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Abstract

Let H be a directed acyclic graph (dag) that is not a rooted star. It is known
that there are constants c = c(H) and C = C(H) such that the following holds for
Dn, the complete directed graph on n vertices. There is a set of at most C log n
directed acyclic subgraphs of Dn that covers every H-copy of Dn, while every set of
at most c log n directed acyclic subgraphs of Dn does not cover all H-copies. Here
this dichotomy is considerably strengthened.

Let ~G(n, p) denote the probability space of all directed graphs with n vertices and

with edge probability p. The fractional arboricity of H is a(H) = max{ |E(H′)|
|V (H′)|−1},

where the maximum is over all non-singleton subgraphs of H. If a(H) = |E(H)|
|V (H)|−1

then H is totally balanced. Complete graphs, complete multipartite graphs, cycles,
trees, and, in fact, almost all graphs, are totally balanced. It is proven that:

• Let H be a dag with h vertices and m edges which is not a rooted star. For
every a∗ > a(H) there exists c∗ = c∗(a∗, H) > 0 such a.a.s. G ∼ ~G(n, n−1/a∗)
has the property that every set X of at most c∗ log n directed acyclic subgraphs
of G does not cover all H-copies of G.
Moreover, there exists s(H) = m/2 + O(m4/5h1/5) such that the following
stronger assertion holds for any such X: There is an H-copy in G that has no
more than s(H) of its edges covered by each element of X.

• If H is totally balanced then for every 0 < a∗ < a(H), a.a.s. G ∼ ~G(n, n−1/a∗)
has a single directed acyclic subgraph that covers all its H-copies.

As for the first result, note that if h = o(m) then s(H) = (1 + om(1))m/2 is about
half of the edges of H. In fact, for infinitely many H it holds that s(H) = m/2,
optimally. As for the second result, the requirement that H is totally balanced
cannot, generally, be relaxed.

Mathematics Subject Classifications: 05C20, 05C35, 05C70
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1 Introduction

Our main objects of study are simple finite directed graphs. We denote byDn the complete
directed n-vertex graph consisting of all possible n(n− 1) edges. An important subclass
of directed graphs are directed acyclic graphs (hereafter, a directed acyclic graph is called
a dag) which are directed graphs with no directed cycles. The largest dag on n vertices is
the transitive tournament, denoted here by Tn.

It is easily observed that the edge-set of every directed graph G is the disjoint union of
two dags. Indeed, consider some permutation π of V (G) = [n]. Let GL(π) be the spanning
subgraph of G where (i, j) ∈ E(GL(π)) if and only if (i, j) ∈ E(G) and π(i) < π(j). Let
GR(π) be the spanning subgraph of G where (i, j) ∈ E(GR(π)) if and only if (i, j) ∈ E(G)
and π(i) > π(j). Since E(GR(π))∪E(GL(π)) = E(G), we can cover the edges of G using
just two dag-subgraphs of G.

However, the aforementioned edge-covering observation becomes more involved if in-
stead of just covering edges, we aim to cover all given H-subgraphs1 of G with as few as
possible dag-subgraphs. Of course, for this to be meaningful we assume that H is a dag.
More formally, we say that a subgraph H∗ of G that is isomorphic to H (i.e., an H-copy
of G) is covered by π if H∗ is a subgraph of GL(π). What is the minimum number of
permutations required to cover all H-copies of G? Let τ(H,G) be the smallest integer t
such that the following holds: There are permutations π1, . . . , πt of V (G) such that each
H-copy of G is covered by at least one of the πi. Trivially, τ(H,G) exists as we can just
consider all possible permutations and use the fact that each H-copy, being a dag, has a
topological ordering.

While determining τ(H,G) is generally a difficult problem, reasonable bounds are
known for τ(H,Dn). In fact, τ(Th, Dn) is equivalent to a well-studied problem in the
setting of permutations. An (n, h)-sequence covering array (SCA) is a set X of permu-
tations of [n] such that each sequence of h distinct elements of [n] is a subsequence of
at least one of the permutations. So, clearly, τ(Th, Dn) is just the minimum size of an
(n, h)-SCA. The first to provide nontrivial bounds for τ(Th, Dn) was Spencer [13] and var-
ious improvements on the upper and lower bounds were sequentially obtained by Ishigami
[8, 9], Füredi [6], Radhakrishnan [12], Tarui [14] and the author [15]. See also the paper
[4] for further results and references to many applications. The asymptotic state of the
art regarding τ(T3, Dn) is the upper bound of Tarui [14] and the lower bound of Füredi
[6]:

2

log e
log n 6 τ(T3, Dn) 6 (1 + on(1))2 log n .2 (1)

For general fixed h, the best asymptotic upper and lower bounds are that of the author
[15] and Radhakrishnan [12], respectively:

(1− on(1))
(h− 1)!

log e
log n 6 τ(Th, Dn) 6 ln 2 · h!(h− 1) log n+ Ch . (2)

1To avoid trivial cases, we assume hereafter that H has at least two edges and no isolated vertices.
2Unless stated otherwise, all logarithms are in base 2.

the electronic journal of combinatorics 29(4) (2022), #P4.45 2



It is immediate to see that if H has h vertices, then τ(H,Dn) 6 τ(Th, Dn), hence (1)
and (2) serve as upper bounds for τ(H,Dn) when H has three vertices or, respectively,
h vertices. In particular, we have that τ(H,Dn) = O(log n). However, for some H, this
upper bound is far from optimal. Suppose that H is a rooted star, meaning that H is a
star and the center of the star is either a source or a sink. It is proved in [7, 13] that for
such H

τ(H,Dn) = Θ(log log n) . (3)

The permutations in the upper bound construction of (3) are such that for any v1 ∈ [n]
and any h− 1 distinct elements v2, . . . , vh ∈ [n] \ {v1} there is a permutation in which v1

appears before all of v2, . . . , vh. As it turns out, rooted stars are the only dags for which
τ(H,Dn) is sub-logarithmic.

Theorem 1. Let H be a dag that is not a rooted star. Then τ(H,Dn) = Θ(log n).

The upper bound in Theorem 1 follows from the aforementioned fact that τ(H,Dn) =
O(log n) while the lower bound follows as a special case of Theorem 4 stated below.

Our main goal is to determine the extent of which Theorem 1 generalizes to directed
n-vertex graphs other than Dn. A partial answer is given in [15] where it is proved that
τ(H,G) = Θ(log n) for some dags H, and for some tournaments G. Here we prove that
Theorem 1 holds for all dags H that are not rooted stars, while G is allowed to be almost
every directed graph that is not too sparse.

