
Connected Domination and Spanning Trees with Many Leaves

Yair Caro ∗ Douglas B. West † Raphael Yuster ‡

Abstract

Let G = (V,E) be a connected graph. A connected dominating set S ⊂ V is a dominating

set that induces a connected subgraph of G. The connected domination number of G, denoted

γc(G), is the minimum cardinality of a connected dominating set. Alternatively, |V | − γc(G) is

the maximum number of leaves in a spanning tree of G. Let δ denote the minimum degree of

G. We prove that γc(G) ≤ |V | ln(δ+1)
δ+1 (1+ oδ(1)). Two algorithms that construct a set this good

are presented. One is a sequential polynomial time algorithm, while the other is a randomized

parallel algorithm in RNC.

Keywords: Connectivity, Domination, Spanning Trees

AMS Subject Classifications: 05C69, 05C40, 05C05

Running Head: Connected Domination

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph-theoretic ter-

minology the reader is referred to [5]. A major area of research in graph theory is the theory

of domination. Recently two books [14, 15] have been published that present most of the known

results concerning domination parameters. Among the most popular of these parameters is the

“connected domination number”, which we study here.

A subset D of vertices in a graph G is a dominating set if every vertex not in D has a neighbor

in D. If the subgraph induced by D is connected, then D is called a connected dominating set. The

domination number, denoted γ(G), and the connected domination number, denoted γc(G), are the

minimum cardinalities of a dominating set and a connected dominating set, respectively. A graph

G has a connected dominating set if and only if G is connected; thus γc(G) is well-defined on the

class of connected graphs. Also, trivially, γc(G) ≥ γ(G). Results on the connected domination

number appear in [3, 4, 7, 8, 10, 11, 16, 17, 23, 25, 26, 28].

∗Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel. email: yairc@macam98.ac.il
†Department of Mathematics, University of Illinois, Urbana, Illinois 61801 U.S.A. email: west@math.uiuc.edu
‡Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel. email: raphy@macam98.ac.il

1

Spanning trees of connected graphs are a major topic of research in the area of graph algorithms

(see, e.g. [9]). The problem of finding a spanning tree that maximizes the number of leaves is

equivalent to the problem of computing γc(G), because a vertex subset is a connected dominating

set if and only its complement is (contained in) the set of leaves of a spanning tree.

The problem of connected domination would arise in “real life” in the following scenario. An

existing computer network with direct connections described by a graph G must have the property

that always any computer turned ‘on’ must be able to send a message to any other computer

turned ‘on’. One can make sure a computer is always on by connecting it to an (expensive) UPS

(unlimited power supply) source. We can meet the requirement by connecting only the computers

in a connected dominating set to such power sources.

In this paper we consider computational and extremal aspects of γc(G). Finding the maximum

number of leaves in a spanning tree of G is NP-hard (cf. [12] p. 206), so we will be content with

constructing a spanning tree having many leaves. The NP-hardness of the optimization problem

leads us to seek constructive proofs for related extremal problems. A constructive proof that all

graphs in a particular class have spanning trees with at least µ leaves becomes an algorithm to

produce such a tree for graphs in this class.

When G is a cycle, we can only guarantee 2 leaves. Let Gn,k be the class of simple connected

n-vertex graphs with minimum degree at least k. Let l(n, k) be the maximum m such that every

G ∈ Gn,k has a spanning tree with at least m leaves. Alternatively, define γc(n, k) = n− l(n, k) to

be the minimum m such that every G ∈ Gn,k has a connected dominating set of size at most m.

Finally, define γ(n, k) to be the minimum m such that each (not necessarily connected) n-vertex

graph with minimum degree at least k has a dominating set of size at most m.

The value l(n, k) is known for k ≤ 5. We have seen that l(n, 2) = 2. For arbitrary k, Cn

generalizes to a well-known graph in Gn,k having no tree with “very many” leaves. Let m = ⌊ n
k+1⌋.

Form cliques R1, . . . , Rm of orders k + 1 and k + 2, altogether having n vertices. Place the cliques

in a ring. Delete one edge xiyi from each Ri, and restore minimum degree k by adding edges of the

form xiyi+1. In forming a spanning tree of this graph, there must be a non-leaf other than {xi, yi}
in each Ri, except possibly for two of them. The construction yields l(n, k) ≤ ⌈k−2

k+1n⌉+ 2.

