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Abstract

An edge-coloring of a connected graph is monochromatically-connecting if there is a monochro-

matic path joining any two vertices. How “colorful” can a monochromatically-connecting coloring

be? Let mc(G) denote the maximum number of colors used in a monochromatically-connecting

coloring of a graph G. We prove some nontrivial upper and lower bounds for mc(G) and relate it

to other graph parameters such as the chromatic number, the connectivity, the maximum degree,

and the diameter.

1 Introduction

An edge-coloring of a connected graph is a monochromatically-connecting coloring (MC-coloring, for

short) if there is a monochromatic path joining any two vertices. How “colorful” can an MC-coloring

be? This question is the natural opposite of the recently well-studied problem of rainbow-connecting

colorings [1, 2, 3, 4], where in the latter we seek to find an edge-coloring with minimum number of

colors so that there is a rainbow path joining any two vertices.

Let mc(G) denote the maximum number of colors used in an MC-coloring of a graph G. A

straightforward lower bound for mc(G) is m − n + 2 (throughout this paper n and m denote the

number of vertices and edges, respectively). Simply color the edges of a spanning tree with one color,

and the remaining edges may be assigned other distinct colors. In particular, mc(G) = m − n + 2

whenever G is a tree. However, some graphs can be colored with more colors. Indeed, in the extremal

case one has mc(Kn) = m =
(
n
2

)
, and clearly G = Kn is the only graph having mc(G) = m.

While trees have mc(G) = m−n+ 2, our first result shows that there are dense graphs that still

meet the lower bound.

Theorem 1 Let G be a connected graph with n > 3. If G satisfies any of the following properties,

then mc(G) = m− n+ 2.

a. G (the complement of G) is 4-connected.
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b. G is triangle-free.

c. ∆(G) < n − 2m−3(n−1)
n−3 . In particular, this holds if ∆(G) ≤ (n + 1)/2, and this also holds if

∆(G) ≤ n− 2m/n.

d. Diam(G) ≥ 3.

e. G has a cut vertex.

Notice that none of the five properties in Theorem 1 imply any other property in the list. Moreover,

each of the stated conditions is sharp. The proof of Theorem 1 and constructions demonstrating the

sharpness of the conditions are given in Section 2.

The chromatic number dictates an upper bound on mc(G). In Section 3 it is proved that mc(G) ≤
m − n + χ(G). An important ingredient is proving that mc(G) = m − n + r when G is a complete

r-partite graph. Likewise, the connectivity dictates an upper bound on mc(G). It is proved that

if the connectivity is r, then mc(G) ≤ m − n + r + 1. We summarize these upper bounds in the

following theorem.

Theorem 2 Let G be a connected graph.

a. mc(G) ≤ m− n+ χ(G).

b. If G is not r-connected, then mc(G) ≤ m− n+ r.

Theorem 2 is proved in Section 3. Notice that Theorem 2 implies that mc(G) ≤ m− n+ δ(G) + 1.

Section 3 also contains a characterization of graphs for which mc(G) = m− n+ δ(G) + 1.

2 Graphs attaining the lower bound

An important property of an extremal MC-coloring (a coloring that uses mc(G) colors) is that each

color forms a tree. Indeed, if there is an MC-coloring that has a monochromatic cycle, it is possible to

choose any edge on this cycle and color it with a fresh color while still maintaining an MC-coloring.

Likewise, if the subgraph formed by the edges having a given color is disconnected, then a fresh color

can be assigned to all the edges of some component while still maintaining an MC-coloring. For the

rest of this paper we will use this fact without further mentioning it. For a color c, denote by Tc the

tree consisting of the edges colored c. We call Tc the color tree of the color c. The color c is nontrivial

if Tc has at least two edges. Otherwise, c is trivial. A nontrivial color tree with m edges is said to

waste m − 1 colors. The following lemma shows that one can always find an extremal MC-coloring

where, for any two nontrivial colors c and d, the corresponding trees Tc and Td intersect in at most

one vertex. Such an extremal coloring is called simple.

