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Abstract

Let F = {G1, . . . , Gt} be a family of n-vertex graphs defined on the same vertex-set V , and

let k be a positive integer. A subset of vertices D ⊂ V is called an (F, k)-core if for each v ∈ V
and for each i = 1, . . . , t, there are at least k neighbors of v in Gi which belong to D. The

subset D is called a connected (F, k)-core, if the subgraph induced by D in each Gi is connected.

Let δi be the minimum degree of Gi and let δ(F ) = minti=1 δi. Clearly, an (F, k)-core exists if

and only if δ(F ) ≥ k, and a connected (F, k)-core exists if and only if δ(F ) ≥ k and each Gi

is connected. Let c(k, F ) and cc(k, F ) be the minimum size of an (F, k)-core and a connected

(F, k)-core, respectively. The following asymptotic results are proved for every t < ln ln δ and

k <
√

ln δ:

c(k, F ) ≤ n ln δ

δ
(1 + oδ(1)) cc(k, F ) ≤ n ln δ

δ
(1 + oδ(1)).

The results are asymptotically tight for infinitely many families F . The results unify and extend

related results on dominating sets, strong dominating sets and connected dominating sets.

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph-theoretic ter-

minology the reader is referred to [3]. A major area of research in graph theory is the theory of

domination. Recently two books [7, 8] have been published that present most of the known results

concerning domination parameters. Among the most popular of these parameters are the “con-

nected domination number”, the “k-domination number” and the “strong domination number”

which are considered in this paper.

A subset D of vertices in a graph G is a dominating set if every vertex not in D has a neighbor

in D. D is called a strong dominating set if every vertex of G has a neighbor in D. If the

subgraph induced by D is connected, then D is called a connected dominating set or a connected

strong dominating set, appropriately. D is called a strong k-dominating set if every vertex of G

has at least k neighbors in D. The analogous definitions of a k-dominating set, connected strong
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k-dominating set and connected k-dominating set are obvious. The domination number, denoted

γ(G), and the connected domination number, denoted γc(G), are the minimum cardinalities of

a dominating set and a connected dominating set, respectively. The analogous parameters for

the “strong” versions are γ∗(G) and γ∗c (G). The parameters for (connected) k-domination and

(connected) strong k-domination are denoted γ(k,G), γc(k,G), γ∗(k,G) and γ∗c (k,G).

A graph G has a connected dominating set if and only if G is connected; thus γc(G) is well-

defined on the class of connected graphs. The same is true for connected strong domination (as-

suming the graph has at least two vertices). In order to have a k-dominating set, or a strong

k-dominating set, it is necessary and sufficient that the minimum degree be at least k.

The problem of finding small connected dominating sets and small connected strong dominating

sets are a major topic of research in the area of graph algorithms, because such sets correspond to

the non-leaves of a spanning tree.

There are several results which estimate some of the above-mentioned graph parameters as a

function of the minimum degree of the graph. A well-known result of Lovász [9] (see another proof

in [2]) states that γ(G) ≤ n1+ln(δ+1)
δ+1 for every n-vertex graph G with minimum degree δ > 1. This

result is asymptotically optimal for general graphs G. This was shown by Alon [1] who proved by

probabilistic methods that when n is large there exists a δ-regular graph with no dominating set of

size less than (1 + o(1))1+ln(δ+1)
δ+1 n. (We mention here that when δ ≤ 3 exact results were obtained

in [10, 11]). Caro [4] has considered k-domination numbers and showed an analog result to the one

obtained by Lovász, under the (obviously necessary) assumption that δ >> k. Thus, he showed

that γ(k,G) ≤ n ln δ
δ (1+oδ(1)). Considering connected domination, Caro, West and Yuster [5] have

shown by more complicated arguments that the bound obtained by Lovász also holds in this much

more restricted case, namely γc(k,G) ≤ n ln δ
δ (1 + oδ(1)). Their result also supplies a sequential

deterministic algorithm which produces a connected dominating set with (at most) this cardinality,

in polynomial time. In this paper we present a generalization of all these results which covers, as

a special case, all the above-mentioned graph parameters.

Let F = {G1, . . . , Gt} be a family of graphs which share the same vertex set V . A subset of

vertices D ⊂ V is called an (F, k)-core if D is a strong k-dominating set of each graph in F . We

call D a connected (F, k)-core if D is a connected strong k-dominating set of each graph in F . Let

c(k, F ) and cc(k, F ) denote the minimum cardinality of an (F, k)-core, and a connected (F, k)-core,

respectively. Clearly, c(k, F ) can be defined if and only if each graph in F has minimum degree at

least k, and cc(k, F ) can be defined if and only if each graph in F is connected and has minimum

degree at least k. We prove the following general result:

Theorem 1.1 Let k, t and δ be positive integers satisfying k <
√

ln δ and t < ln ln δ. Let F be a

family of t graphs on the same n-vertex set. Assume that every graph in F has minimum degree at

least δ. Then:

c(k, F ) ≤ n ln δ

δ
(1 + oδ(1)).
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If all graphs in F are connected then:

cc(k, F ) ≤ n ln δ

δ
(1 + oδ(1)).