This construction is essentially optimal when k is small. Linial and Sturtevant (unpublished)

proved that l(n, 3) ≥ n
4 + 2. For k = 4, the optimal bound l(n, 4) ≥ 2

5n + 8
5 was proved in Griggs

and Wu [13] and in Kleitman and West [19] (two small graphs have no tree with 2
5n+2 leaves). In

[13] it is also proved that l(n, 5) ≥ 3
6n+2. These proofs are algorithmic, constructing a tree with at

least this many leaves in polynomial time. For k ≥ 6 the exact value of l(n, k) remains unknown.

The example above was thought to be essentially optimal for all k. However, Alon [1] proved

by probabilistic methods that when n is large there exists a graph with minimum degree k and

with no dominating set of size less than (1 + ok(1))
1+ln(k+1)

k+1 n. Since connected dominating sets

are also dominating sets, this shows that γc(n, k) ≥ (1 + ok(1))
1+ln(k+1)

k+1 n. Equivalently, l(n, k) ≤

2

(1 + ok(1))
k−ln(k+1)

k+1 n.

A well-known result of Lovász [21] (see [2]) states that γ(G) ≤ n1+ln(k+1)
k+1 for every n-vertex

graph G with minimum degree k > 1. Together with Alon’s result, this yields γ(n, k) = (1 +

ok(1))n
1+ln(k+1)

k+1 . Thus γ(n, k) is asymptotically determined (it is known exactly for k ≤ 3 [22, 24]).

Kleitman and West [19] gave an upper bound for γc(n, k) that is only 2.5 times larger than

Alon’s lower bound. They proved that if n is sufficiently large, then γc(n, k) ≤ C ln k
k n, where C is

very close to 2.5. Our main result in this paper improves this result of Kleitman and West and is

asymptotically sharp. We summarize our result in the following theorem:

Theorem 1.1

γc(n, k) = (1 + ok(1))n
ln(k + 1)

k + 1
.

An interesting consequence of Theorem 1.1 is that γc(n, k) behaves essentially like γ(n, k) when

k is sufficiently large.

We supply two proofs for Theorem 1.1. The first uses a probabilistic approach similar to the

proof of the Lovász bound in [2] and to the proof in [6]. Our proof here is more complicated since we

need to use several large deviation inequalities, along with a sharpened form of a result of Duchet

and Meyniel [11]. The proof yields the following technical statement, which immediately implies

Theorem 1.1.

Theorem 1.2 If G is an n-vertex connected graph with minimum degree k, then

γc(G) ≤ n
145 + 0.5

√
ln(k + 1) + ln(k + 1)

k + 1
.

Furthermore, there exists a polynomial time randomized algorithm that generates a connected dom-

inating set this good, with constant probability. This algorithm can also be implemented in parallel

in RNC.

Our second proof for Theorem 1.1 yields a purely sequential algorithm for finding a spanning

tree with the required number of leaves. At each stage in the algorithm we maintain a subtree of

the final spanning tree, and vertices are added to the tree in ways that tend to increase the number

of leaves. Unlike the first proof, this algorithm cannot be parallelized, but it has the advantage of

being purely deterministic. We summarize this algorithm in the following theorem:

Theorem 1.3 Given ϵ > 0, and given k sufficiently large in terms of ϵ, every connected simple

graph with order n and minimum degree k has a spanning tree with more than (1− (1+ϵ) ln k
k)n leaves.

Furthermore, there is a polynomial time algorithm that constructs such a tree.

Note that Theorem 1.1 follows also from Theorem 1.3. In the next section we prove Theorem

1.2, and in the final Section 3 we prove Theorem 1.3.