Lemma 2.1 Every connected graph G has a simple extremal MC-coloring.
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Proof: Consider an extremal MC-coloring with the most number of trivial colors. We prove that this

coloring must be simple. Let c and d be two nontrivial colors such that Tc and Td contain k common

vertices, with k ≥ 2. Let ec and ed denote the number of edges in Tc and Td, respectively. The

subgraphH consisting of the edges of Tc∪Td is connected; its number of vertices is (ec+1)+(ed+1)−k,

which equals ec + ed + 2− k. Now, instead of coloring the edges of H with c and d, color a spanning

tree of H with c, and give each of the remaining k− 1 edges of H fresh new colors. Clearly, the new

coloring is also an MC-coloring. Now, if k > 2 this new coloring uses more colors than our original

one, contradicting the fact that our original coloring was extremal. If k = 2 this new coloring uses the

same number of colors as our original one but has more trivial colors, contradicting the assumption.

The proof of Theorem 1 is split into four parts. In Theorem 3 it is proved that mc(G) = m−n+2

when G is 4-connected. In Theorem 4 it is proved that mc(G) = m− n+ 2 when G is triangle-free.

In Theorem 5 it is proved that mc(G) = m− n+ 2 when ∆(G) < n− (2m− 3(n− 1))/(n− 3). The

proof of the fact that mc(G) = m − n + 2 when diam(G) ≥ 3 is given in Proposition 6. Part (e) of

Theorem 1 is a special case of the second part of Theorem 2, whose proof is given in Section 3.

Theorem 3 If G is 4-connected, then mc(G) = m− n+ 2.

Proof: Let f be a simple extremal MC-coloring of G. Suppose that f consists of k nontrivial color

trees, denoted T1, . . . , Tk, and set ti = |V (Ti)|. As Ti has ti − 1 edges, it wastes ti − 2 colors. Hence,

it suffices to prove that
∑k

i=1(ti − 2) ≥ n− 2. The fact that G is connected implies that each vertex

must appear in some nontrivial color tree. Hence, if k = 1, then t1 = n and we are done, so assume

k ≥ 2.

Partition the set of nontrivial color trees into two parts, those with ti ≥ 4 (large trees) and those

with ti = 3 (small trees, isomorphic to a star with two leaves). Assume that there are ` large trees

and s = k − ` small trees, and that T1, . . . , T` are the large trees. Note that no Ti is spanning.

Partition V (G) into three types of vertices as follows: V1 consists of all the vertices that appear

only in small trees; V2 consists of all the vertices that appear in at least two large trees, or appear in

a large tree and also as a leaf of a small tree; V3 consists of all the vertices that appear in precisely

one large tree and possibly in small trees, but only as non-leaves. Indeed, V1 ∪V2 ∪V3 = V (G), since

each vertex appears in some nontrivial tree.

Each v ∈ V1 appears in at least 4 small trees as a leaf. This follows from the fact that G has

minimum degree at least 4, and hence v has at least 4 nonneighbors in G. A small tree in which v is

a leaf can monochromatically connect v to precisely one nonneighbor. In particular, it follows that

the number, s, of small trees satisfies s ≥ 2|V1|.
We also claim that each large tree Ti contributes at least 4 vertices to V2. If V (Ti) ⊂ V2, then we

are done. Otherwise, let v ∈ V (Ti) ∩ V3. All of the neighbors of v in G are in Ti. This means that
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V (Ti) ∩ V2 disconnects G. Indeed, V (Ti) ∩ V2 separates V (Ti) ∩ V3 from the set of vertices outside

Ti (recall that Ti is not spanning). Since G is 4-connected, this implies that |V (Ti) ∩ V2| ≥ 4.

For a large tree, let |V (Ti) ∩ V2| = mi. Summing the orders of the large trees, we have

∑̀
i=1

ti = |V3|+
∑̀
i=1

mi = n− |V1| − |V2|+
∑̀
i=1

mi .

Consider first the case where |V2| ≤ (
∑`

i=1mi)/2. Recalling that s ≥ 2|V1|, we have

k∑
i=1

(ti − 2) = (
∑̀
i=1

ti)− 2`+ s = n− |V1| − |V2|+ (
∑̀
i=1

mi)− 2`+ s ≥

n− s

2
−
∑`

i=1mi

2
+ (
∑̀
i=1

mi)− 2`+ s = n+
s

2
+

∑`
i=1mi

2
− 2` ≥ n+

s

2
+

4`

2
− 2` = n+

s

2
> n− 2

as required.