To state our main results we require some definitions and notations. Let ~G(n, p) denote
the Erdős-Rényi and Gilbert probability space of all directed graphs with n vertices and
edge probability p. In other words, a sampled graph G ∼ ~G(n, p) has vertex set [n] and
each ordered pair of vertices (i, j) is chosen to be an edge of G with probability p, where
all n(n − 1) choices are independent. We observe that {Dn} is just the (trivial) sample

space of ~G(n, 1). As usual in the setting of random graphs, we say that a property of
~G(n, p) holds asymptotically almost surely (henceforth almost surely) for p = p(n), if the

probability that G ∼ ~G(n, p) has that property approaches 1 as n goes to infinity. So, the
natural way to extend Theorem 1 is to ask, for a given dag H, how small can p be such
that it still holds almost surely for G ∼ ~G(n, p) that τ(H,G) = Θ(log n). Furthermore,
what happens if we decrease that p even further? Does τ(H,G) just gradually decrease
below log n, or does it quickly become constant (or even 1), almost surely? To address
this question, we need the following definition.

Definition 2 (fractional arboricity; totally balanced graph; maximal density). The frac-

tional arboricity of a simple (directed or undirected) graph H is a(H) = max{ |E(H′)|
|V (H′)|−1

},
where the maximum is taken over all non-singleton subgraphs of H. If a(H) = |E(H)|

|V (H)|−1

then H is totally balanced. The maximal density of H is ρ(H) = max{ |E(H′)|
|V (H′)|}, where the

maximum is taken over all subgraphs H ′ of H.

Recall that by the seminal paper of Erdős and Rényi [5], n−1/ρ(H) is the threshold
function for the existence of an H-copy in a random graph. By a well-known theorem of
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Nash-Williams [11], da(H)e is the arboricity of H, i.e., the minimum number of forests
whose union covers all edges of H. Fractional arboricity appears in the definition of
threshold functions of several important graph properties (see, e.g., [2]). Observe also
that the fractional arboricity of forests is 1 while for Kh (hence also Th) it is h/2. It is
also easy to verify that all complete graphs, complete multipartite graphs, cycles, trees
and many other families of graphs are totally balanced. In fact, it is a relatively simple
exercise to prove the following:

Proposition 3. Let H ∼ G(h, 1
2
) 3. The probability that H is totally balanced is 1−oh(1).

As it turns out, if p is just barely larger than n−1/a(H), then almost surely G ∼ ~G(n, p)
satisfies τ(H,G) = Θ(log n). This follows from our first main result.

Theorem 4. Let H be a dag which is not a rooted star and let a∗ > a(H). There is

a constant c∗ = c∗(a∗, H) > 0 such that almost surely G ∼ ~G(n, n−1/a∗) has τ(H,G) >
c∗ log n. In particular, almost surely τ(H,G) = Θ(log n).

Note that the “in particular” part of Theorem 4 follows from the aforementioned fact
that τ(H,G) 6 τ(H,Dn) = O(log n). Also observe that Theorem 4 immediately implies
Theorem 1.

So, what happens if p is just barely smaller than n−1/a(H)? 4 For totally balanced
graphs, the situation changes drastically; almost surely τ(H,G) 6 1 when G ∼ ~G(n, p).

Theorem 5. Let H be a totally balanced dag which is not a rooted star and let 0 < a∗ <
a(H). Almost surely G ∼ ~G(n, n−1/a∗) has τ(H,G) 6 1. In particular, if ρ(H) < a∗ <
a(H) then almost surely τ(H,G) = 1.

Note that the “in particular” part of Theorem 5 follows from the absence of H-copies
[5]. It is important to note that we cannot relax the requirement in Theorem 5 that
H is totally balanced. Indeed, as we later demonstrate, there are dags H that are not
totally-balanced for which almost surely τ(H,G) = Ω(log n) in the probability regime of
Theorem 5.

We can strengthen Theorem 4 even more as follows. Theorem 4 says that for a typical
G ∼ ~G(n, n−1/a∗), every set of at most c∗ log n acyclic subgraphs of G (equivalently,
permutations of n) fails to cover some H-copy of G. But perhaps this is just barely so?
Perhaps there are o(log n) permutations that have the property that for every H-copy,
at least one of the permutations covers most of the edges of that copy? This question is
motivated by the fact that already a set of two permutations has the property that every
H-copy has at least half of its edges covered by one of the permutations as observed by
taking any permutation π and its reverse πrev since GR(π) = GL(πrev). For some H, a

3In Proposition 3 we consider simple undirected graphs. Observe that the underlying undirected graph
of every dag is simple and hence a dag is totally balanced if its corresponding undirected underlying graph
is totally balanced.

4If p is smaller than n−1/ρ(H) then almost surely G ∼ ~G(n, p) will have no copy of H, so trivially
τ(H,G) = 0.
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very small amount of permutations has the “large coverage” property. For example, let
H be obtained from a rooted star with h edges by adding k � h edges. Then, H has
h+ k edges but by (3) already O(log log n) permutations suffice so that for each H-copy,
at least h (that is, most) of its edges are covered by some permutation. Is this, in a sense,
a “worst” scenario, i.e. is it true that if H is far from being a rooted star, we cannot ask
for much more than 50% coverage? Indeed, this turns out to be the case.

Theorem 6. Let H be a dag with h vertices and m edges which is not a rooted star. Then
there exists s(H) = m/2 +O(m4/5h1/5) < m such that the following holds for every a∗ >

a(H): There is a constant c∗ = c∗(a∗, H) > 0 such that almost surely G ∼ ~G(n, n−1/a∗)
has the property that for every set X of at most c∗ log n permutations, there is an H-copy
of G such that each element of X contains at most s(H) edges of that copy.

Notice that Theorem 6 implies Theorem 4 since s(H) < m, so it suffices to prove
Theorem 6. Observe that Theorem 6 is much stronger than Theorem 4 for dags H having
h = o(m), since in this case s(H) = (1 + om(1))m/2 is essentially half of the edges of H.
Recalling that already two permutations have the property that one of them covers at
least half of the edges of an H-copy, we have that s(H) > dm/2e for every H.

The parameter s(H) which can be defined for every digraph H and which we call the
skewness of H (we defer its precise definition to Section 3) may be of independent interest.
At this point, we should say that for infinitely many dags H we can, in fact, prove that
s(H) = m/2, optimally, as this means that for any given X as in Theorem 6, there is an
H-copy such that no element of X covers more than 50% of the edges of H. For example,
we show that s(H) = m/2 for every bipartite dag H with a bipartition in which half of
the edges go from one part to the other (particularly, a directed path of even length has
this property).

The rest of this paper is organized as follows. In Section 2 we prove our first main
result, Theorem 5. In Section 3 we define the aforementioned skewness s(H), prove
that s(H) = m/2 +O(m4/5h1/5) < m, and determine it for a few basic classes of dags. In
Section 4 we prove our second main result, Theorem 6. Section 5 contains some concluding
remarks and open problems. In particular, we show there that there are dags H that are
not totally-balanced for which almost surely τ(H,G) = Ω(log n) even when p� n−1/a(H).