Note that the lower bound mentioned by Alon shows, in particular, that the bounds obtained in

Theorem 1.1 are asymptotically optimal. Moreover, by considering the case t = 1 (i.e. F = {G})
we have that Theorem 1.1 contains, as a special case, all the above-mentioned results. The result

of Lovász on γ(G) is obtained (in the asymptotic sense) by taking k = 1 and using the fact

γ(G) ≤ γ∗(G) = γ∗(1, G) = c(1, {G}). Caro’s result on γ(k,G) is obtained by using the fact that

γ(k,G) ≤ γ∗(k,G) = c(k, {G}). The Caro, West and Yuster result on γc(G) is obtained by taking

k = 1 and using γc(G) ≤ γ∗c (G) = γ∗c (1, G) = cc(1, {G}).
Our proof of Theorem 1.1 uses a probabilistic approach similar to the proof of the Lovász

bound in [2]. However, the proof here is slightly more complicated since we also need to satisfy the

connectivity and the commonality requirements. The proof is presented in the next section.

2 Proof of the main result

We begin with a lemma that sharpens a result of Duchet and Meyniel [6], who proved that γ(G) ≤
γc(G) ≤ 3γ(G)− 2.

Lemma 2.1 Let G be a connected graph. If X is a strong k-dominating set of G that induces a

subgraph with s components, then there exists a connected strong k-dominating set of G, containing

X, whose cardinality is at most |X|+ 2s− 2. In particular,

γ∗(k,G) ≤ γ∗c (k,G) ≤ 3γ∗(k,G)− 2.

Proof: It suffices to show that whenever s > 1, we can find at most two vertices in V \ X such

that adding them to X decreases the number of components by at least one. Partition X into parts

X1 and X2 such that X1 and X2 have no edge connecting them. Let x1 ∈ X1 and x2 ∈ X2 be two

vertices whose distance in G is the smallest possible. The distance between x1 and x2 is at most

3, because otherwise, there is a vertex (in the middle of a shortest path from x1 to x2) that has

distance at least 2 from both X1 and X2 and has no neighbor in X, contradicting the fact that X

is, in particular, a dominating set. 2

Proof of Theorem 1.1: We shall prove the (obviously more difficult) connected (F, k)-core

version of the theorem, for t = bln ln δc and k = b
√

ln δc. Fix 0 < ε < 1/2. We shall prove that,

for sufficiently large δ, every F = {G1, . . . , Gt} (the graphs sharing the same vertex set V ) has an

(F, k)-core of size at most (1 + ε)n ln δ
δ .

Let p = (1+ ε
2) ln δδ and let X be a random subset of V , where each vertex is chosen independently

with probability p. Let Y be the set of vertices in V that have fewer than k neighbors in X in one of
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the graphs G1, . . . , Gt. Note that X ∪Y is a k-dominating set for each Gi (although not necessarily

a strong one). So let Z be a minimal set containing k neighbors of every vertex y ∈ Y in each Gi;

thus |Z| ≤ kt|Y |. Then X ∪ Y ∪ Z is strongly k-dominating in each Gi. Let Hi = Gi[X ∪ Y ∪ Z]

(the subgraph of Gi induced by X ∪ Y ∪ Z), and let ci denote the number of components of Hi.

According to Lemma 2.1, we can add at most 2ci− 2 vertices to X ∪Y ∪Z and obtain a connected

strong k-dominating set of Gi. It follows that there exists a connected (F, k)-core whose size is less

than

w = |X|+ |Y |+ |Z|+ 2
t∑
i=1

ci.

We shall estimate the expectations of the summands. Obviously, E [|X|] = pn = (1 + ε
2)n ln δ/δ.

By examining any δ neighbors of a vertex v in Gi we see that the probability that v is adjacent to

fewer than k vertices of X in Gi is at most

k−1∑
i=0

(
δ

i

)
pi(1− p)δ−i <

k−1∑
i=0

(δp)ie−p(δ−k) = O
(
k(2 ln δ)kδ−(1+ε/2)

)
,

which is at most O
(
δ−(1+

ε
4
)
)
, so

E[|Y |] = O
(
ntδ−(1+

ε
4
)
)

= o

(
n

δ

)
and since |Z| ≤ kt|Y | we also have E(|Y |+ |Z|) = o(n/δ). Finally, we estimate E[ci]. Every vertex

of X \ Y has at least k neighbors in X, and hence belongs to a component of Hi of order at least

k + 1, so

ci ≤
1

k + 1
(|X|+ |Y |+ |Z|) + |Y |+ |Z|

and thus

E[ci] ≤
pn

k + 1
+ o

(
n

δ

)
= o

(
n

ln δ

δ ln ln δ

)
.

We therefore have:

E[2
t∑
i=1

ci] = o

(
n

ln δ

δ

)
and hence, by linearity of expectation, E[w] = (1 + ε

2 + o(1))n ln δ/δ, which implies that there is

an (F, k)-core of size at most (1 + ε)n ln δ/δ for δ sufficiently large. 2
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