Consider next the case where |V2| > (
∑`

i=1mi)/2. For v ∈ V2, let x(v) be the number of large trees

v appears in, and let y(v) be the number of small trees in which v is a leaf. By the definition of V2,

x(v)+y(v) ≥ 2. On the other hand,
∑

v∈V2
x(v) =

∑`
i=1mi. Hence,

∑
v∈V2

y(v) ≥ 2|V2|−(
∑`

i=1mi).

Since each v ∈ V1 appears in at least 4 small trees as a leaf and since each small tree has two leaves,

the number of small trees is at least 2|V1|+ |V2|−(
∑`

i=1mi)/2. Hence, |V2| ≤ s−2|V1|+(
∑`

i=1mi)/2.

We thus have

k∑
i=1

(ti − 2) = (
∑̀
i=1

ti)− 2`+ s = n− |V1| − |V2|+ (
∑̀
i=1

mi)− 2`+ s ≥

n−s−
∑`

i=1mi

2
+|V1|+(

∑̀
i=1

mi)−2`+s = n+

∑`
i=1mi

2
−2`+|V1| ≥ n+

4`

2
−2`+|V1| = n+|V1| > n−2 ,

as required.

One cannot hope to strengthen Theorem 3 by replacing the 4-connectedness requirement of G

with 3-connectedness. We construct a graph G such that G is 3-connected and mc(G) ≥ m− n+ 4.

The complement G of our graph G is an edge-disjoint union of 8 copies of K6 −C6, obtained by the

following construction. Number the vertices of G by {0, . . . , 35}. Start by placing 6 copies of K6−C6

on the vertices {5i, 5i+ 1, . . . , 5i+ 5} for i = 0, . . . , 5 (in this numbering vertex 30 is vertex 0). For

each copy, the “missing” C6 is (5i, 5i + 2, 5i + 4, 5i + 1, 5i + 5, 5i + 3). Place two additional copies

of K6 − C6 as follows: the first copy is on the vertices {4, 14, 24, 31, 33, 35}, where the missing C6 is

(4, 35, 14, 31, 24, 33); the second copy is on the vertices {9, 19, 29, 30, 32, 34}, where the missing C6 is

(9, 30, 19, 32, 29, 34). The graph G is depicted in Figure 1. It is easy to verify that it is 3-connected.

Consider its complement G. Each of the 8 copies of K6 − C6 in G becomes a C6 in G, so one can
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Figure 1: The 3-connected complement of a graph with mc(G) ≥ m− n+ 4.

pick a path on six vertices in each of them. Color each of these paths monochromatically, with a

distinct color for each path, using altogether 8 colors. The other edges of G receive fresh distinct

colors. This is an MC-coloring, and the number of wasted colors is 32, which equals n − 4. Hence,

mc(G) = m− n+ 4, as required.

Theorem 4 If G is K3-free, then mc(G) = m− n+ 2.

Proof: Let f be a simple extremal MC-coloring of G. Suppose that f consists of k nontrivial color

trees, denoted T1, . . . , Tk, where ti = |V (Ti)|. As Ti has ti − 1 edges, it wastes ti − 2 colors. Hence,

it suffices to prove that
∑k

i=1(ti − 2) ≥ n− 2. If G has a vertex with degree n− 1, then G must be

a star and we are done. Otherwise, each vertex appears in at least one of the Ti’s.

Consider first the case where every vertex appears in at least two distinct nontrivial color trees.