2 Proof of Theorem 5

Fix a totally balanced dag H that is not a rooted star and fix 0 < a∗ < a(H). Let
h = |V (H)| and let m = |E(H)|. Observe that since H is totally balanced, we have,

in particular, m = a(H)(h − 1). We shall prove that almost surely G ∼ ~G(n, p) has
τ(H,G) 6 1 where p = n−1/a∗ . Let GH be the spanning subgraph of G consisting of all
edges that belong to at least one H-copy of G. We must therefore show that with high
probability, GH is a dag.

Recall that the girth of a directed graph is the length of a shortest directed cycle (so
the girth of a dag is infinity). For a set S of (not necessarily edge-disjoint) graphs, let
D(S) denote the graph obtained by the union of the elements of S.
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For k > 2, a k-cycle configuration is a set S of (not necessarily edge-disjoint) copies
of H such that the girth of D(S) is k and which is minimal in the sense that the union
of any proper subset of S has girth larger than k. Observe that 2 6 |S| 6 k and hence
D(S) has at most km edges and at most kh vertices.

For k > 1, a k-path configuration is a set S of (not necessarily edge-disjoint) copies of
H such that D(S) contains an induced path of length k and which is minimal in the sense
that the union of the elements of any proper subset of S has no induced path of length k.
Observe that 1 6 |S| 6 k and hence D(S) has at most km edges and at most kh vertices.

Let k0 be a positive integer to be set later, and let D be the set of all pairwise non-
isomorphic directed graphs D such that D = D(S) for some k-cycle configuration S with
k 6 k0. Observe that |D| 6 2k

2
0h

2
since each element in it has at most k0h vertices and

there are at most 2k
2
0h

2
possible non-isomorphic graphs on at most k0h vertices. Let D∗

be the set of all pairwise non-isomorphic directed graphs D such that D = D(S) for some
k0-path configuration S. Observe that |D∗| 6 2k

2
0h

2
as each element in it has at most k0h

vertices.

Lemma 7. If GH has no subgraph that is isomorphic to an element of D ∪ D∗ then GH

is a dag.

Proof. Assume that GH is not a dag and let C be a shortest directed cycle in GH , denoting
|C| = k > 2. Observe that C is induced, as it is a shortest directed cycle.

Consider first the case where k 6 k0. Let S be a minimal set of H-copies in GH such
that D(S) has girth k and the union of any proper subset of S has girth larger than k.
Then D(S) ∈ D and D(S) is a subgraph of GH .

Consider next the case k > k0. Let (v0, . . . , vk−1) be a consecutive ordering of the
vertices of C. So, P = v0, . . . , vk0 is an induced path in GH of length k0. We shall
construct a k0-path configuration. We sequentially construct, in at most k0 steps, a set S
of H-copies in GH where, eventually, S will be a k0-path configuration. We initially define
S = ∅. Before each step, S will have the property that none of its subsets (including S
itself) is a k0-path configuration (so this holds before the first round as S = ∅). A step
is performed as follows. Let j < k0 be the smallest index such that the edge (vj, vj+1) is
not in any element of S (so, in the first step we have j = 0). Let Hj be an H-copy in GH

that contains (vj, vj+1) and extend S by adding Hj to it, thereby completing the current
step. Now, if D(S) has an induced path of length k0 then S (or some subset of S that
contains Hj) is a k0-path configuration. Otherwise, we proceed to the next step. Notice
that this procedure indeed halts after at most k0 steps, as k0 is the length of P . Also note
that D(S) is a subgraph of GH as it is the union of H-subgraphs of G.

Lemma 8. Let D ∈ D. Then the probability that G contains a subgraph isomorphic to D
is on(1).

Proof. Fix D ∈ D with D = D(S) where S is a k-cycle configuration where 2 6 k 6 k0.
So, S consists of copies of H in G with 2 6 |S| = t 6 k. Furthermore, S is minimal in
the sense that removing any element from it causes the union of the remaining elements
to be a digraph with girth larger than k (possibly infinite girth). In particular, the girth
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of D is obtained by a directed k-cycle C such that each element of S contains at least
one edge which belongs to C and which does not belong to the other elements of S. Let
C = v1, . . . , vk where (vi, vi+1) ∈ E(D) (indices taken modulo k). Since H is acyclic and
since C is a directed cycle, there is at least one vertex of C that belongs to at least two
distinct elements of S. Without loss of generality, v1 is such a vertex.

Let us totally order the elements of S by H1, . . . , Ht where the ordering is described
below. It consists of four stages, where in the first stage we determine H1. In the second
stage we determine in sequence H2 . . . Hr. The third stage determines Hr+1. The fourth
stage determines the remaining Hr+2, . . . , Ht. It may be that r = 1 (in which case the
second stage is empty) and it may be that r = t − 1 (in which case the fourth stage is
empty).

First stage: Let H1 ∈ S with v1 ∈ V (H1). Also, let Q1 = V (H1) \ {v1} and let
h1 = |Q1| = h− 1.

Second stage: As long as there is some element X ∈ S such that v1 /∈ V (X) and
V (X) ∩ (∪i−1

j=1V (Hj)) 6= ∅ (so X has at least one vertex other than v1 in common with
at least one of the previously ordered elements), then let Hi = X. Also, let Qi =
V (Hi)\∪i−1

j=1V (Hj) be the set of vertices of Hi not appearing in previous elements. Observe
that hi = |Qi| 6 h− 1.

Third stage: We have now reached the first time where we cannot apply the second
stage. Observe that we have not yet ordered all elements since v1 is a vertex of at least two
elements of S, and only H1 is a previously ordered element which contains v1. Suppose
H2, . . . , Hr were determined at the second stage where 1 6 r 6 t− 1, and we now need to
determine Hr+1. Let Hr+1 be one of the yet unordered elements. We claim that Hr+1 must
contain v1 and must contain at least one additional vertex appearing in previously ordered
elements. Indeed, consider all edges of C belonging Hr+1 and not to any previously order
elements (recall that each element of S contains at least one edge which belongs to C and
which does not belong to the other elements of S). As these edges form a union of disjoint
nonempty paths, any such path has an endpoint which is not v1 (every nonempty path
has two endpoints). So this endpoint, call it vz, belongs to a previously ordered element.
Now if v1 was not a vertex of Hr+1, we would not have ended the second stage, as we
could have picked Hr+1 in the second stage. So, both v1, vz are distinct vertices of Hr+1

appearing in previous elements. Let Qr+1 = {v1} ∪ (V (Hr+1) \ ∪rj=1V (Hj)) be the set of
vertices of Hr+1 not appearing in previous elements, in addition to v1 which is included
in Qr+1. Observe that hr+1 = |Qr+1| 6 h− 1.

