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Abstract

We present a matrix multiplication based algorithm for counting the number of (induced)
occurrences of a fixed r-uniform hypergraph in a larger hypergraph. In many cases, the running
time is better than that of the näıve algorithm. We also present several useful applications of the
algorithm, such as determining the dominant color among monochromatic simplices in a red-
blue edge-colored hypergraph, approximating the number of independent simplices in a random
hypergraph, and counting induced occurrences of a given 3-uniform k-vertex hypergraph in a
larger k-clique free hypergraph.
Keywords: algorithms, hypergraphs, fast matrix multiplication

1 Introduction

Finding and counting independent sets or other types of induced graphs or hypergraphs are classical
problems in complexity theory and algorithmic combinatorics. Finding a maximum independent
set is NP-Hard, and also hard to approximate [7] even in random graphs [8]. This problem is also
conjectured to be not fixed parameter tractable [4]. All known algorithms for finding and counting
induced sub(hyper)graphs on k vertices in a given n vertex (hyper)graph have running time nΘ(k).
In this paper we consider the following problem.
The H counting problem:
Input: An r-uniform hypergraph G.
Output: The number of (induced) copies of H in G. If at least one copy of H exists in G, a
witness certifying this fact should be exhibited.
If H has k vertices, the näıve algorithm can easily solve the problem (in both the induced or
non-induced versions) in O(nk) time by exhaustive search.
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In the sequel we shall use n and m to denote the number of vertices and edges of an input
hypergraph G. Nešetřil and Poljak [9] presented an algorithm for the H counting problem in
the graph-theoretic case. Their algorithm uses fast matrix multiplication and its running time
is O(nωbk/3c+(k mod 3)) where k is the number of vertices of H and ω is the exponent of matrix
multiplication. Coppersmith and Winograd proved in [3] that ω < 2.376. In case k mod 3 6= 0 it is
possible to slightly improve the exponent using fast rectangular matrix multiplication [5]. Already
for 3-uniform hypergraphs the problem becomes extremely difficult. The only known algorithm
for the H counting problem is the näıve algorithm. In fact, even the very special case of deciding
whether a given n-vertex 3-uniform hypergraph contains a K3

4 (Kr
k denotes the complete r-uniform

hypergraph with k vertices) is not known to be solved in o(n4) time.
Our first result is a generalization of the method of Nešetřil and Poljak [9] to a hypergraph

setting. This generalization solves the H counting problem faster than the näıve algorithm for a
certain class of labeled hypergraphs H, but not all possible ones. We present this generalization
in Section 2. Coupled with several combinatorial identities, some linear algebraic facts and some
probabilistic arguments, our new algorithm has several useful applications, which we now list.

Recall that a simplex of an r-uniform hypergraph is a complete subhypergraph on r+1 vertices.
Similarly, an independent simplex is an independent set with r + 1 vertices. Consider the following
decision problem:
The dominant color of monochromatic simplices:
Input: A red-blue edge-colored Kr

n.
Question: Are there more red monochromatic simplices than blue ones?
In the graph-theoretic case r = 2 the question is to decide, in a given red-blue edge-colored Kn,
whether there are more red triangles than blue ones. This problem is obviously not more difficult
that the problem of counting the number of triangles in a given graph, and hence can be solved in
O(nω) time. However, it is, essentially, also not easier. Goodman [6] observed that the number of
monochromatic triangles in a red-blue colored Kn can be determined just by examining the degree
sequence of the red subgraph. Thus, if we know the difference between the number of red triangles
and blue triangles, we also know the number of triangles in each color. One consequence of our H

counting algorithm is an algorithm for the dominant color of monochromatic simplices for r = 3.

Theorem 1.1 There exists an algorithm that, given a red-blue edge-colored complete 3-uniform
hypergraph with n vertices, decides whether there are more red monochromatic simplices than blue
ones in O(nω+1) time.

