Dominating a family of graphs with small connected subgraphs

Yair Caro * Raphael Yuster ${ }^{\dagger}$

Abstract

Let $F=\left\{G_{1}, \ldots, G_{t}\right\}$ be a family of n-vertex graphs defined on the same vertex-set V, and let k be a positive integer. A subset of vertices $D \subset V$ is called an (F, k)-core if for each $v \in V$ and for each $i=1, \ldots, t$, there are at least k neighbors of v in G_{i} which belong to D. The subset D is called a connected (F, k)-core, if the subgraph induced by D in each G_{i} is connected. Let δ_{i} be the minimum degree of G_{i} and let $\delta(F)=\min _{i=1}^{t} \delta_{i}$. Clearly, an (F, k)-core exists if and only if $\delta(F) \geq k$, and a connected (F, k)-core exists if and only if $\delta(F) \geq k$ and each G_{i} is connected. Let $c(k, F)$ and $c_{c}(k, F)$ be the minimum size of an (F, k)-core and a connected (F, k)-core, respectively. The following asymptotic results are proved for every $t<\ln \ln \delta$ and $k<\sqrt{\ln \delta}$: $$
c(k, F) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right) \quad c_{c}(k, F) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right) .
$$

The results are asymptotically tight for infinitely many families F. The results unify and extend related results on dominating sets, strong dominating sets and connected dominating sets.

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph-theoretic terminology the reader is referred to [3]. A major area of research in graph theory is the theory of domination. Recently two books [7, 8] have been published that present most of the known results concerning domination parameters. Among the most popular of these parameters are the "connected domination number", the " k-domination number" and the "strong domination number" which are considered in this paper.

A subset D of vertices in a graph G is a dominating set if every vertex not in D has a neighbor in D. D is called a strong dominating set if every vertex of G has a neighbor in D. If the subgraph induced by D is connected, then D is called a connected dominating set or a connected strong dominating set, appropriately. D is called a strong k-dominating set if every vertex of G has at least k neighbors in D. The analogous definitions of a k-dominating set, connected strong

[^0]k-dominating set and connected k-dominating set are obvious. The domination number, denoted $\gamma(G)$, and the connected domination number, denoted $\gamma_{c}(G)$, are the minimum cardinalities of a dominating set and a connected dominating set, respectively. The analogous parameters for the "strong" versions are $\gamma^{*}(G)$ and $\gamma_{c}^{*}(G)$. The parameters for (connected) k-domination and (connected) strong k-domination are denoted $\gamma(k, G), \gamma_{c}(k, G), \gamma^{*}(k, G)$ and $\gamma_{c}^{*}(k, G)$.

A graph G has a connected dominating set if and only if G is connected; thus $\gamma_{c}(G)$ is welldefined on the class of connected graphs. The same is true for connected strong domination (assuming the graph has at least two vertices). In order to have a k-dominating set, or a strong k-dominating set, it is necessary and sufficient that the minimum degree be at least k.

The problem of finding small connected dominating sets and small connected strong dominating sets are a major topic of research in the area of graph algorithms, because such sets correspond to the non-leaves of a spanning tree.

There are several results which estimate some of the above-mentioned graph parameters as a function of the minimum degree of the graph. A well-known result of Lovász [9] (see another proof in [2]) states that $\gamma(G) \leq n \frac{1+\ln (\delta+1)}{\delta+1}$ for every n-vertex graph G with minimum degree $\delta>1$. This result is asymptotically optimal for general graphs G. This was shown by Alon [1] who proved by probabilistic methods that when n is large there exists a δ-regular graph with no dominating set of size less than $(1+o(1)) \frac{1+\ln (\delta+1)}{\delta+1} n$. (We mention here that when $\delta \leq 3$ exact results were obtained in $[10,11])$. Caro [4] has considered k-domination numbers and showed an analog result to the one obtained by Lovász, under the (obviously necessary) assumption that $\delta \gg k$. Thus, he showed that $\gamma(k, G) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right)$. Considering connected domination, Caro, West and Yuster [5] have shown by more complicated arguments that the bound obtained by Lovász also holds in this much more restricted case, namely $\gamma_{c}(k, G) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right)$. Their result also supplies a sequential deterministic algorithm which produces a connected dominating set with (at most) this cardinality, in polynomial time. In this paper we present a generalization of all these results which covers, as a special case, all the above-mentioned graph parameters.