Fourth stage: Suppose we have already determined H1, . . . , Hi−1 with i > r+ 2. Now,
if i = t + 1 we are done. Otherwise, we determine Hi as follows. Let X ∈ S be any yet
unordered element such that V (X)∩ (∪i−1

j=1V (Hj)) 6= ∅. Observe that there is at least one

such element since C is not yet covered. Let Hi = X and let Qi = V (Hi) \ ∪i−1
j=1V (Hj) be

the set of vertices ofHi not appearing in previous elements. Observe that hi = |Qi| 6 h−1.
Having completed the ordering H1, . . . , Ht we can now evaluate the number of vertices

and edges of D in terms of h1, . . . , ht. First observe that Q1, . . . , Qt are pairwise disjoint

the electronic journal of combinatorics 29(4) (2022), #P4.45 7



sets which together partition the vertex set of D. So

|V (D)| =
t∑
i=1

hi .

We obtain a lower bound for |E(D)| as follows. For 1 6 i 6 t, let Di be the union of
H1, . . . , Hi (so D = Dt). We claim that |E(Di) \ E(Di−1)| > a(H)hi (define E(D0) = ∅).
Observe first that this holds for i = 1 since |E(D1)| = |E(H1)| = m = (h − 1)a(H) =
h1a(H). Suppose that 2 6 i 6 t. So, E(Di)∩E(Di−1) is a set of edges of a subgraph of Hi

on h−hi vertices. Now, if hi = h−1 then this subgraph is empty, so |E(Di)\E(Di−1)| =
|E(Hi)| = m = (h−1)a(H) = hia(H). Otherwise, by the definition of a(H), this subgraph
has at most (h−hi−1)a(H) edges, so |E(Di)\E(Di−1)| > m−(h−hi−1)a(H) = hia(H).
We have now shown that

|E(D)| =
t∑
i=1

|E(Di) \ E(Di−1)| >
t∑
i=1

a(H)hi = a(H)|V (D)| .

The probability that G has a particular subgraph with |V (D)| vertices and at least
a(H)|V (D)| edges is at most

n|V (D)|pa(H)|V (D)| = n−|V (D)|(a(H)
a∗ −1) 6 n−(

a(H)
a∗ −1) = on(1) .

Lemma 9. For each D ∈ D∗, the probability that G contains a subgraph isomorphic to
D is on(1).

Proof. Fix D ∈ D∗ with D = D(S) where S is a k0-path configuration. So, S consists
of copies of H in G with 1 6 |S| = t 6 k0. Furthermore, S is minimal in the sense that
removing any element from it causes the union of the remaining elements to be a digraph
with no induced path of length k0. Let P = v0, . . . , vk0 be an induced path in D of length
k0.

Let us totally order the elements of S by H1, . . . , Ht where the ordering is described
below. Let H1 ∈ S be any element that contains the edge (v0, v1). Let Q1 = V (H1) and
let h1 = |Q1| = h. Suppose we have already determined H1, . . . , Hi−1 where 2 6 i 6 t.
Let j < k0 be the smallest index such that the edge (vj, vj+1) is not in any element of
H1, . . . , Hi−1 (such an edge exists by the minimality of S). Let Hi ∈ S be any element
that contains (vj, vj+1). Let Qi = V (Hi) \ ∪i−1

j=1V (Hj) be the set of vertices of Hi not
appearing in previous elements. Observe that hi = |Qi| 6 h − 1 since the vertex vj is
in V (Hi), but since the edge (vj−1, vj) is an edge of some previously ordered element,
vj /∈ Qi.

Having completed the ordering H1, . . . , Ht we can now evaluate the number of vertices
and edges of D in terms of h1, . . . , ht. First observe that Q1, . . . , Qt are pairwise disjoint
sets which together partition the vertex set of D. So,

|V (D)| =
t∑
i=1

hi .
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To obtain a lower bound for |E(D)| we proceed as follows. For 1 6 i 6 t, let Di be
the union of H1, . . . , Hi (so D = Dt). We claim that for all 2 6 i 6 t it holds that
|E(Di) \ E(Di−1)| > a(H)hi. Indeed, E(Di) ∩ E(Di−1) is a set of edges of a subgraph of
Hi on h−hi vertices. Now, if hi = h−1 then this subgraph is empty, so |E(Di)\E(Di−1)| =
|E(Hi)| = m = (h−1)a(H) = hia(H). Otherwise, by the definition of a(H), this subgraph
has at most (h−hi−1)a(H) edges, so |E(Di)\E(Di−1)| > m−(h−hi−1)a(H) = hia(H).
We have now shown that

|E(D)| = m+
t∑
i=2

|E(Di) \ E(Di−1)|

> m+
t∑
i=2

a(H)hi

= (
t∑
i=1

a(H)hi)− a(H)

= a(H)(|V (D)| − 1) .

The probability that G has a particular subgraph with |V (D)| vertices and at least
a(H)(|V (D)| − 1) edges is at most

n|V (D)|pa(H)(|V (D)|−1) = n−|V (D)|(a(H)
a∗ −1)+

a(H)
a∗ 6 n−k0(

a(H)
a∗ −1)+

a(H)
a∗ = on(1)

where the last inequality follows by setting k0 = 1 + da(H)/(a(H)− a∗)e.

Completing the proof of Theorem 5. Since D ∪D∗ consists of only a bounded number of
elements (at most 2k

2
0h

2+1), and since by Lemmas 8 and 9 each element of D ∪ D∗ is a
subgraph of G with probability on(1), we have that almost surely G has no element of
D ∪ D∗ as a subgraph. In particular, almost surely GH has no element of D ∪ D∗ as a
subgraph. By Lemma 7, almost surely GH is a dag.

3 Skewness

For a vertex coloring of a graph, we say that a permutation of the vertices respects
the coloring, if all the vertices of any given color are consecutive. As mentioned in the
introduction, the skewness of H, denoted by s(H) is a central parameter of Theorem 6.
Here is its definition.

Definition 10 (Skewness). Let H be a digraph. For a coloring C of the vertices of H,
let sH(C) = maxπ |E(HL(π))| where the maximum is taken over all permutations of the
vertices of H that respect C (in particular, in any such permutation, we are guaranteed
that the number of edges going from left to right is at most sH(C)). The skewness of H,
is

s(H) = min
C

sH(C)

where the minimum is taken over all vertex colorings.
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Notice that d|E(H)|/2e 6 s(H) 6 |E(H)| as for any permutation π it holds that
|E(HL(π))| > |E(H)|/2 or else |E(HL(πrev))| > |E(H)|/2 (note: π respects C if and only
if πrev respects C). Although the definition of skewness applies to every digraph, we are
interested in the case where H is a dag.
Examples:

• Rooted stars. If H is a star rooted at some vertex v then consider any vertex coloring
C. Suppose, wlog, that v is a source. We can always find a permutation π respecting
C in which v is the first vertex. In such a permutation, E(HL(π)) = E(H), so
sH(C) = |E(H)|. Thus, s(H) = |E(H)|.