3

2 The probabilistic proof

We begin with a lemma that sharpens a result of Duchet and Meyniel [11], who proved that

γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

Lemma 2.1 Let G be a connected graph. If X is a dominating set of G that induces a subgraph

with t components, then γc(G) ≤ |X|+ 2t− 2. In particular,

γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

Proof: It suffices to show that whenever t > 1, we can find at most two vertices in V \ X such

that adding them to X decreases the number of components by at least one. Partition X into parts

X1 and X2 such that X1 and X2 have no edge connecting them. Let x1 ∈ X1 and x2 ∈ X2 be two

vertices whose distance in G is the smallest possible. The distance between x1 and x2 is at most

3, because otherwise there is a vertex (in the middle of a shortest path from x1 to x2) that has

distance at least 2 from both X1 and X2 and is undominated. 2

Proof of Theorem 1.2: The theorem clearly holds for k < 100, so we assume k ≥ 100. Let

p = ln(k+1)
k+1 ; note that 0 ≤ p < 1. Pick each vertex of V , randomly and independently, with

probability p. Let X denote the set of vertices that are picked. Let Y denote the set of vertices

that are not picked and have no picked neighbor. Finally, let z denote the number of components

in the subgraph induced by X. Clearly, x = |X|, y = |Y | and z are random variables. By definition,

S = X ∪ Y is a dominating set of G. Since S has at most z + y components, Lemma 2.1 yields

γc(G) ≤ x + y + 2(z + y) − 2 = x + 2z + 3y − 2. It therefore suffices to show that with positive

probability,

x+ 2z + 3y − 2 ≤ n
145 + 0.5

√
ln(k + 1) + ln(k + 1)

k + 1
. (1)

Claim 1:

Prob

[
x > n

ln(k + 1)

k + 1
+ n

0.5
√
ln(k + 1)

k + 1

]
< 0.91.

Proof of Claim 1: The expectation of x is E[x] = np = n ln(k+1)
k+1 . We shall use the following

large deviation result attributed to Chernoff (cf. [2], Appendix A):

Prob
[
x− E[x] > a

]
< exp

(
−a2/(2pn) + a3/(2p2n2)

)
.

(We use here the fact that x is a sum of n independent indicator random variables each having

probability p of success). Substituting n
0.5
√

ln(k+1)

k+1 for a in this inequality yields

Prob

[
x > n

ln(k + 1)

k + 1
+ n

0.5
√
ln(k + 1)

k + 1

]
< exp

− n2 ln(k + 1)

8(k + 1)2n ln(k+1)
k+1

+
n3 ln3/2(k + 1)

16(k + 1)3n2 ln
2(k+1)
(k+1)2


4

= exp

(
− n

8(k + 1)
+

n

16(k + 1)
√
ln(k + 1)

)
≤ exp

(
−1

8
+

1

16
√
ln(k + 1)

)

≤ exp

(
−1

8
+

1

16
√
ln(101)

)
< 0.91.

In the last inequality we used n ≥ k + 1 ≥ 101. This establishes Claim 1.

Claim 2:

Prob

[
y > 25

n

k + 1

]
< 0.04.

Proof of Claim 2: For each vertex v, the probability that v ∈ Y is exactly (1− p)dv+1 where dv

is the degree of v. Since dv ≥ k it follows that the expectation of y satisfies E[y] ≤ n(1− p)k+1. By

using the well-known inequality from elementary calculus(
1− ln(k + 1)

k + 1

)k+1

<
1

k + 1
,

we obtain E[y] < n/(k + 1). It now follows immediately from Markov’s inequality that

Prob

[
y > 25

n

k + 1

]
>

1

25
= 0.04.

This establishes Claim 2.

It is not easy to bound z directly. Instead, we will show that the total number of vertices in small

components in X is rather small. We say that a vertex v ∈ V is weakly dominated if v has fewer

than 0.1 ln(k+1) neighbors in X. We now bound the probability that a vertex is weakly dominated.

Let Xv denote the number of neighbors of v in X. Clearly,

E[Xv] = pdv ≥ pk =
ln(k + 1)

k + 1
k ≥ 100

101
ln(k + 1).

Claim 3:

Prob
[
Xv < 0.1 ln(k + 1)

]
< (

1

k + 1
)0.4.