It is interesting to note that, unlike the graph-theoretic case, we do not know whether this problem
is as difficult as the problem of counting the number of K3

4 . As mentioned before, the only known
algorithm for the latter problem is the näıve O(n4) algorithm. The proof of Theorem 1.1 is presented
in Section 3.
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Another consequence of our algorithm is an approximation algorithm for the number of in-
dependent simplices of a random r-uniform hypergraph. Recall that G(n, p) denotes the random
hypergraph on n vertices, where each edge is chosen with probability p. The model G(n, p) very
closely resembles the model G(n, m) in which each possible r-uniform hypergraph with m = p

(n
r

)
edges is equally likely (see, e.g., [2]). Suppose the input distribution to our algorithm is G(n, p).
The expected number of independent simplices is

( n
r+1

)
(1− p)r+1. Thus, a straightforward approx-

imation algorithm exists, whose additive error is derived from bounds on large deviations using the
second moment method, and the sampling algorithm, that repeatedly selects random (r + 1)-sets
of vertices and checks whether they form an independent simplex or not, cannot do better. In fact,
it is not difficult to show that the additive error of the sampling algorithm is O(n(r+1)/2p1/2) (see
Section 4). The following algorithm outperforms these algorithms whenever p = o(1).

Theorem 1.2 There exists an O(nω+r−2) algorithm that, given an r-uniform hypergraph chosen
at random from G(n, p), approximates the number of independent simplices. Asymptotically almost
surely, the additive error is O(n(r+1)/2p2).

Consider, for example, a 3-uniform hypergraph drawn from G(n, n−0.5). The expected number of
4-sets that are not independent simplices is Θ(n3.5) and any sampling algorithm can, therefore,
approximate the number of independent simplices up to a Θ(n1.75) additive error. Our algorithm,
on the other hand, guarantees an O(n) additive error, and has running time O(n3.376). Notice
that the näıve algorithm that enumerates all the non-independent simplices by examining all mn

possible pairs of edges and vertices has expected running time O(mn) = O(n3.5). We present the
proof of Theorem 1.2 in Section 4.

Let Hk,r be the family of all r-uniform hypergraphs with k vertices. Another consequence of
our algorithm is the following result, whose proof appears in Section 5.

Theorem 1.3 If G is a 3-uniform hypergraph without a clique of order k, then, for each 3-uniform
hypergraph H ∈ Hk,3, we can determine the number of induced copies of H in G in O(nk−3+ω)
time. In particular, we can determine the number of independent k-sets in O(nk−3+ω) time.

2 An H-counting algorithm

Let H = (VH , EH) be an r-uniform hypergraph with k vertices, and assume that the vertices are
labeled {1, . . . , k}. Given an r-uniform hypergraph G = (VG, EG) with n vertices labeled {1, . . . , n},
a labeled copy of H in G is a one-to-one mapping σ from VH to VG such that if (i1, . . . , ir) ∈ EH

then (σ(i1), . . . , σ(ir)) ∈ EG. Similarly, a labeled induced copy is a one-to-one mapping σ from VH

to VG such that (i1, . . . , ir) ∈ EH if and only if (σ(i1), . . . , σ(ir)) ∈ EG. Let c(G, H) be the number
of labeled copies of H in G and let c∗(G, H) be the number of induced labeled copies of H in G.
Notice that c(G, H) and c∗(G, H) are independent of the actual labeling used.
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For 0 ≤ t ≤ bk/3c consider the partition of {1, . . . , k} into four parts P0 = {1, . . . , k − 3t},
Pi = {k + (i − 4)t + 1, . . . , k + (i − 3)t} for i = 1, 2, 3. We say that a labeling of H is t-good
if for each edge e ∈ EH , there exists i ∈ {1, 2, 3} so that e ∩ Pi = ∅. Trivially, every labeling
is 0-good. However, we can sometimes do better. Consider, for example, the labeled 3-uniform
hypergraph with VH = {1, 2, 3, 4} and with EH = {(123), (124), (134)}. The partition Pi = {i + 1}
for i = 0, 1, 2, 3 is 1-good. Having these definitions, we can now prove the following.