• Dags that are not rooted stars. If H is a dag that is not a rooted star then one of
the following holds: Either H has two disjoint edges, or else H has a directed path
on two edges. Consider first the case that H has two disjoint edges, say (a, b) and
(c, d). Color {a, d} red and color {b, c} blue (any remaining vertices may be colored
arbitrarily). Then, in any permutation π respecting such a coloring, |E(HR(π))| > 1.
Hence s(H) 6 |E(H)|−1. Consider next the case that H has a directed path on two
edges, say (a, b) and (b, c) are the edges of such a path. Color {a, c} red and color b
blue (any remaining vertices may be colored arbitrarily). Then, in any permutation
π respecting such a coloring, |E(HR(π))| > 1. Hence s(H) 6 |E(H)| − 1. We have
proved that if H is a dag that is not a rooted star, then s(H) 6 |E(H)| − 1.

• Balanced bipartite dags. A balanced bipartite dag is a bipartite dag with a biparti-
tion in which precisely half of the edges go from one part to the other (for example,
a directed path with an even number of edges satisfies this requirement). Let H
be such a dag. Consider a coloring in which the vertices of one part are red and
the vertices of the other part are blue. Then, in any permutation π respecting such
a coloring, |E(HL(π))| = |E(H)|/2. Hence s(H) = |E(H)|/2. Notice that if H
is a bipartite dag with an odd number of edges where the number of edges going
from some part to the other is b|E(H)|/2c, then a similar argument shows that
s(H) = d|E(H)|/2e.

• Transitive tournaments. Suppose that H = Th where the vertices are labeled
{1, . . . , h} and the edges are (i, j) for 1 6 i < j 6 h. Assume first that h is
even. Consider the coloring with h/2 colors whose color classes are {i, h + 1 − i}
for i = 1, . . . , h/2. In any permutation π respecting this coloring, precisely half
of the edges connecting vertices in distinct vertex classes go from right to left, so
we have that |E(HL(π))| 6 h/2 + (

(
h
2

)
− h/2)/2 = h2/4. It therefore holds that

s(Th) 6 h2/4. Assume next that h is odd. Consider the coloring with (h + 1)/2
colors whose color classes are {i, h+ 1− i} for i = 1, . . . , (h+ 1)/2 (observe that the
last color class only consists of vertex (h+ 1)/2). In any permutation π respecting
this coloring, precisely half of the edges connecting vertices in distinct vertex classes
go from right to left, so we have that |E(HL(π))| 6 (h2 − 1)/4. It therefore holds
that s(Th) 6 (h2− 1)/4. Observe, in particular, that s(T3) = 2 and, more generally,
s(Th) = (1 + oh(1))|E(Th)|/2.
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We have already observed that d|E(H)|/2e 6 s(H) 6 |E(H)| − 1 if H is not a rooted
star. However, in order to prove that Theorem 6 is a significant sharpening of Theorem,
4 we would like to prove that s(H) is just barely above |E(H)|/2 for all dags which are
not too sparse. This is proved in the following lemma.

Lemma 11. Let H be a dag with h vertices and m edges. Then s(H) = m/2+O(m4/5h1/5).

Proof. Let k be a positive integer parameter to be set later. We consider a random coloring
of V (H) with the set of colors [k], where each vertex uniformly and independently chooses
its color. Let the color color classes be A1, . . . , Ak where Ai is the set of vertices colored
with color i.

An edge e ∈ E(H) is an inside edge if both of its endpoints are colored the same. Let
F be the set of inside edges. We have that E[|F |] = m/k. By Markov’s inequality

Pr[|F | > 2m/k] 6
1

2
. (4)

Let F (i, j) be the set of edges going from Ai to Aj. Clearly, E[|F (i, j)|] = m/k2.
We also need to upper bound the probability that |F (i, j)| deviates significantly from its
expected value. As we will use Chebyshev’s inequality for this task, we present |F (i, j)| as
the sum of m indicator random variables X(a, b) for each (a, b) ∈ E(H), where X(a, b) = 1
if and only if a ∈ Ai and b ∈ Aj. To obtain an upper bound for Var[|F (i, j)|] we must
therefore obtain an upper bound for Cov(X(a, b), X(c, d)) for a pair of distinct edges
(a, b), (c, d) ∈ E(H). Now, if {a, b} ∩ {c, d} = ∅ then X(a, b), X(c, d) are independent.
Otherwise, |{a, b} ∪ {c, d}| = 3 and we have that Cov(X(a, b), X(c, d)) 6 Pr[(X(a, b) =
1) ∩ (X(c, d) = 1)] 6 1/k3. As a graph with h vertices and m edges has fewer than 2hm
ordered pairs of edges with a common endpoint, we have that

Var[|F (i, j)|] 6 E[|F (i, j)|] +
2hm

k3
=
m

k2
+

2hm

k3
6

3hm

k3
.

By Chebyshev’s inequality, we have that

Pr

[
|F (i, j)− m

k2
| >

√
6hm

k

]
6

3hm

k3
· 1

(6hm)/k
=

1

2k2
.

As there are at most k(k − 1) ordered pairs (i, j) with i 6= j and 1 6 i, j 6 k, we
have by the last inequality, by (4), and the union bound that with probability at least
1 − (1/2) − k(k − 1)/(2k2) > 0, it holds that |F | 6 2m/k and for all i, j with i 6= j,
|F (i, j)−m/k2| 6

√
6hm/k. So, hereafter we assume that this is the case for our coloring

C.
Consider any permutation π respecting C. Then

|E(HL(π))| 6 |F |+
∑

16i<j6k

max{|F (i, j)| , |F (j, i)|}

the electronic journal of combinatorics 29(4) (2022), #P4.45 11



6
2m

k
+
k(k − 1)

2

(
m

k2
+

√
6hm

k

)
6
m

2
+

2m

k
+ 2k3/2h1/2m1/2 .

Choosing k = d(m/h)1/5e we obtain from the last inequality that
|E(HL(π))| 6 m/2 + O(m4/5h1/5), proving that sH(C) 6 m/2 + O(m4/5h1/5), hence
s(H) = m/2 +O(m4/5h1/5).

4 Proof of Theorem 6

Throughout this section we fix a dag H that is not a rooted star and fix a∗ > a(H).
Let h = |V (H)| and m = |E(H)|. By the definition of a(H), any subgraph of H with
2 6 t 6 h vertices has at most (t− 1)a(H) edges and in particular, m 6 a(H)(h− 1).