Let $F=\left\{G_{1}, \ldots, G_{t}\right\}$ be a family of graphs which share the same vertex set V. A subset of vertices $D \subset V$ is called an (F, k)-core if D is a strong k-dominating set of each graph in F. We call D a connected (F, k)-core if D is a connected strong k-dominating set of each graph in F. Let $c(k, F)$ and $c_{c}(k, F)$ denote the minimum cardinality of an (F, k)-core, and a connected (F, k)-core, respectively. Clearly, $c(k, F)$ can be defined if and only if each graph in F has minimum degree at least k, and $c_{c}(k, F)$ can be defined if and only if each graph in F is connected and has minimum degree at least k. We prove the following general result:

Theorem 1.1 Let k, t and δ be positive integers satisfying $k<\sqrt{\ln \delta}$ and $t<\ln \ln \delta$. Let F be a family of t graphs on the same n-vertex set. Assume that every graph in F has minimum degree at least δ. Then:

$$
c(k, F) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right) .
$$

If all graphs in F are connected then:

$$
c_{c}(k, F) \leq n \frac{\ln \delta}{\delta}\left(1+o_{\delta}(1)\right)
$$

Note that the lower bound mentioned by Alon shows, in particular, that the bounds obtained in Theorem 1.1 are asymptotically optimal. Moreover, by considering the case $t=1$ (i.e. $F=\{G\}$) we have that Theorem 1.1 contains, as a special case, all the above-mentioned results. The result of Lovász on $\gamma(G)$ is obtained (in the asymptotic sense) by taking $k=1$ and using the fact $\gamma(G) \leq \gamma^{*}(G)=\gamma^{*}(1, G)=c(1,\{G\})$. Caro's result on $\gamma(k, G)$ is obtained by using the fact that $\gamma(k, G) \leq \gamma^{*}(k, G)=c(k,\{G\})$. The Caro, West and Yuster result on $\gamma_{c}(G)$ is obtained by taking $k=1$ and using $\gamma_{c}(G) \leq \gamma_{c}^{*}(G)=\gamma_{c}^{*}(1, G)=c_{c}(1,\{G\})$.

Our proof of Theorem 1.1 uses a probabilistic approach similar to the proof of the Lovász bound in [2]. However, the proof here is slightly more complicated since we also need to satisfy the connectivity and the commonality requirements. The proof is presented in the next section.

2 Proof of the main result

We begin with a lemma that sharpens a result of Duchet and Meyniel [6], who proved that $\gamma(G) \leq$ $\gamma_{c}(G) \leq 3 \gamma(G)-2$.

Lemma 2.1 Let G be a connected graph. If X is a strong k-dominating set of G that induces a subgraph with s components, then there exists a connected strong k-dominating set of G, containing X, whose cardinality is at most $|X|+2 s-2$. In particular,

$$
\gamma^{*}(k, G) \leq \gamma_{c}^{*}(k, G) \leq 3 \gamma^{*}(k, G)-2 .
$$

Proof: It suffices to show that whenever $s>1$, we can find at most two vertices in $V \backslash X$ such that adding them to X decreases the number of components by at least one. Partition X into parts X_{1} and X_{2} such that X_{1} and X_{2} have no edge connecting them. Let $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ be two vertices whose distance in G is the smallest possible. The distance between x_{1} and x_{2} is at most 3, because otherwise, there is a vertex (in the middle of a shortest path from x_{1} to x_{2}) that has distance at least 2 from both X_{1} and X_{2} and has no neighbor in X, contradicting the fact that X is, in particular, a dominating set.

Proof of Theorem 1.1: We shall prove the (obviously more difficult) connected (F, k)-core version of the theorem, for $t=\lfloor\ln \ln \delta\rfloor$ and $k=\lfloor\sqrt{\ln \delta}\rfloor$. Fix $0<\epsilon<1 / 2$. We shall prove that, for sufficiently large δ, every $F=\left\{G_{1}, \ldots, G_{t}\right\}$ (the graphs sharing the same vertex set V) has an (F, k)-core of size at most $(1+\epsilon) n \frac{\ln \delta}{\delta}$.