Proof of Claim 3: Once again, we use a large deviation inequality. However, now we need to

bound the lower tail, so we use the inequality (cf. [2] Appendix A)

Prob
[
Xv − E[Xv] < −a

]
< exp

(
− a2

2E[Xv]

)
,

which is valid for every a > 0. Using a = (1− 101/1000)E[Xv], we obtain

Prob
[
Xv < 0.1 ln(k + 1)

]
≤ Prob

[
Xv <

101E[Xv]

1000

]
= Prob

[
Xv − E[Xv] < −(1− 101

1000
)E[Xv]

]

5

< exp

(
−(1− 101/1000)2E[Xv]

2

2E[Xv]

)
= exp

(
−(1− 101/1000)2

2
E[Xv]

)

< exp

(
− ln(k + 1)

100

101

(1− 101/1000)2

2

)
<

(
1

k + 1

)0.4

.

This establishes Claim 3.

The event that a vertex v is picked for X is independent of the event that v is weakly dominated.

Therefore, by Claim 3, the probability that a vertex is weakly dominated and in X is

Prob
[
v ∈ X and Xv < 0.1 ln(k + 1)

]
< p

(
1

k + 1

)0.4

=
ln(k + 1)

(k + 1)1.4
.

Thus, the expected number of weakly dominated vertices in X is at most

n
ln(k + 1)

(k + 1)1.4
.

Let U be the set of weakly dominated vertices in X. By Markov’s inequality,

Prob

[
|U | > 20n

ln(k + 1)

(k + 1)1.35

]
<

n ln(k+1)
(k+1)1.4

20n ln(k+1)
(k+1)1.35

=
1

20(k + 1)0.05
≤ 1

20 · 1010.05
< 0.04.

From Claim 1, Claim 2, and the last inequality, it follows that with probability at least

1− 0.91− 0.04− 0.04 = 0.01 > 0

all of the following events happen simultaneously:

x ≤ n
ln(k + 1)

k + 1
+ n

0.5
√
ln(k + 1)

k + 1
, y ≤ 25

n

k + 1
, |U | ≤ 20n

ln(k + 1)

(k + 1)1.35
. (2)

We now fix a choice of X where all these events happen simultaneously. Every component of

X that contains no weakly dominated vertex has size at least 0.1 ln(k+ 1). Thus, the number z of

components in X satisfies

z ≤ x

0.1 ln(k + 1)
+ 20n

ln(k + 1)

(k + 1)1.35
≤

n ln(k+1)
k+1 + n

0.5
√

ln(k+1)

k+1

0.1 ln(k + 1)
+ 20n

ln(k + 1)

(k + 1)1.35

≤ 10n

k + 1
+

5n

k + 1
+

20n

k + 1
=

35n

k + 1
. (3)

(We have used that k ≥ 100 implies (k + 1)0.35 > ln(k + 1)). Finally, (2) and (3) yield

x+ 2z + 3y − 2 < n
145 + 0.5

√
ln(k + 1) + ln(k + 1)

k + 1
,

6

as required in (1). 2

We end this section by describing a parallel implementation of Theorem 1.2. The reader unfa-

miliar with the PRAM model of parallel computing is referred to [18]. Let M be a Boolean array

of order n. At the end of the algorithm, the set of indices with M(i) = True will be a connected

dominating set in G. In constant parallel time, initialize all of M to False. Next, each vertex picks

itself for X with probability p. If v ∈ X, then we put M(v) = True. Since each vertex is selected

independently, this step also runs in constant parallel time.

Each v /∈ X now checks to see whether all its neighbors are also not in X (the set of such vertices

is denoted Y in the proof). In the CRCW PRAM model this test can also be done in constant

time (it is a boolean “and” operation for each v /∈ X). If v ∈ Y , then we also put M(v) = True.

Clearly, X ∪ Y is a dominating set.

Using well-known NC algorithms for finding components (such as [27]), we can compute the

components of the subgraph of G induced by X ∪ Y in O(log n) parallel time on a CRCW PRAM.

If there is only one component, then we are finished.

Otherwise, we proceed as follows: We compute distances joining all pairs of vertices of G

(namely, the n ·n matrix A of the distances). It is well known that computing A can be done in NC

using iterated matrix multiplication. We now create a graph H whose vertices are the components

of X ∪ Y , and whose edges connect two components C1 and C2 of X ∪ Y if and only if for some

c1 ∈ C1 and some c2 ∈ C2, the distance between c1 and c2 is at most 3. Given A, one can clearly

construct H in constant time on a CRCW PRAM.