Theorem 2.1 Let H be a labeled r-uniform hypergraph with k vertices, and assume the labeling
is t-good. Then, given a labeled n-vertex r-uniform hypergraph G we can compute c(G, H) in
O(nk−(3−ω)t). A copy of H in G, if exists, can also be produced.

Proof: Let V k−3t
G denote the family of all ordered subsets of k − 3t vertices of G. Fix an ordered

set K ∈ V k−3t
G . Let FK be the family of all ordered sets of t vertices from VG \ K. Clearly,

|FK | = (n− k +3t)(n− k +3t− 1) · · · (n− k +2t+1) < nt. We create three matrices, denoted AK
12,

AK
13 and AK

23. The rows and columns of each of the matrices are indexed by FK . For Ui, Uj ∈ FK

we determine the value of AK
ij (Ui, Uj) as follows. For each edge (w1, . . . , wr) ∈ EH for which

ws ∈ P0 ∪ Pi ∪ Pj for all s = 1, . . . , r, we consider the mapping where ws is mapped to vs ∈ VG

according to the following rule. If ws is the `’th vertex of P0 then vs is the `’th vertex of K. If ws is
the `’th vertex of Pi then vs is the `’th vertex of Ui. If ws is the `’th vertex of Pj then vs is the `’th
vertex of Uj . Now, if for all edges (w1, . . . , wr) ∈ EH for which ws ∈ P0∪Pi∪Pj for all s = 1, . . . , r

the corresponding (v1, . . . , vr) ∈ EG then AK
ij (Ui, Uj) = 1. Otherwise, AK

ij (Ui, Uj) = 0. Notice
that the value of each cell of AK

ij can be determined in constant time, using the usual adjacency
representation of G as an r-dimensional array.

Consider the matrix product AK = AK
12×AK

23. Suppose AK(U1, U3) = p and also AK
13(U1, U3) =

1. This means that there are p distinct elements of FK , say, U1
2 , . . . , Up

2 , so that for each 1 ≤ q ≤ p,
the mapping which orderly maps P0 to K, P1 to U1, P2 to U q

2 and P3 to U3 corresponds to a labeled
copy of H in G (we use here the fact that no edge of H intersects P1, P2 and P3 simultaneously).
Clearly, each such labeled copy is counted precisely once in this way. It follows that

c(G, H) =
∑

K⊂V k−3t
G

∑
U1∈FK

∑
U3∈FK

AK
13(U1, U3)AK(U1, U3).

Since |F | < nt, each matrix product can be performed in O(nωt) time. As there are |V k−3t
G | < nk−3t

matrix products, we have that c(G, H) can be computed in O(nk−3t+ωt) time. Finally, if c(G, H) > 0
then we know of at least one triple (K, U1, U3) for which AK

13(U1, U3)AK(U1, U3) > 0 and hence a
corresponding witness can be produced in O(nt) < O(nk−3t+ωt) additional time.
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3 Monochromatic simplices in a red-blue coloring of K3
n

For i = 0, . . . , 4 let Hi be the 3-uniform hypergraph with 4 vertices and i edges. Notice that
H0 is an independent simplex and H4 is a simplex. As denoted in the previous section, given
an n-vertex 3-uniform hypergraph G, let c(G, Hi) (resp. c∗(G, Hi)) denote the number of (resp.
induced) labeled copies of Hi in G. For simplicity, let xi = c∗(G, Hi) and let yi = c(G, Hi).
Recall that for a hypergraph H, aut(H) denotes the automorphism group of H. Specifically,
|aut(H0)| = |aut(H4)| = 4! = 24, |aut(H1)| = |aut(H3)| = 6 and |aut(H2)| = 4.