Let c∗ = c∗(a∗, H) be a small positive constant to be determined later. Whenever
necessary, we assume that n is sufficiently large as a function of H and a∗. Let [n] be the

set of the vertices of G ∼ ~G(n, n−1/a∗). We must prove that the following holds almost
surely: For every set X of x = bc∗ log nc permutations of [n], there is an H-copy of G
such that for each π ∈ X, GL(π) contains at most s(H) edges of that copy, where s(H)
is the skewness of H.

Let X = {π1, . . . , πx}. For nonempty disjoint sets A,B ⊂ [n], we say that A ⇒ B in
πi, if all elements of A appear before each element of B in πi. For r nonempty disjoint
sets of vertices A1, . . . , Ar with Aj ⊂ [n], we say that A1, . . . , Ar are consistent with X if
for all 1 6 i 6 x and for all 1 6 j, j′ 6 r with j 6= j′, either Aj ⇒ Aj′ in πi or Aj′ ⇒ Aj
in πi. Stated otherwise, in each permutation of X restricted to ∪r`=1A`, all the elements
of each Aj are consecutive.

Lemma 12. Let r = 2t for some positive integer t and let n be a multiple of rx where x
is a positive integer. Suppose that X = {π1, . . . , πx} is a set of permutations of [n]. There
exist disjoint sets A1, . . . , Ar with Aj ⊂ [n] that are consistent with X. Furthermore,
|Aj| = n/rx for 1 6 j 6 r.

Proof. We first prove the lemma for t = 1. Namely, we prove that there are two sets
A1, A2 that are consistent with X, each of them containing n/2x vertices. We construct
the claimed sets A1, A2 inductively. Let Xi = {π1, . . . , πi}. We construct disjoint sets
A1,i, A2,i that are consistent with Xi and each of them has size at least n/2i. As X = Xx,
the lemma will follow for t = 1.

Starting with X1 = {π1}, we set A1,1 to be the first n/2 elements of π1 and set A2,1

to be the last n/2 elements of π1. Hence A1,1 ⇒ A2,1 and both are of the required size.
Assume that we have already defined A1,i, A2,i, each of size n/2i and each consistent
with Xi. Let σ denote the restriction of πi+1 to A1,i ∪ A2,i, so σ is a permutation of
A1,i ∪ A2,i of order n/2i−1. Let C denote the first n/2i elements of σ and let D be the
remaining n/2i elements of σ. Now, suppose first that |A1,i ∩C| > n/2i+1. Then we must
have that |A2,i ∩ D| > n/2i+1 so we may set A1,i+1 to be any subset of A1,i ∩ C of size
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n/2i+1 and A2,i+1 to be any subset of A2,i ∩ D of size n/2i+1. Otherwise, we must have
|A1,i ∩ D| > n/2i+1. Then we must have that |A2,i ∩ C| > n/2i+1 so we may set A1,i+1

to be any subset of A1,i ∩ D of size n/2i+1 and set A2,i+1 to be any subset of A2,i ∩ C
of size n/2i+1. Observe that in any case, we have that either A1,i+1 ⇒ A2,i+1 in πi+1 or
else A2,i+1 ⇒ A1,i+1 in πi+1. Hence, A1,i+1, A2,i+1 are consistent with Xi+1 and are of the
required size.

Having proved the base case t = 1 of the lemma, we prove the general case by induction.
So, assume that r = 2t with t > 1 and that we already found disjoint subsets A1, . . . , Ar/2,
each of size n/(r/2)x that are consistent with X. Applying the case t = 1 to each Aj
separately as the ground set, we can find, for each 1 6 j 6 r/2, two disjoint sets of Aj,
say Bj and Cj, each of size |Aj|/2x = n/rx such that Bj, Cj are consistent with X|Aj .
Hence, B1, C1, B2, C2, . . . , Br/2, Cr/2 are r disjoint subsets of [n] that are consistent with
X and each is of the required size n/rx.

Our approach to proving Theorem 6 is to show that almost surely, there is a labeled
H-copy in G that is suitably embedded inside r disjoint subsets of vertices that are
consistent with X. As we have no control over the chosen X (but we do know that it
contains x = bc∗ log nc permutations), we also do not have control over the r disjoint
subsets consistent with it (but do have control on their size, by Lemma 12), so we must
guarantee that there are many labeled H-copies such that, almost surely, no choice of r
disjoint subsets can avoid a labeled H-copy. We next formalize our arguments.

By the definition of s(H), there is a vertex coloring C of V (H) such that for any
permutation π of V (H) which respects C, it holds that |E(HL(π))| 6 s(H). Now, suppose
that C uses r colors. We may assume that r = 2t for some positive integer t, as otherwise
we can just add some dummy unused colors. As this assumption can only increase the
number of colors by less than a factor of 2, we have that r 6 2h − 2. For 1 6 i 6 r,
let Wi ⊂ V (H) be the vertices colored with color i (possibly Wi = ∅) and observe that
∪ri=1Wi = V (H). Also note that in any permutation of V (H) that respects C, the vertices
of Wi are consecutive.

Recall that a labeled H-copy H∗ of G is synonymous with an injective mapping φ :
V (H)→ V (G) such that (u, v) ∈ E(H) implies that (φ(u), φ(v)) ∈ E(G). Let (V1, . . . , Vr)
be an r-tuple of disjoint sets of vertices of G. We say that an H-copy H∗ of G is consistent
with (V1, . . . , Vr) if φ(Wi) ⊆ Vi for 1 6 i 6 r. Lemma 14 below shows that, almost surely,
for all r-tuples (V1, . . . , Vr) in which all Vi’s are large, there is an H-copy in G consistent
with the r-tuple. An important ingredient in the proof of that lemma are two inequalities
of Janson [10] which are stated in the following lemma (see [1] Theorems 8.1.1 and 8.1.2
which uses a simpler proof from [3]).

Lemma 13. [Janson inequalities] Let Ω be a finite universal set and let R be a random
subset of Ω where each element of Ω is chosen to R independently with probability p.
Let Φ be a finite index set and for each φ ∈ Φ, let Uφ be a subset of Ω. Let A(φ) be
the event that Uφ ⊆ R. For distinct φ, φ′ ∈ Φ write φ ∼ φ′ if Uφ ∩ Uφ′ 6= ∅. Let
∆ =

∑
φ∼φ′ Pr[A(φ)∩A(φ′)] where the sum is over ordered pairs. Let µ =

∑
φ∈Φ Pr[A(φ)].

Then:
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(a) If ∆ 6 µ then Pr[∩φ∈ΦA(φ)] 6 e−µ/2.

(b) If ∆ > µ then Pr[∩φ∈ΦA(φ)] 6 e−µ
2/2∆.