In this case we have
∑k

i=1 ti ≥ 2n. So, if k ≤ n/2 + 1, we have
∑k

i=1(ti − 2) ≥ 2n − 2k ≥ n − 2,

and we are done. Assume therefore that k > n/2 + 1. Since G is triangle-free, it contains at most

n2/4 edges. Hence, G contains at least
(
n
2

)
− n2/4 edges. Since Ti can monochromatically connect

at most
(
ti−1
2

)
pairs of nonneighbors in G, we must have

k∑
i=1

(
ti − 1

2

)
≥
(
n

2

)
− n2/4 . (1)

Assume that
∑k

i=1(ti−1) < n−2+k. As each Ti is nontrivial, we have ti−1 ≥ 2. By straightforward

convexity, the expression
∑k

i=1

(
ti−1
2

)
, subject to ti−1 ≥ 2, is maximized when k−1 of the ti’s equal

3 and one of the ti’s, say tk, is as large as it can be, namely tk − 1 is the largest integer smaller than
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n− 2 + k − 2(k − 1) = n− k. Hence, tk − 1 = n− k − 1. Even in this extremal case, we have

k∑
i=1

(
ti − 1

2

)
≤ (k − 1) +

(
n− k − 1

2

)
<

(
n

2

)
− n2/4 ,

where we have used the fact that k > n/2 + 1. As the last inequality contradicts (1), our assumption

that
∑k

i=1(ti − 1) < n− 2 + k is false, and hence
∑k

i=1(ti − 2) ≥ n− 2 as required.

It may now be assumed that there are vertices that appear in unique nontrivial color trees.

Assume first that v appears only in Ti and u appears only in Tj , with j 6= i. If Ti and Tj are disjoint,

then let w ∈ V (Tj) be a neighbor of u. Now {v, u, w} induces a triangle in G, a contradiction. So Ti

and Tj are not disjoint, and since f is simple, |V (Ti) ∩ V (Tj)| = 1. Let w be their unique common

vertex. If w is not a neighbor of u in Tj , then there is some other neighbor of u in Tj , say u′. Now,

as before, {v, u, u′} induces a triangle, a contradiction. It may now be assumed that w is a neighbor

of u, and, symmetrically, it may be assumed that w is a neighbor of v. Now, {u, v, w} induces a

triangle, a contradiction.

It may now be assumed that all the vertices that appear in a single nontrivial color tree are all

in the same tree, say T1. Let v ∈ V (T1) appear only in T1, and let w ∈ V (T1) be a neighbor of v.

Let u ∈ V (T2), where u /∈ V (T1). If u and w are adjacent, then {v, w, u} induces a triangle, which

is a contradiction. Otherwise, there is some other tree Tj that contains both u and w. This implies

that V (T1) ∩ V (Tj) = {w}. Let u′ ∈ V (Tj) be a neighbor of u. Now {v, u, u′} induces a triangle,

which is a contradiction, and we are done.

One cannot hope to strengthen Theorem 4 by replacing the triangle-freeness requirement with

K4-freeness. The graph K1 ∨ Pn−1 composed of a path with n− 1 vertices and an additional vertex

connected to all the vertices of the path is a K4-free graph with mc(G) ≥ m − n + 3 (in fact,

mc(G) = m− n+ 3 in this case). Color the n− 2 edges of the path with a single color and each of

the remaining n− 1 edges with distinct colors. This is an MC-coloring using m− n+ 3 colors.

Theorem 5 If ∆(G) < n− 2m−3(n−1)
n−3 , then mc(G) = m− n+ 2.

Proof: Let d = ∆(G). The case d = 2 of the theorem is trivial, so assume d ≥ 3.

Let f be a simple extremal MC-coloring of G with the maximum possible number of trivial colors,

and assume that no color tree is spanning (otherwise mc(G) = m−n+2 and we are done). For every

color tree T and for every vertex v /∈ T , we have deg(v) ≥ |T |. Consider the monochromatic paths

(including single edges) from v to the |T | vertices of T . These paths are internally vertex disjoint

since f is simple. Hence, deg(v) ≥ |T |. In particular, no tree has more than d vertices.

Suppose now that mc(G) ≥ m− n+ 3. Clearly, in this case, f contains at most n− 3 nontrivial

trees. Let T1, . . . , Tk denote all the nontrivial trees in f . We claim that
∑k

i=1 |E(Ti)| ≤ n + k − 3.