By the proof of Lemma 2.1, H is connected. Thus, H has a spanning tree. Spanning trees are

also known to be computed in NC (in fact, spanning trees are by-products of the algorithms that

find components). Since H has at most z+y vertices (recall that z is the number of components of

X), the spanning tree has at most z+ y− 1 edges. Each such edge corresponds to a path of length

3 between two components of X ∪ Y . Thus, the total number of internal vertices in these paths is

at most 2(z + y − 1). If u is such an internal vertex we put M(u) = True. This can be done in

constant time on a CRCW PRAM.

Thus, we conclude that finding a connected dominating set of G is in NC. The proof of Theorem

1.2 shows that with constant positive probability, this set has size at most n
145+0.5

√
ln(k+1)+ln(k+1)

k+1 .

This proves the existence of the desired RNC algorithm. In fact, the overall running time is O(log n)

on a CRCW PRAM using a polynomial number (in fact, O(n3)) parallel processors.

3 The deterministic proof

Before giving the proof of Theorem 1.3, we describe the method as it applies to the iterative

construction of a tree with at least n/4 + 1.5 leaves when k = 3. When G ̸= K4, we can start with

7

x x x

y

O1 O2 O3

Figure 1: The admissible operations for k = 3.

a star at a vertex of degree at least 4 including all its neighbors, or with a double star where both

centers have degree 3. (A double star is a tree with exactly two adjacent non-leaves called centers).

Let T denote the current tree, with s vertices and l leaves. If x is a leaf of T , then the external

degree of x, denoted d′(x), is the number of neighbors it has in G − V (T). An expansion at x is

performed by adding to T the d′(x) edges from x to N(x)−V (T). We grow T by operations, which

are sequences of expansions. After each operation, all edges from T to G − V (T) are incident to

leaves of T .

A leaf x of T with d′(x) = 0 is dead; no expansion is possible at a dead leaf, and it must be a

leaf in the final tree. Let m be the number of dead leaves in T . We call an operation admissible if

its effect on T satisfies the “augmentation inequality” 3∆l +∆m ≥ ∆s, where ∆l,∆m,∆s denote

the change in the numbers of leaves, dead leaves, and vertices, respectively, in T .

If T is grown to a spanning tree with L leaves by admissible operations, then all leaves eventually

die. We begin with 4 leaves and 6 vertices if G is 3-regular (the double-star case above); otherwise

with r leaves and r+1 vertices for some r > 3. In any case, we start with at least four leaves, so the

total of ∆m from the augmentation inequalities for the operations is at most L− 4. Summing the

augmentation inequalities over all operations yields 3(L− 4)+ (L− 4) ≥ n− 6 if G is 3-regular and

3(L− r)+(L−4) ≥ n− r−1 otherwise. These simplify to 4L ≥ n+6 and 4L ≥ n+2r+1 ≥ n+7,

respectively, which yield L ≥ n/4 + 1.5.

The proof for k = 3 is now completed by providing a set of admissible operations that can be

applied until T absorbs all vertices. The three operations suggested in Figure 1 suffice. If some

leaf x of the current tree has external degree at least two, we perform operation O1, which is an

expansion at x. Otherwise, if two leaves x and y of T have external degree one, and both have the

same unique neighbor outside of T , we perform an expansion at one of them, say x. Note that y

becomes dead after the expansion. This is operation O2. The only remaining case is where some

leaf has external degree 1, and the unique neighbor outside of T , denoted y, has no other neighbor

in T . So, y has at least two other neighbors outside of T . We perform an expansion at x and

then an expansion at y. This is operation O3. Note that all operations satisfy the augmentation

inequality.

We use the notions of deadness, augmentation inequality, and admissible operation to develop

8

x x
Oi Pi

= i = i

t ≥ βi

Figure 2: The operations Oi and Pi.

an algorithm to grow a tree with many leaves when the minimum degree is large. Our operations

generalize operations O1 and O3 in Figure 1.

