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Abstract

Let F' = {G1,...,G:} be a family of n-vertex graphs defined on the same vertex-set V', and
let k be a positive integer. A subset of vertices D C V is called an (F, k)-core if for each v € V
and for each i = 1,...,¢, there are at least k£ neighbors of v in G; which belong to D. The
subset D is called a connected (F, k)-core, if the subgraph induced by D in each G; is connected.
Let &; be the minimum degree of G; and let §(F) = min’_, §;. Clearly, an (F, k)-core exists if
and only if 6(F) > k, and a connected (F, k)-core exists if and only if §(#') > k and each G;
is connected. Let c(k, F') and c.(k, F) be the minimum size of an (F, k)-core and a connected

(F, k)-core, respectively. The following asymptotic results are proved for every ¢ < Inlnd and

k< +vVné:

c(k, F) §n¥(1+05(1)) ce(k, F) §n¥(1+05(1)).

The results are asymptotically tight for infinitely many families F'. The results unify and extend

related results on dominating sets, strong dominating sets and connected dominating sets.

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph-theoretic ter-
minology the reader is referred to [3]. A major area of research in graph theory is the theory of
domination. Recently two books [7, 8] have been published that present most of the known results
concerning domination parameters. Among the most popular of these parameters are the “con-
nected domination number”, the “k-domination number” and the “strong domination number”
which are considered in this paper.

A subset D of vertices in a graph G is a dominating set if every vertex not in D has a neighbor
in D. D is called a strong dominating set if every vertex of G has a neighbor in D. If the
subgraph induced by D is connected, then D is called a connected dominating set or a connected
strong dominating set, appropriately. D is called a strong k-dominating set if every vertex of G

has at least k neighbors in D. The analogous definitions of a k-dominating set, connected strong
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k-dominating set and connected k-dominating set are obvious. The domination number, denoted
v(G), and the connected domination number, denoted 7.(G), are the minimum cardinalities of
a dominating set and a connected dominating set, respectively. The analogous parameters for
the “strong” versions are v*(G) and ~v}(G). The parameters for (connected) k-domination and
(connected) strong k-domination are denoted v(k, G), v.(k, G), v*(k,G) and ~}(k,G).

A graph G has a connected dominating set if and only if G is connected; thus v.(G) is well-
defined on the class of connected graphs. The same is true for connected strong domination (as-
suming the graph has at least two vertices). In order to have a k-dominating set, or a strong
k-dominating set, it is necessary and sufficient that the minimum degree be at least k.

The problem of finding small connected dominating sets and small connected strong dominating
sets are a major topic of research in the area of graph algorithms, because such sets correspond to
the non-leaves of a spanning tree.

There are several results which estimate some of the above-mentioned graph parameters as a
function of the minimum degree of the graph. A well-known result of Lovész [9] (see another proof
in [2]) states that v(G) < n%ﬁﬂ) for every n-vertex graph G with minimum degree 6 > 1. This
result is asymptotically optimal for general graphs G. This was shown by Alon [1] who proved by
probabilistic methods that when n is large there exists a d-regular graph with no dominating set of

size less than (1 4+ 0(1))%

in [10, 11]). Caro [4] has considered k-domination numbers and showed an analog result to the one

n. (We mention here that when § < 3 exact results were obtained

obtained by Lovész, under the (obviously necessary) assumption that 6 >> k. Thus, he showed
that v(k,G) < n%(l +05(1)). Considering connected domination, Caro, West and Yuster [5] have
shown by more complicated arguments that the bound obtained by Lovész also holds in this much
more restricted case, namely v.(k,G) < n%(l + 05(1)). Their result also supplies a sequential
deterministic algorithm which produces a connected dominating set with (at most) this cardinality,
in polynomial time. In this paper we present a generalization of all these results which covers, as
a special case, all the above-mentioned graph parameters.

Let F = {G1,...,G} be a family of graphs which share the same vertex set V. A subset of
vertices D C V is called an (F,k)-core if D is a strong k-dominating set of each graph in F. We
call D a connected (F,k)-core if D is a connected strong k-dominating set of each graph in F. Let
c(k, F) and c.(k, F') denote the minimum cardinality of an (F k)-core, and a connected (F, k)-core,
respectively. Clearly, c¢(k, F) can be defined if and only if each graph in F' has minimum degree at
least k, and c.(k, F') can be defined if and only if each graph in F' is connected and has minimum

degree at least k. We prove the following general result:

Theorem 1.1 Let k,t and § be positive integers satisfying k < vVInd and t < Inlnd. Let F be a
family of t graphs on the same n-vertex set. Assume that every graph in F has minimum degree at
least §. Then:
Iné
c(k, F) < RT(l + 05(1)).