Suppose
∑k

i=1 |E(Ti)| ≥ n + k − 2. Consider the subgraph G′ consisting of the union of the Ti and
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suppose that it has r components. Take a spanning tree in each component and give its edges a new

color. Also give all the other edges of G′ fresh distinct colors. The new coloring of G′ uses at least

k − 2 + 2r ≥ k colors. So, it either uses more than k colors, or uses k colors but more trivial colors,

contradicting the assumption on f . Thus,
∑k

i=1 |E(Ti)| ≤ n+k−3. Each Ti can monochromatically

connect at most
(|E(Ti)|

2

)
independent pairs of vertices. The total number of independent pairs to be

monochromatically connected is
(
n
2

)
−m, so(
n

2

)
−m ≤

k∑
i=1

(
|E(Ti)|

2

)
.

We must optimize
∑k

i=1

(|E(Ti)|
2

)
subject to |E(Ti)| ≤ d − 1 and to

∑k
i=1 |E(Ti)| ≤ n + k − 3.

This quantity reaches its maximum when all but at most one of the |E(Ti)| equal d − 1; hence

n+ k − 3 ≥ (k − 1)(d− 1) + q for some q ≤ d− 1. This implies that k − 1 ≤ (n− 2− q)/(d− 2). It

follows that(
n

2

)
−m ≤ n− 2− q

d− 2

(
d− 1

2

)
+

(
q

2

)
=

(n− 2)(d− 1)

2
− q

2
(d− q) ≤ (n− 3)(d− 1)

2
.

This implies that d ≥ n − (2m − 3(n − 1))/(n − 3), contradicting the assumption. Hence, we must

have mc(G) = m− n+ 2.

Theorem 5 gives, in particular, that for n ≥ 3, if ∆(G) ≤ (n+1)/2, then mc(G) = m−n+2. The

following example shows that this is tight. Let G have 2s− 2 vertices and be formed from Ks,s−2 by

adding a path Ps in the larger side of Ks,s−2. Color this path with the color 1, and color a star with

center at the larger side and s− 2 leaves in the smaller side with the color 2. The remaining colors

are trivial. This is an MC-coloring with m−n+ 3 colors, while the maximum degree is s = n/2 + 1.

This section ends with a short proof showing that diameter at least 3 implies mc(G) = m−n+2.

Proposition 6 If diam(G) ≥ 3, then mc(G) = m− n+ 2.

Proof: Suppose u and v are two vertices having distance at least 3. Let X be the set of neighbors of

u, and let Y = V (G)\ (X ∪{u, v}). Put x = |X| and y = n−2−x = |Y |. Let f be a simple extremal

coloring, and let T be the nontrivial color tree containing both u and v. Suppose T contains t edges

(note that t ≥ 3), and thus T contains precisely t− 1 vertices of X ∪ Y . Suppose that T contains tx

vertices of X and ty = t−1− tx vertices of Y . Thus, T does not cover x− tx vertices of X and it does

not cover y − ty vertices of Y . The coloring f must therefore contain trees R1, . . . , Rr connecting u

to the y − ty uncovered vertices of Y . Since f is simple, any two of these trees intersect only at u.

Since each of these trees must contain a vertex of X, the total number of edges of R1, . . . , Rr is at

least y− ty + r. Similarly, f contains trees Q1, . . . , Qq connecting v to the x− tx vertices of X (these

trees are all distinct from the trees R1, . . . , Rr since no other tree but T may contain both u and v).

The total number of edges of Q1, . . . , Qq is at least x − tx + q. The sum of the waste of the trees
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T,R1, . . . , Rr, Q1, . . . , Qq is at least (t− 1) + (y− ty) + (x− tx) = y+ x, which equals n− 2, showing

that mc(G) = m− n+ 2, as required.

3 Upper bounds

We have already seen that mc(G) = m−n+ 2 when G is bipartite. More generally, it will be shown

that if χ(G) = r, then mc(G) ≤ m − n + r. We first consider complete r-partite graphs and then

turn to other r-chromatic graphs.

Theorem 7 If G is a complete r-partite graph, then mc(G) = m− n+ r.

Proof: The case r = 2 is a special case of Theorem 4, so assume r ≥ 3. Consider a simple extremal

MC-coloring. We claim that no color tree Tc can have vertices in more than two vertex classes.

Suppose that V (Tc) intersects t vertex classes, say V1, . . . , Vt, and that t ≥ 3. Let Pi = V (Tc) ∩ Vi
and pi = |Pi|.