If H is a hypergraph and H is the set of pairwise non-isomorphic hypergraphs containing H on
the same set of vertices then, clearly, the following combinatorial identity holds.

c(G, H) =
∑

H′∈H

c∗(G, H ′)
|aut(H ′)|

c(H ′,H). (1)

Theorem 1.1 is an immediate corollary of the following proposition.

Proposition 3.1 Let G be an n-vertex 3-uniform hypergraph. Then, c∗(G, H4)− c∗(G, H0) can be
computed in O(nω+1) time.

Proof: Notice first that if j ≥ i then Hj ∈ Hi. Also notice that c(Hi,H0) = 24 and c(H4,Hi) = 24.
Also, c(H3,H2) = 12, c(H3,H1) = 18, c(H2,H1) = 12 and c(Hi,Hi) = |aut(Hi)|. Thus, the
following four linear equalities result from (1).

y3 = x4 + x3

y2 = x4 + 2x3 + x2

y1 = x4 + 3x3 + 3x2 + x1

y0 = x4 + 4x3 + 6x2 + 4x1 + x0.

Now, notice that 4y3 − 6y2 + 4y1 − y0 = x4 − x0. Thus, it remains to show that yi = c(G, Hi) can
be computed in O(nω+1) time for i = 0, 1, 2, 3. Indeed, each of the hypergraphs H0,H1,H2,H3

has a labeling which is 1-good. Note that H3 has a 1-good labeling by considering the labeling
VH3 = {1, 2, 3, 4} and EH3 = {(123), (124), (134)}. Since Hi is a spanning subgraph of H3 for
i = 0, 1, 2 they also have a 1-good labeling. Now, by Theorem 2.1, when i = 0, 1, 2, 3, c(G, Hi) can
be computed in O(nω+1) time, as required.

4 Approximating the number of independent simplices of G(n, p)

Generalizing the notations of the previous section, for i = 0, . . . , r + 1 let Hi be the r-uniform
hypergraph with r + 1 vertices and i edges. Similarly, let xi = c∗(G, Hi) and let yi = c(G, Hi).
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Using (1) we get the following system of r + 2 linear equations, as in the proof of Proposition 3.1.

yi =
r+1∑
j=i

(
r + 1− i

j − i

)
xj i = 0, . . . , r + 1. (2)

Now, suppose that we are given xi+1, . . . , xr+1. It follows from (2) that by computing y0, . . . , yi we
can determine x0, . . . , xi as well.

Lemma 4.1 The values of y0, y1, y2, y3 can be computed in O(nω+r−2) time.

Proof: Consider the labeling of H3 with VH3 = {1, . . . , r + 1} and EH3 = {(1, . . . , r), (1, . . . , r −
1, r+1), (1, . . . , r−2, r, r+1)}. This labeling is 1-good. Thus, by Theorem 2.1, y3 can be computed
in O(nω+r−2) time. As H2,H1,H0 are subgraphs of H3, they also have a 1-good labeling.

Corollary 4.2 If we know x4, . . . , xr+1 then we can determine the number of independent simplices
in O(nω+r−2) time. If, for all i = 4, . . . , r +1, we can approximate each xi up to an additive O(nα)
error where α > 0, then we can approximate the number of independent simplices up to an additive
O(nα) error.

Proof: The number of independent simplices is x0/(r + 1)! and x0 can be determined from
x4, . . . , xr+1 and y0, y1, y2, y3. By Lemma 4.1 this can be done in O(nω+r−2) time if we know
x4, . . . , xr+1. The second part of the corollary follows from the first by observing that the values
of the coefficients and the number of equations in the system (2) are independent of n.

Proof of Theorem 1.2: We can clearly approximate the values of x4, . . . , xr+1 of a hypergraph
drawn from the probability space G(n, p). The expected value of xi precisely satisfies:

E[xi] = (r + 1)!

(
n

r + 1

)
pi(1− p)r+1−i < nr+1pi.