Lemma 14. There exists α = α(a∗, H) < 1 such that almost surely, for all r-tuples
(V1, . . . , Vr) of disjoint sets of vertices of G where |Vi| = bnαc, there is an H-copy of G
consistent with (V1, . . . , Vr).

Proof. Since a∗ > a(H) we may fix a constant α such that

1 > α >
a(H)

a∗
. (5)

First observe that the number of possible r-tuples satisfying the lemma’s assumption is
at most

(nn
α

)r < n2hnα .

where we have used that r < 2h. So, fixing such an r-tuple (V1, . . . , Vr), it suffices to
prove that the probability that there is no labeled H-copy consistent with it is o(n−2hnα).

Recall that Wi ⊂ V (H) is the set of vertices of H colored with color i. Now, consider an
injective mapping φ from V (H) to V (G) with the property that φ(Wi) ⊆ Vi for i 6 i 6 r
and let Φ be the set of all such mappings. Let Ω be the set of all ordered distinct pairs of
vertices of G (so |Ω| = n(n − 1)). With each φ we associate a subset Uφ ⊂ Ω as follows.
For each edge (x, y) ∈ E(H) corresponds an element (φ(x), φ(y)) of Uφ. Observe that
|Uφ| = m. Let A(φ) be the event that Uφ forms an H-copy in G. Notice that if A(φ)
holds, then there is an H-copy consistent with (V1, . . . , Vr). We have that

pm = Pr[A(φ)] . (6)

So, our goal is to prove that

Pr[∩φ∈ΦA(φ)] = o(n−2hnα) .

Using the notation of Lemma 13, Let

∆ =
∑
φ∼φ′

Pr[A(φ) ∩ A(φ′)], µ =
∑
φ∈Φ

Pr[A(φ)]

where the sum for ∆ is over ordered pairs. We will obtain an upper bound for ∆ and a
lower bound for µ so that we will be able to apply Lemma 13. First, observe that

|Φ| >
r∏
i=1

(
|Vi|
|φ(Wi)|

)
=

r∏
i=1

(
bnαc
|Wi|

)
>

(
bnαc
h

)
where the last inequality follows from the fact that

∑r
i=1 |Wi| = h. It follows from (6)

and the last inequality that

µ >

(
bnαc
h

)
pm > h−hnαh−m/a

∗
> h−hnαh−a(H)(h−1)/a∗ > h−hnh(α−a(H)

a∗ )+
a(H)
a∗ . (7)
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To evaluate ∆, observe that if φ ∼ φ′, then 2 6 |φ(V (H)) ∩ φ′(V (H))| 6 h (equivalently,
Uφ and Uφ′ intersect), so we may partition the terms in the definition of ∆ to h− 1 parts
according to the order of φ(V (H)) ∩ φ′(V (H)). Let 2 6 t 6 h. We first estimate the
number of ordered pairs φ, φ′ with |φ(V (H)) ∩ φ′(V (H))| = t. The number of choices for
φ is less than | ∪ri=1 Vi|h 6 (rnα)h. As the image of φ′ contains h− t other vertices not in
the image of φ, but in ∪ri=1Vi, there are fewer than | ∪ri=1 Vi|h−t choices for these vertices.
The t remaining vertices in the image of φ′ are all taken from the h vertices in the image
of φ, so there are fewer than ht choices for them. It follows that the number of ordered
pairs φ, φ′ with |φ(V (H)) ∩ φ′(V (H))| = t is less than

(rnα)h(rnα)h−tht = ht(rnα)2h−t .

Now, suppose that Uφ is an H-copy (i.e., that A(φ) holds) and that Uφ′ is an H-copy.
In this case, the number of edges of Uφ is m. The number of edges of Uφ′ with both
endpoints in φ(V (H))∩φ′(V (H)) is at most (t−1)a(H), by the definition of a(H). Hence
the number of edges in Uφ ∪ Uφ′ is at least 2m − (t − 1)a(H). The probability that G
contains a labeled subgraph on this amount of edges is therefore at most p2m−(t−1)a(H).
We thus have that

Pr[A(φ) ∩ A(φ′)] 6 p2m−(t−1)a(H) .

It follows that

∆ 6
h∑
t=2

ht(rnα)2h−tp2m−(t−1)a(H) =
h∑
t=2

htr2h−tn2hα− 2m
a∗ −

a(H)
a∗ +t(

a(H)
a∗ −α) .

By (5), the largest summand occurs when t is smallest, i.e. when t = 2. Thus, we get
that

∆ 6 (h− 1)htr2h−tn2(h−1)α− 2m
a∗ +

a(H)
a∗ < (2h)3hn2(h−1)α− 2m

a∗ +
a(H)
a∗ . (8)

We first consider the case where ∆ 6 µ. Observe that by (7) we have that

µ > h−hnh(α−a(H)
a∗ )+

a(H)
a∗

so we have by Lemma 13 (a) and the last inequality that

Pr[∩φ∈ΦA(φ)] 6 e−µ/2 6 e−0.5h−hn
h(α−a(H)

a∗ )+
a(H)
a∗ = o(n−2hnα)

where in the last inequality we have used that

h

(
α− a(H)

a∗

)
+
a(H)

a∗
> α

which indeed holds by (5).
Consider next the case where ∆ > µ. By (7) and (8) we have that

µ2

2∆
>

h−2hn2αh− 2m
a∗

2(2h)3hn2(h−1)α− 2m
a∗ +

a(H)
a∗

= Θ(n2α−a(H)
a∗ )
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so we have by Lemma 13 (b) and the last inequality that

Pr[∩φ∈ΦA(φ)] 6 e−
µ2

2∆ = o(n−2hnα)

where in the last inequality we have used that

2α− a(H)

a∗
> α

which indeed holds by (5).

Completing the proof of Theorem 6. Let α be the constant from Lemma 14. Define

c∗ =
(1− α)

2 log r

and recall that x = bc∗ log nc. By Lemma 14, G ∼ ~G(n, p) almost surely satisfies the
property that for all r-tuples (V1, . . . , Vr) of disjoint sets of vertices of G where |Vi| = bnαc,
there is an H-copy of G consistent with (V1, . . . , Vr). So, hereafter we assume that G
indeed satisfies this property. We must show that for every set X = {π1, . . . , πx} of
permutations of [n], there is an H-copy of G such that each element π ∈ X it holds
that GL(π) contains at most s(H) edges of that copy. So, hereafter we fix an arbitrary
X = {π1, . . . , πx} and show that such an H-copy exists.