Observe that Tc has (
∑t

i=1 pi) − 1 edges, and since the coloring is simple, all other edges of G

induced by
⋃t

i=1 Pi are of trivial trees. Overall,
⋃t

i=1 Pi contains (
∑

1≤i<j≤t pipj) − (
∑t

i=1 pi) + 2

colors. We change the coloring induced by
⋃t

i=1 Pi. One vertex from Pi will be adjacent to all vertices

of Pi+1 by a fresh color, call it ci, for i = 1, . . . , t (cyclically, that is, a vertex of Pt is adjacent to all

other vertices of P1 by color ct). All other edges induced by
⋃t

i=1 Pi receive trivial colors. The new

coloring is also an MC-coloring, but it now uses (
∑

1≤i<j≤t pipj)− (
∑t

i=1 pi) + t colors, contradicting

the assumption that our original coloring is extremal.

So, if f is a simple extremal MC-coloring, then each color tree intersects precisely two vertex

classes. We further claim that it is possible to find such an f in which each color tree is a star.

Suppose that some Tc intersects vertex classes V1 and V2 with at least two vertices in each, say

pi ≥ 2 vertices in Vi. Let Pi denote the corresponding sets of vertices in these classes. Since r ≥ 3,

there is a vertex v in V3, and all the edges from v to P1 ∪ P2 are of different colors, as f is simple.

Recolor G so that a vertex from P1 is adjacent to all vertices of P2 by one color and v is adjacent to

all vertices of P1 by another color, say color d. Observe that the new tree Td is a star whose center

is v. All the other edges induced by P1 ∪ P2 ∪ {v} are colored with other distinct colors.

We have obtained a new extremal coloring f ′ (notice that the number of colors used by f and

f ′ is the same). However, the number of color trees that intersect two vertex classes in at least

two vertices has been reduced. Furthermore, each color tree still has vertices in exactly two vertex

classes. Observe, however, that f ′ need not be simple. It may be the case that Td, which is a star

having vertices in V1 ∪ V3, intersects other original color trees (trees that are not affected by the

change from f to f ′) in at least two vertices, one of which is v and the other is in V1. Observe

that any such original color tree has vertices in V1 ∪ V3 and is necessarily not a star. Pick one such
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original color tree Ta. Exactly as in the proof of Lemma 2.1, consider the union of the edge sets of

Ta and Td, and color a spanning tree of this union with color a, and all other edges induced by the

vertices of this spanning tree with distinct colors. The new coloring is also extremal, since it uses at

least as many colors as f ′, and has more trivial color trees than f ′. Now, the new Ta is still not a

star, and only Ta can intersect any other color tree in at least two vertices, so we can continue this

process of growing Ta until the coloring becomes simple. Observe that during this process we have

not increased the number of color trees that intersect two vertex classes in at least two vertices, and

that the resulting simple extremal coloring has fewer such trees than f had. Repeating the process

results in a coloring in which each color tree is a star, all of whose leaves are in the same vertex class.

Hence, assume f is such an MC-coloring.

Now, assume that G has q vertex classes V1, . . . , Vq with at least two vertices each, and the

remaining r − q vertex classes are singletons. For 1 ≤ i ≤ q, in order to monochromatically connect

the
(|Vi|

2

)
distinct pairs of vertices of Vi, we need a set of nontrivial stars in f , say, Ti,1, . . . , Ti,ti , to

achieve this goal. Suppose Ti,j has ei,j edges. We need, therefore, that
∑ti

j=1

(ei,j
2

)
≥
(|Vi|

2

)
, and the

goal is to minimize
∑ti

j=1(ei,j − 1). We claim that
∑ti

j=1(ei,j − 1) ≥ |Vi| − 1. Indeed, as all
(|Vi|

2

)
pairs must be monochromatically connected, no Ti,j is leaf-disjoint from all other stars. So we may

re-order the trees so that for 2 ≤ j ≤ ti, Ti,j shares a leaf with some Ti,j′ for j′ < j. This implies

that as we go sequentially for j from 2 to ti, each Ti,j covers at most ei,j − 1 yet uncovered vertices

of Vi. As eventually all |Vi| vertices must be covered, the claim follows. Consequently, the number

of trees used by our coloring is at most m − (
∑q

i=1 |Vi|) + q = m − (n − (r − q)) + q, which equals

m− n+ r. Notice that this bound is always realizable since one may take Ti as a star whose center

is in Vi+1 (cyclically). Hence, mc(G) = m− n+ r.