Using the second moment method (see, e.g., [1] Chapter 4), we have, asymptotically almost surely,
that |xi − E[xi]| = O(n(r+1)/2pi/2). Thus, for all i ≥ 4, we have, asymptotically almost surely,
that E[xi] approximates xi up to an O(n(r+1)/2p2) additive error. By Corollary 4.2, given an input
hypergraph G drawn from G(n, p) we can asymptotically almost surely determine the number of
independent simplices up to an O(n(r+1)/2p2) additive error.

The approximation obtained in Theorem 1.2 should be compared to the approximation obtained
by using upper bounds on large deviations. The expected number of independent simplices in
G(n, p) is

( n
r+1

)
(1− p)r+1, and hence the expected number of (r + 1)-sets that are not independent

simplices is
( n
r+1

)
(1−(1−p)r+1). By the second moment method, this expectation approximates the

number of (r+1)-sets that are not independent simplices, and hence also the number of independent
simplices, up to an O(n(r+1)/2p1/2) additive error.
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5 Counting induced 3-uniform hypergraphs

In this section we prove Theorem 1.3. First observe that if H ∈ Hk,3 and H 6= K3
k then H has

a 1-good labeling. Indeed, this follows from the obvious fact that we can always label H so that
(k − 2, k − 1, k) is not an edge of H. As in Section 3, let H be the subset of Hk,3 consisting of all
the hypergraphs that contain H. The following lemma is immediate from (1).

Lemma 5.1 If we know c∗(G, H ′) for all H ′ ∈ Hk,3 that properly contain H, and if we also know
c(G, H) then we can determine c∗(G, H) as well.

Proof of theorem 1.3: We show how to compute c∗(G, H) for each H ∈ Hk,3. The proof proceeds
by inverse induction on the number of edges of H. If H = K3

k then c∗(G, H) = 0 by assumption.
Assuming that we already computed c∗(G, H ′) for all hypergraphs with more edges than H, then,
in particular, we have computed c∗(G, H ′) for all H ′ that properly contain H. We can also compute
c(G, H) in O(nk−3+ω) time by Theorem 2.1 since H has a 1-good labeling. Thus, by Lemma 5.1,
we can determine c∗(G, H) in O(nk−3+ω) time.

Notice that theorem 1.3 remains valid as long as we know in advance the value of c(G, K3
k).

Furthermore, any approximation of the value of c(G, K3
k) up to an additive O(nα) error yields an

O(nk−3+ω) time algorithm that approximates c∗(G, H) for each H ∈ Hk,3 up to an O(nα) additive
error. Another useful corollary is the following.

Corollary 5.2 Let G be a 3-uniform hypergraph with n vertices and m edges. The number of
independent k-sets of G can be found in O(mbk/3cnk mod 3 + nk−3+ω) time.

Proof: By considering all possible combinations of bk/3c independent edges and k mod 3 inde-
pendent vertices (also independent from the edges) we can count the number of K3

k . By Theorem
1.3 we can now also compute the number of independent k-sets in additional O(nk−3+ω) time. We
also note that, as in Theorem 2.1, we can find a witness independent k-set within the same time
bounds.

Corollary 5.2 is a bit surprising since sparse hypergraphs are likely to have more independent sets,
and computing the precise number seems, at first glance, to be more difficult than in the dense
case. For example if G is a 3-uniform hypergraph with m = O(n2.376) edges, we can compute the
number of independent simplices in O(n3.376) time. We cannot say the same if, e,g., m = Θ(n3).

6 An open problem

We have demonstrated that fast matrix multiplication algorithms can be used to count and find
certain types of subhypergraphs faster than the näıve method. We are currently unable to improve
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upon the näıve algorithm for all possible r-uniform hypergraphs. We therefore state the following
intriguing open problem.

Problem 6.1 Let r and k be fixed positive integers, 3 ≤ r < k. Is there an o(nk) algorithm that,
given an r-uniform hypergraph G, computes c∗(G, H) for each H ∈ Hk,r? More specifically, is there
an o(nr+1) algorithm that, given an r-uniform hypergraph G, determines if G has a simplex?
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