Let $p=\left(1+\frac{\epsilon}{2}\right) \frac{\ln \delta}{\delta}$ and let X be a random subset of V, where each vertex is chosen independently with probability p. Let Y be the set of vertices in V that have fewer than k neighbors in X in one of
the graphs G_{1}, \ldots, G_{t}. Note that $X \cup Y$ is a k-dominating set for each G_{i} (although not necessarily a strong one). So let Z be a minimal set containing k neighbors of every vertex $y \in Y$ in each G_{i}; thus $|Z| \leq k t|Y|$. Then $X \cup Y \cup Z$ is strongly k-dominating in each G_{i}. Let $H_{i}=G_{i}[X \cup Y \cup Z]$ (the subgraph of G_{i} induced by $X \cup Y \cup Z$), and let c_{i} denote the number of components of H_{i}. According to Lemma 2.1, we can add at most $2 c_{i}-2$ vertices to $X \cup Y \cup Z$ and obtain a connected strong k-dominating set of G_{i}. It follows that there exists a connected (F, k)-core whose size is less than

$$
w=|X|+|Y|+|Z|+2 \sum_{i=1}^{t} c_{i} .
$$

We shall estimate the expectations of the summands. Obviously, $E[|X|]=p n=\left(1+\frac{\epsilon}{2}\right) n \ln \delta / \delta$. By examining any δ neighbors of a vertex v in G_{i} we see that the probability that v is adjacent to fewer than k vertices of X in G_{i} is at most

$$
\sum_{i=0}^{k-1}\binom{\delta}{i} p^{i}(1-p)^{\delta-i}<\sum_{i=0}^{k-1}(\delta p)^{i} e^{-p(\delta-k)}=O\left(k(2 \ln \delta)^{k} \delta^{-(1+\epsilon / 2)}\right),
$$

which is at most $O\left(\delta^{-\left(1+\frac{\epsilon}{4}\right)}\right)$, so

$$
E[|Y|]=O\left(n t \delta^{-\left(1+\frac{\epsilon}{4}\right)}\right)=o\left(\frac{n}{\delta}\right)
$$

and since $|Z| \leq k t|Y|$ we also have $E(|Y|+|Z|)=o(n / \delta)$. Finally, we estimate $E\left[c_{i}\right]$. Every vertex of $X \backslash Y$ has at least k neighbors in X, and hence belongs to a component of H_{i} of order at least $k+1$, so

$$
c_{i} \leq \frac{1}{k+1}(|X|+|Y|+|Z|)+|Y|+|Z|
$$

and thus

$$
E\left[c_{i}\right] \leq \frac{p n}{k+1}+o\left(\frac{n}{\delta}\right)=o\left(n \frac{\ln \delta}{\delta \ln \ln \delta}\right) .
$$

We therefore have:

$$
E\left[2 \sum_{i=1}^{t} c_{i}\right]=o\left(n \frac{\ln \delta}{\delta}\right)
$$

and hence, by linearity of expectation, $E[w]=\left(1+\frac{\epsilon}{2}+o(1)\right) n \ln \delta / \delta$, which implies that there is an (F, k)-core of size at most $(1+\epsilon) n \ln \delta / \delta$ for δ sufficiently large.

Acknowledgment

The authors wish to thank Teresa W. Haynes for valuable references, and the referee for supplying us with a much shorter proof than the original one.

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs and Combinatorics 6 (1990), 1-4.
[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New York, 1991.
[3] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[4] Y. Caro, On k-domination and k-transversal numbers of graphs and hypergraphs, Ars Combin. 29A (1990), 49-55.
[5] Y. Caro, D. West and R. Yuster, Connected domination and spanning trees with many leaves, submitted.
[6] P. Duchet and H. Meyniel, On Hadwiger's number and stability numbers, Annal. Disc. Math. 13 (1982), 71-74.
[7] T. Haynes, S.T. Hedetniemi and P. Slater, Domination in Graphs: The Theory, Marcel Dekker Publishers, New York, 1997.
[8] T. Haynes, S.T. Hedetniemi and P. Slater, Domination in Graphs: Selected Topics, Marcel Dekker Publishers, New York, 1997.
[9] L. Lovász, On the ratio of optimal and integral fractional covers, Disc. Math. 13 (1975), 383390.
[10] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749-762.
[11] B. Reed, Paths, stars and the number three, Combinatorics, Probability and Computing 5 (1996), 267-276.

[^0]: *Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel. email: yairc@macam98.ac.il
 ${ }^{\dagger}$ Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel. email: raphy@macam98.ac.il