Theorem 7 and the following corollary yield the first part of Theorem 2.

Corollary 8 Any graph G satisfies mc(G) ≤ m− n+ χ(G).

Proof: First observe that if G is a spanning subgraph of some graph H, then mc(H) ≥ e(H) −
e(G) +mc(G). Indeed, let f be an MC-coloring of G realizing mc(G). Color the remaining edges of

H with e(H)− e(G) fresh distinct colors, and observe that this is an MC-coloring of H.

Next suppose χ(G) = r. Now G is a connected spanning subgraph of some complete r-partite

graph H. By Theorem 7, mc(H) = e(H) − n + r. It follows from the observation in the previous

paragraph that mc(G) ≤ (e(H)− n+ r) + e(G)− e(H) = m− n+ r, as required.

Notice that Theorem 7 together with the observation in the last corollary can be used to supply

a lower bound for mc(G).

Corollary 9 If G contains a spanning complete r-partite graph, then mc(G) ≥ m− n+ r.

It is not true that graphs having mc(G) = m − n + r must contain spanning complete r-partite

graphs. The following proposition shows that there are graphs G whose complements are connected
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(thus, they do not contain spanning complete partite graphs), yet mc(G) ≥ m− 2n/3.

Proposition 10 If G is the complement of the cycle Cn with n ≥ 5, then mc(G) ≥ m− d2n/3e.

Proof: We prove it for n = 0 mod 3; the other cases are similar. Suppose the missing cycle is

(0, 1, . . . , n− 1). Construct a coloring consisting of the following n/3 nontrivial color trees. Let tree

Ti consist of the path (3i + 1, 3i + 3, 3i, 3i + 2) for i = 0, . . . , n/3 − 1 (indices modulo n). This is

clearly an MC-coloring. The number of colors used is precisely m− 2n/3.

The following proves the second part of Theorem 2.

Theorem 11 If G is not k-connected, then mc(G) ≤ m− n+ k. This is sharp for any k.

Proof: We assume, equivalently, that G is k-connected and not (k + 1)-connected, and we prove

that then mc(G) ≤ m− n+ k + 1. Let S = {v1, . . . , vk} be a set of k vertices disconnecting G. Let

u be a vertex in a connected component A of G \ S.

Let f be a simple extremal coloring of G and consider all the color trees that contain u and

vertices of G \ S not in A. Notice that all such trees contain at least three vertices. All these trees

have u in common, but as f is simple, they intersect only in u, and all of them must use a vertex of

S. Hence there are at most k such trees, say T1, . . . , Tq where q ≤ k.

Let B = A \ ∪qi=1V (Ti), and let b = |B|. Notice that these trees contain at least n− (k − q)− b
vertices and use q colors. If b = 0 we are done, since we used at least n − (k − q) − 1 edges in

T1, . . . , Tq and hence mc(G) ≤ m − (n − k + q − 1) + q ≤ m − n + k + 1. If b > 0, then consider

w ∈ V (T1) \ (A ∪ S). The vertex w has to reach those b vertices of B via color trees R1, . . . , Rt, any

pair of them intersecting only in w. Assume Ri contains bi vertices of B. There must be at least bi+1

edges in each Ri, because Ri also contains w and a vertex of S. Thus, at least
∑t

i=1(bi + 1) = b+ t

edges are used and t colors are used. Altogether n− (k− q)− b− 1 edges are used with q colors and

b+ t edges are used with t colors, so mc(G) ≤ m− (n−k+ q− b−1)− (b+ t) + q+ t = m−n+k+ 1.

To see the sharpness of the result, one constructs graphs G with κ(G) = k and mc(G) = m −
n+ k+ 1. Consider Kk−1 ∨Pn−k+1. This graph is k-connected but is not (k+ 1)-connected. Still, it

is possible to color the edges of the path Pn−k+1 with the same color and color the rest of the edges

with other distinct colors, obtaining an MC-coloring that uses m− n+ k + 1 colors.

