A,B) is tightly concentrated around its expected value, |A||B|/2. Let

C′ ⊆ C be the set of elements of C containing at least one edge with endpoints in both A and B.

Every C ∈ C′, being a copy of Ck, contains some 1 ≤ r ≤ k edges with endpoints in both A and

B. When orienting C to obtain a directed k-cycle, some 0 ≤ s ≤ r of its edges become arcs going

from A to B and the remaining r − s edges become arcs going from B to A, or vice versa. Thus,

we may associate C with the random variable XC such that XC = s− r/2 with probability 1
2 and

XC = r/2− s with probability 1
2 noticing that

e(A,B) =
|A||B|

2
+

∑
C∈C′

XC .

We observe that the |C′| ≤ |A||B| random variables XC are independent, each having expectation

0 and |XC | = |r/2− s| < k. So, by the Chernoff inequality A.1.16 in [2],

Pr

[∑
C∈C′

XC > k(|A||B|)0.9
]
≤ e−(|A||B|)1.8/2|C′| ≤ e−(|A||B|)0.8/2 <

1

5n

where in the last inequality we have used that |A||B| ≥ n4/3. Thus, with probability at least

1 − 1/5n, e(A,B) ≤ (1 + on(1))|A||B|/2. As there are less than 4n choices for pairs A,B to

consider, the result follows from the union bound.

The rest of our argument is similar to the proof in [5] for directed triangles. As the proof uses

the regularity lemma for directed graphs, it requires a few definitions. We say that a pair of disjoint
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nonempty vertex sets A, B of a directed graph are ε-regular if for all X ⊆ A and Y ⊆ B with

|X| ≥ ε|A| and |Y | ≥ ε|B|,∣∣∣∣e(X,Y )

|X||Y |
− e (A,B)

|A| |B|

∣∣∣∣ ≤ ε and

∣∣∣∣e(Y,X)

|X||Y |
− e (B,A)

|A| |B|

∣∣∣∣ ≤ ε .

An ε-regular partition of a directed graph D is a partition of its vertices into sets V1, . . . , Vℓ such

that ℓ ≥ ε−1, ||Vi|− |Vj || ≤ 1 for all i, j ∈ [ℓ], and all but εℓ2 pairs Vi, Vj are ε-regular. The directed

version of Szemerédi’s regularity lemma, first used implicitly in [6] and proved in [1], states that

for every ε > 0 there exists K(ε) such that every directed graph D with at least ε−1 vertices has

an ε-regular partition with at most K(ε) parts. A useful notion is the reduced arc-weighted directed

graph R corresponding to a given ε-regular partition. It has vertex set [ℓ] and if the parts Vi, Vj

form an ε-regular pair, then R contains an arc (i, j) with weight e(Vi, Vj)/(|Vi||Vj |) and an arc (j, i)

with weight e(Vj , Vi)/(|Vi||Vj |).

Proof of Theorem 1.6. We prove that asymptotically almost surely, τk(T ) ≥ n2/4 − o(n2). Fix

ε > 0. By Lemma 5.2, we may assume that T has the property that for every pair of disjoint

sets A,B of vertices of T of order at least n2/3 each, it holds that e(A,B) ≤ (1 + on(1))|A||B|/2
and e(B,A) ≤ (1 + on(1))|A||B|/2. Let F be a set of arcs such that T \ F has no directed k-

cycle. Consider an ε-regular partition of the directed graph T \ F with ℓ ≤ K(ε) parts and the

corresponding reduced arc-weighted directed graph R. Let wR be the sum of the weights of the

arcs of R. Observe that

|E(T \ F )| ≤
(wR

ℓ2
+ 4ε

)
n2

where the error term 4εn2 generously accounts for the arcs inside parts and the arcs between non-ε-

regular pairs (we are using the fact that each part is of size either ⌊n/ℓ⌋ or ⌈n/ℓ⌉ and that ℓ ≥ ε−1).