Let n − rx < N 6 n where N is a multiple of rx. Recall also that r = 2t for some
positive integer t and that r 6 2h− 2. By Lemma 12 there exist disjoint sets A1, . . . , Ar
with Aj ⊂ [N ] ⊆ [n] that are consistent with X (in fact, already consistent with the
restriction of each πi to [N ]) and furthermore, |Aj| = N/rx. We claim that, in fact,
|Aj| > bnαc. Observe indeed that by the definition of c∗, we have that

x = bc∗ log nc 6 (1− α) log n− 1

log r

which implies that

rx 6
n1−α

2
6

n

nα + 1

implying that
N

rx
>
n− rx

rx
>

n

rx
− 1 > nα .

In particular, we can fix subsets Vi ⊆ Ai with |Vi| = bnαc. By the property of G, we have
that there is an H-copy of G that is consistent with (V1, . . . , Vr). But this means that for
each πi ∈ X, when restricted to the vertices of that H-copy, all vertices of a given color
class of the coloring C are consecutive. By the definition of skewness, GL(πi) contains at
most s(H) edges of that copy.
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b3 a3Figure 1: A dag H for which −1/a(H) is not the threshold exponent.

5 Concluding remarks and open problems

We have proved that for every totally balanced dag H that is not a rooted star, the
exponent −1/a(H) is a threshold for covering the H-copies of a digraph by directed acyclic
subgraphs. Namely, for every a∗ > a(H) it holds that almost surely that τ(H,G) =
Θ(log n) while for every a∗ < a(H) it holds almost surely that τ(H,G) 6 1, where

G ∼ ~G(n, n−1/a∗). By Proposition 3, this determines the correct threshold exponent for
almost all 5 dags.

The first natural question is whether the same result holds for all dags that are not
rooted stars. Let us first note that even though τ(H,G) is a monotone parameter, it is
not obvious that a threshold exponent even exists in the above sense (namely, jumping
from τ(H,G) = Θ(log n) to τ(H,G) 6 1). We next show that the answer is generally
false: there are some dags for which −1/a(H) is not the threshold exponent. Let H be
the dag from Figure 1. Clearly a(H) = 3/2. However:

Proposition 15. Let H be the dag from Figure 1. Then for all a∗ > 4/3 it holds for

G ∼ ~G(n, n−1/a∗) that τ(H,G) = Θ(log n).

Proof (sketch). By monotonicity, it suffices to prove the proposition for all, say,

3/2 > a∗ > 4/3. Fix 3/2 > a∗ > 4/3 and consider G ∼ ~G(n, n−1/a∗). We define
four properties, P1, P2, P3, P4 and show that each holds almost surely.
Property P1: “The number of directed cycles of length 2 in G is Θ(n2−2/a∗)”. For any
pair of vertices u, v, the probability that both (u, v) and (v, u) are edges is n−2/a∗ and
there are

(
n
2

)
pairs to consider. By Chebyshev’s inequality, the probability of deviating

from the expected amount Θ(n2−2/a∗) by at most a constant factor is 1− on(1). Thus, P1
holds almost surely.
Property P2: “The number of subgraphs ofG on four vertices and five edges is Θ(n4−5/a∗)”.
Let K be a digraph on four vertices and five edges (note: there are only a constant
number of possible digraphs on four vertices and five edges). The number of K-copies in
G is Θ(n4−5/a∗). Indeed, for any four labeled vertices, the probability that they contain
a labeled copy of K is n−5/a∗ and there are Θ(n4) choices for such four labeled copies.
Again, by Chebyshev’s inequality it is easy to show that the probability of deviating from

5By “almost all” mean that a random graph G(h, 12 ) is almost surely totally balanced (hence all of its
acyclic orientations are totally balanced dags).
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the expected amount Θ(n4−5/a∗) by at most a constant factor is 1−on(1). Thus, P2 holds
almost surely.
Property P3: “The number of vertices that appear in some T3-copy of G as the source
vertex (e.g. vertices like c in Figure 1 inside the T3 induced by {c, d, e}) is Θ(n3−3/a∗).”
This is analogous to the arguments in P1 and P2. Thus, P3 holds almost surely.
Property P4: Let P3 denote the directed path on two edges and three vertices. Fix some
3 − 3/a∗ > β > 1/a∗. Observe that β exists since a∗ > 4/3. As the fractional arboricity
of every tree, in particular, of P3, is 1, it is not difficult to prove (similar to the proof
of Theorem 6) that almost surely, the following property P4 holds: “For every subset
U ⊂ V (G) with |U | > nβ it holds that τ(P3, G[U ]) > c∗ log n where c∗ is a constant
depending only on β, a∗ and where G[U ] is the subgraph of G induced by U .

Let G be a graph for which P1, P2, P3, P4 hold. Let U∗ be the set of vertices of G ap-
pearing in some T3-copy of G as the source vertex. By P3, we have that
|U∗| = Θ(n3−3/a∗). Remove from U∗ all vertices that are contained in directed cycles
of length 2 and also all vertices contained is subgraphs on four vertices and five edges,
remaining with a subset U . By P1 and P2 we have that

|U | = Θ(n3−3/a∗)−Θ(n2−2/a∗)−Θ(n4−5/a∗) = Θ(n3−3/a∗) > nβ.

Consider any set X of permutations of V (G) with |X| < c∗ log n. Now, by P4, we have
that there is some P3-copy of G[U ] that is not covered by any element of X (viewing each
permutation of X as restricted to U). Let the vertices of such a P3-copy be a, b, c where
(a, b) and (b, c) are edges. Since each vertex of U is a source vertex of some T3-copy, there
is a T3-copy of G containing c. So, let the vertices of this copy be {c, d, e} as in Figure 1.
Now, we must have b 6= d and b 6= e since c is not on any directed cycle of length 2. It
must also be that a 6= d and a 6= e since c is not on any subgraph on four vertices and
five edges. In any case, we have that G contains an H-copy that is uncovered by X.

Problem 16. Is there a threshold exponent for all dags that are not rooted stars, and if
so, what is it?

By Theorem 4, if the answer to Problem 16 is yes, then the threshold exponent is at most
−1/a(H).

Another question is whether s(H) (skewness) is the optimal parameter of choice in the
statement of Theorem 6. Perhaps for some graphs even a value smaller than s(H) (but
of course at least m/2) still satisfies the statement of the theorem? Clearly, the answer is
no whenever s(H) = dm/2e and also in some other cases, e.g. when H is obtained from
a rooted star with m > 4 edges by flipping one edge. The smallest (in terms of h) case
for which we can ask this question is the transitive tournament T4. Notice that s(T4) = 4
while m/2 = 3 and a(T4) = 2.

Problem 17. Prove or disprove the following statement. For all a∗ > 2, there exists a
constant c∗ = c∗(a∗) > 0 such that almost surely G ∼ ~G(n, n−1/a∗) has the property that
for every set X of at most c∗ log n permutations, there is a T4-copy of G such that each
element of X contains at most three edges of that copy.
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