The following proposition is a useful tool for characterizing mc(G) in various special classes of

graphs, as demonstrated by the corollaries following its proof. Call a graph s-perfectly-connected if it

can be partitioned into s+ 1 parts, {v}, V1, . . . , Vs, such that each Vi induces a connected subgraph,

any pair Vi, Vj induces a corresponding complete bipartite graph, and v has precisely one neighbor

in each Vi. Notice that such a graph has minimum degree s, and v has degree s.

Proposition 12 If δ(G) = s, then mc(G) ≤ m− n+ s, unless G is s-perfectly-connected, in which

case mc(G) = m− n+ s+ 1.
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Proof: First observe that, according to Proposition 11, mc(G) ≤ m− n+ s+ 1, since a graph with

minimum degree s is not (s+ 1)-connected.

Let f be a simple extremal coloring and consider the number of colors used on the edges incident

to vertex v of minimum degree. If there are two edges incident with v that have the same color, then G

has a spanning tree whose edges use at most s−1 colors. It follows that mc(G) ≤ m−(n−1)+s−1 =

m− n+ s, as required.

So, it may be assumed that for every vertex v of minimum degree s, all the edges incident to

it are colored with s distinct colors. Fix such a vertex v, and let T1, . . . , Ts be the color trees

corresponding to the s colors of the edges incident with v. If
∑s

i=1 |E(ti)| ≥ n, then there are at

most m − n edges left; already s colors have been used, and hence mc(G) ≤ m − n + s. So it can

be assumed that
∑s

i=1 |E(ti)| ≤ n − 1, but since T1 ∪ · · · ∪ Ts contains a spanning tree, it must be

that
∑s

i=1 |E(ti)| = n − 1 and that all the Ti share only v in common, but are otherwise disjoint.

Notice also that v is a leaf of each of the Ti. So Vi = V (Ti) \ {v} induces a connected subgraph, and

|Vi| = |E(ti)|.
If the edges between Vi and Vj do not form a complete bipartite graph, then the only way to

monochromatically connect nonadjacent x ∈ Vi and y ∈ Vj is via another nontrivial color tree (that

contains at least two edges), distinct from all T1, . . . , Ts. Hence, mc(G) ≤ m− (n− 1)− 2 + s+ 1 =

m − n + s. It can therefore be assumed that (Vi, Vj) induces a corresponding complete bipartite

graph.

Now the graph has a vertex v of minimum degree s, and G − v is partitioned into subsets

V1, . . . , Vs. Each Vi induces a connected subgraph, and any two of them induce a complete bipartite

graph. Hence this graph is s-perfectly-connected. Clearly mc(G) = m− n+ s+ 1, since one can use

s nontrivial color trees that span Vi ∪ {v} for i = 1, . . . , s, and color the other edges trivially.

Here are a few applications of Proposition 12.

Corollary 13

a. For n ≥ 5, the wheel Wn has mc(G) = m− n+ 3.

b. If G is an outerplanar graph, then mc(G) = m−n+2, except that mc(K1∨Pn−1) = m−n+3.

c. If G is a planar graph with minimum degree 3, then mc(G) ≤ m− n+ 3, except that mc(K2 ∨
Pn−2) = m− n+ 4.

Proof: The wheel Wn has minimum degree 3, and Wn is not 3-perfectly-connected when n ≥ 5.

Hence mc(G) ≤ m − n + 3. Clearly, mc(G) ≥ m − n + 3, achieved by using a monochromatic path

through the non-central vertices and coloring the rest of the edges trivially.

An outerplanar graph G has a vertex of degree at most 2. Hence mc(G) ≤ m − n + 2, unless it

is 2-perfectly-connected. By the trivial bound in the introduction, mc(G) ≥ m − n + 2, and hence

mc(G) = m− n+ 2. The only outerplanar graph that is 2-perfectly-connected is K1 ∨ Pn−1.
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If G is planar with minimum degree 3, then mc(G) ≤ m−n+3 unless G is 3-perfectly-connected.

The only planar graph with minimum degree 3 that is 3-perfectly-connected is K2 ∨ Pn−2.
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