Let R′ be the directed graph obtained from R by removing all arcs with weight at most kε so now

the sum of the weights of the arcs of R′ is at least wR − kεℓ2. Now, if R′ contained a directed

k-cycle, then so would T \ F . Indeed, suppose, without loss of generality, that the k-cycle in R′ is

(1, . . . , k). Then we can use the ε-regularity of the pairs Vi, Vi+1 for i = 1, . . . , k (indices modulo

k) and the fact that e(Vi, Vi+1) ≥ kε|Vi||Vi+1| to embed (many) directed k-cycles in T \ F , each of

the form (v1, . . . , vk) where vi ∈ Vi. Hence, R′ has no directed k-cycle and therefore has at most

ℓ2/2+ ℓk arcs by Lemma 5.1. Now, by the property of T stated in the beginning of the proof, each

arc of R has weight at most 1/2 + on(1). It follows that

wR ≤ kεℓ2 + (ℓ2/2 + ℓk)(1/2 + on(1)) ≤
(
1

4
+ 2kε

)
ℓ2

implying that |E(T \F )| ≤ (1/4+4kε)n2, implying that |F | ≥ n2(1/4−4kε−on(1)). As this holds

for every choice of F which covers all directed k-cycles, we obtain that τk(T ) ≥ (1/4−4kε−on(1))n
2,
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for every ε > 0. It follows that τk(T ) ≥ n2/4− o(n2).

It should be noted that in order to prove that the constant in Conjecture 1.5 cannot be made

smaller than k/2, it suffices to prove, say, that there are n-vertex tournaments T (not necessarily

regular tournaments) for which τk(T ) ≥ n2/4 − o(n2) as trivially ν∗k(T ) ≤ n(n − 1)/2k for every

tournament. In fact, almost all tournaments are good examples, as a random tournament (where

each arc is independently and randomly oriented) satisfies τk(T ) ≥ n2/4 − o(n2) asymptotically

almost surely. The proof is identical to the proof of Theorem 1.6 except for Lemma 5.2 which

can be replaced with a standard concentration inequality for the binomial distribution. We also

note that it is not difficult to prove that random tournaments satisfy νk(T ) = (1 − on(1))n
2/2k

asymptotically almost surely (so they cannot be used as counter-examples to Conjecture 1.5).

Both [5, 12] constructed sparse examples exhibiting the sharp tightness of Conjecture 1.5 in the

case k = 3 of directed triangles (recall again that the case k = 3 of Conjecture 1.5 is stated in [12]).

For example, the unique regular tournament R5 on five vertices has ν3(R5) = 2 and τ3(R5) = 3.

One can then take many vertex-disjoint copies of R5 to obtain infinitely many sparse constructions

attaining the ratio 1.5. Alternatively one can take a transitive tournament on any amount of

vertices and replace any number of pairwise vertex-disjoint subtournaments on five vertices of it

with copies of R5 to obtain additional examples attaining the 1.5 ratio. We note that a similar

argument holds for the case k = 4. Indeed, ν4(R5) = 1 (since K5 does not have two edge-disjoint

copies of C4). While any single arc of R5 does not cover all directed 4-cycles, it is easy to check

that one can remove two arcs and cover all directed 4-cycles of R5. Hence, τ4(R5) = 2. It follows

that there are infinitely many constructions that attain the ratio 2 for the case k = 4. Whether

there exist constructions attaining the exact ratio k/2 for k ≥ 5 remains open.
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[9] P. E. Haxell and V. Rödl. Integer and fractional packings in dense graphs. Combinatorica,

21(1):13–38, 2001.

[10] G. Kortsarz, M. Langberg, and Z. Nutov. Approximating maximum subgraphs without short

cycles. SIAM Journal on Discrete Mathematics, 24(1):255–269, 2010.

[11] M. Krivelevich. On a conjecture of Tuza about packing and covering of triangles. Discrete

Mathematics, 142(1-3):281–286, 1995.

[12] J. McDonald, G. J. Puleo, and C. Tennenhouse. Packing and covering directed triangles.

Graphs and Combinatorics, 36(4):1059–1063, 2020.

[13] Z. Nutov and R. Yuster. Packing directed cycles efficiently. Discrete Applied Mathematics,

155(2):82–91, 2007.

[14] Z. Tuza. A conjecture on triangles of graphs. Graphs and Combinatorics, 6(4):373–380, 1990.

[15] R. M. Wilson. An existence theory for pairwise balanced designs, III: Proof of the existence

conjectures. Journal of Combinatorial Theory, Series A, 18(1):71–79, 1975.

[16] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings of the tenth

annual ACM symposium on Theory of computing, pages 253–264, 1978.

[17] R. Yuster. Integer and fractional packing of families of graphs. Random Structures & Algo-

rithms, 26(1-2):110–118, 2005.

[18] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing. Combina-

torics, Probability and Computing, 21(6):952–962, 2012.

14