If all graphs in F are connected then:
Inéd
el F) < n==(1+ 05(1)).

Note that the lower bound mentioned by Alon shows, in particular, that the bounds obtained in
Theorem 1.1 are asymptotically optimal. Moreover, by considering the case t =1 (i.e. F' = {G})
we have that Theorem 1.1 contains, as a special case, all the above-mentioned results. The result
of Lovész on 7(G) is obtained (in the asymptotic sense) by taking & = 1 and using the fact
7(G) <y(G) =~*(1,G) = ¢(1,{G}). Caro’s result on y(k,G) is obtained by using the fact that
v(k,G) < ~v*(k,G) = c(k,{G}). The Caro, West and Yuster result on v.(G) is obtained by taking
k=1 and using 7.(G) < 72(G) = (1, G) = (1, {G}).

Our proof of Theorem 1.1 uses a probabilistic approach similar to the proof of the Lovéasz
bound in [2]. However, the proof here is slightly more complicated since we also need to satisfy the

connectivity and the commonality requirements. The proof is presented in the next section.

2 Proof of the main result

We begin with a lemma that sharpens a result of Duchet and Meyniel [6], who proved that v(G) <
1e(G) < 37(G) — 2.

Lemma 2.1 Let G be a connected graph. If X is a strong k-dominating set of G that induces a
subgraph with s components, then there exists a connected strong k-dominating set of G, containing

X, whose cardinality is at most | X |+ 2s — 2. In particular,

Proof: It suffices to show that whenever s > 1, we can find at most two vertices in V' \ X such
that adding them to X decreases the number of components by at least one. Partition X into parts
X1 and X3 such that X; and X3 have no edge connecting them. Let z1 € X and x2 € X5 be two
vertices whose distance in G is the smallest possible. The distance between x1 and x5 is at most
3, because otherwise, there is a vertex (in the middle of a shortest path from z; to x3) that has
distance at least 2 from both X; and X5 and has no neighbor in X, contradicting the fact that X

is, in particular, a dominating set. O

Proof of Theorem 1.1: We shall prove the (obviously more difficult) connected (F,k)-core
version of the theorem, for t = [Inlnéd] and k = |VInéd]. Fix 0 < € < 1/2. We shall prove that,
for sufficiently large §, every F' = {G1,...,G;} (the graphs sharing the same vertex set V') has an
(F, k)-core of size at most (1 + e)n%.

Letp = (1+§)¥ and let X be a random subset of V', where each vertex is chosen independently

with probability p. Let Y be the set of vertices in V' that have fewer than k neighbors in X in one of



the graphs G, ...,G;. Note that X UY is a k-dominating set for each G; (although not necessarily
a strong one). So let Z be a minimal set containing k neighbors of every vertex y € Y in each Gjy;
thus |Z| < kt|Y|. Then X UY U Z is strongly k-dominating in each G;. Let H; = G;[X UY U Z]
(the subgraph of G; induced by X UY U Z), and let ¢; denote the number of components of H;.
According to Lemma 2.1, we can add at most 2¢; — 2 vertices to X UY U Z and obtain a connected
strong k-dominating set of G;. It follows that there exists a connected (F, k)-core whose size is less

than
t

w=I|X|+Y|+|Z]+2)c.
=1

We shall estimate the expectations of the summands. Obviously, £ [|X|] = pn = (1 + §)nlnd/o.
By examining any § neighbors of a vertex v in G; we see that the probability that v is adjacent to

fewer than k vertices of X in G; is at most
> <Z.>p’(1 —p)? <Y (6p)e PR =0 (k:(21n 5)k5-<1+6/2>) ,
i=0 i=0

which is at most O (57(1+i)>, SO

B(Y[) =0 (nts~1+9) =0 (§)

and since |Z| < kt|Y'| we also have E(|Y|+ |Z]) = o(n/d). Finally, we estimate F[c;]. Every vertex
of X \'Y has at least k neighbors in X, and hence belongs to a component of H; of order at least
k+1,s0

1

;i < ——(|1X Y Z Y Z
6 < g X1+ Y1+ 12D + Y] +12]

pn n Iné
< £ B .
E[CZ]—k+1+O<5> 0(”51n1n5>

E[Qici] =o0 (nlrl(j)

1
and hence, by linearity of expectation, E[w] = (1 + § + o(1))nInd/é, which implies that there is
an (F, k)-core of size at most (14 €)nlnd/o for § sufficiently large. O

and thus

We therefore have:
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