Proof of Theorem 1.3: We describe a polynomial time algorithm that grows the desired tree.

Beginning with a star at a vertex of degree k, we again proceed by expanding the current tree

T , which has order s, leaf count l, and external degree d′(x) at each leaf x. We seek operations

satisfying the augmentation inequality r∆l+∆M ≥ (r− 1)∆s, where the parameter r depends on

k and M is a measure of total “deadness” of leaves. The final value of M is a multiple counting of

the leaves of the final tree. Each expansion at a leaf adds all outside neighbors, and an operation

with one or more expansions is admissible if it satisfies the augmentation inequality.

For coefficients r > α0 ≥ α1 ≥ · · · ≥ αr = 0 to be chosen later, we define M =
∑r−1

i=0 αimi,

where T has mi leaves with external degree i. For the final tree, M = α0L. If we grow a tree

by admissible operations, then summing the augmentation inequalities yields r(L − k) + α0L ≥
(r− 1)(n− k− 1). Solving for L yields L ≥ (r−1)n+k+1−r

r+α0
. We choose r < k; this permits dropping

the additive constant. We then divide top and bottom by r and apply 1/(1 + α0
r) > 1 − α0

r to

obtain L > (1− 1
r)(1−

α0
r)n > (1− 1+α0

r)n.

We define operations Oi and Pi for each i, applied only when the maximum external degree of

current leaves is i. The operation Oi is a single expansion at a vertex of external degree i. The

operation Pi is expansion at a vertex of external degree i and expansion at one of its new neighbors

that introduces the maximum number of additional leaves. The operations are depicted in Figure 2.

When the maximum external degree is i, we perform a Pi if the number of vertices introduced by the

second expansion is at least βi = 2r+αi− i; if no such Pi exists, we apply an Oi. By construction,

some such operation is always available until we grow a spanning tree. It remains to choose r and

the constants αi so that all operations are admissible and so that (1 + α0)/r < (1 + ϵ) ln k/k.

The net change to M by Oi or Pi includes −αi for the loss of x as a leaf; other changes are

gains. We ignore contributions to M from deadness of new leaves, since we have no control over

their external degree. For each edge between a new vertex y and a current leaf z other than x, we

gain αj−1 −αj ≥ 0 if this edge reduces d′(z) from j to j− 1. Note that j ≤ i. We choose constants

9

c1 ≥ · · · ≥ cr ≥ 0 and define αi to be
∑r

j=i+1 cj . This yields αj−1 − αj = cj ≥ ci if j ≤ i. Hence

∆M ≥ −αi + qci, where q is the number of edges from new vertices to old leaves other than x.

It thus suffices to show that ∆s− r(∆s−∆l)−αi+ ciq ≥ 0 for each operation performed when

the maximum external degree is i. If when applying Pi the second expansion introduces t leaves,

then ∆s = t+ i and ∆l = t+ i− 2. The desired inequality becomes t+ i− 2r−αi + ciq ≥ 0, which

holds since we use Pi only when t ≥ 2r + αi − i.

When we apply Oi at x, our inability to apply Pi ensures that each of the i new vertices

has at most 2r + αi − i neighbors not yet in T and at most i neighbors among x and the other

new vertices. Hence it has at least k − 2r − αi edges to other leaves of T . With i new vertices,

this yields q ≥ i(k − 2r − αi). With ∆s = i and ∆l = i − 1, the desired inequality becomes

cii(k − 2r − αi) ≥ r − i+ αi.

We must choose r and nonincreasing {ci} to satisfy this inequality for all i. We set ci = x/i

for 1 ≤ i ≤ r, where x is a positive constant to be chosen in terms of ϵ. The desired inequality

becomes x(k − 2r − αi) ≥ r − i + αi. Since αi ≥ αi+1 and i < i + 1, it suffices to choose r so

that the inequality holds when i = 1, where it becomes k − (2 + 1/x)r ≥ (1 + 1/x)α1 − 1/x. Our

choice of ci yields α0 = x
∑r

i=1
1
i ≤ x[ln r + (1/2r) + 0.577]. (Knuth [20][pages 73-78] discusses∑r

i=1 1/i). Similarly, α1 ≤ x[ln r + (1/2r) − 0.423] < x ln r. Hence it suffices to choose r so that

k − (2 + 1/x)r ≥ (1 + x) ln r. We choose r = ⌈ k
2+1/x − 1+x

2 ln k⌉; this satisfies the last inequality.

We have achieved 1+α0
r = (2x+1) ln k

k + o(ln k
k). By making x < ϵ/2 and k sufficiently large, we

have the desired lower bound on the number of leaves in the final tree. 2

Acknowledgment

The authors wish to thank Noga Alon, Teresa W. Haynes and Jerry Griggs for helpful references.

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs and Combinatorics 6 (1990),

1–4.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New York,

1991.

[3] L. Arseneau, A. Finbow, B. Hartnell, A. Hynick, D. Maclean and L. O’sullivan, On minimal

connected dominating sets, JCMCC 24 (1997), 185–191.

[4] C. Bo and B. Liu, Some inequalities about the connected domination number, Disc. Math. 159

(1996), 241–245.

10

[5] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.

[6] Y. Caro, On k-domination and k-transversal numbers of graphs and hypergraphs, Ars Combin.

29A (1990), 49-55.

[7] E.J. Cockayne, T.W. Haynes and S.T. Hedetniemi, Extremal graphs for inequalities involving

domination parameters, Manuscript, 1997.

[8] C.J. Colbourn and L.K. Stewart, Permutation graphs: Connected domination and Steiner

trees, Discrete Math. 86 (1990), 179-189.

[9] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algorithms, The MIT Press,

1990.

[10] A. D’Atri and M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected domina-

tion, SIAM J. Comput. 17 (1988), 521–538.

[11] P. Duchet and H. Meyniel, On Hadwiger’s number and stability numbers, Annal. Disc. Math.

13 (1982), 71–74.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of

NP -Completeness, W. H. Freeman and Company, New York, 1979.

[13] J.R.Griggs and M. Wu, Spanning trees in graphs with minimum degree 4 or 5, Disc. Math. 104

(1992), 167-183.

[14] T. Haynes, S.T. Hedetniemi and P. Slater, Domination in Graphs: The Theory, Marcel Dekker

Publishers, New York, 1997.

[15] T. Haynes, S.T. Hedetniemi and P. Slater, Domination in Graphs: Selected Topics, Marcel

Dekker Publishers, New York, 1997.

[16] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, In: Graph Theory and

Combinatorics, B. Bollobás ed. Academic Press, London 1984, pp. 209–218.

[17] S.T. Hedetniemi and R. Laskar, Bibliography of domination in graphs and some basic defini-

tions of domination parameters, Disc. Math. 86 (1990), 257–277.

[18] R.M. Karp and V. Ramachandran, Parallel algorithms for shared memory machines, in:

“Handbook of Theoretical Computer Science” Vol. A, Chapter 17, J. van Leeuwen ed., El-

sevier (1990), 871-941.

[19] D. J. Kleitman and D. B. West, Spanning trees with many leaves, SIAM J. Disc. Math. 4

(1991), 99-106.

11

[20] D.E. Knuth, The art of Computer Programming, Addison-Wesley, Reading, Mass. 1973.

[21] L. Lovász, On the ratio of optimal and integral fractional covers, Disc. Math. 13 (1975), 383–

390.

[22] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph

Theory 13 (1989), 749–762.

[23] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23

(1993), 59–69.

[24] B. Reed, Paths, stars and the number three, Combinatorics, Probability and Computing 5 (

1996), 267-276.

[25] E. Sampathkumar and H. Walikar, The connected domination number of a graph, Math. Phys.

Sci. 13 (1979), 607–613.

[26] L.A. Sanchis, On the number of edges of a graph with a given connected domination number,

Manuscript, 1998.

[27] Y. Shiloach and U. Vishkin, An O(log n) parallel connectivity algorithm, J. Algorithms 3 (1982),

57-63.

[28] K. White, M. Farber, and W.R. Pulleyblank, Steiner trees, connected domination and strongly

chordal graphs, Networks 15 (1985), 109-124.

12

