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Abstract

For a code C = C(n,M) the level k code of C, denoted Ck, is the set of all vectors resulting

from a linear combination of precisely k distinct codewords of C. We prove that if k is any

positive integer divisible by 8, and n = γk, M = βk ≥ 2k then there is a codeword in Ck whose

weight is either 0 or at most n/2− n( 1
8γ −

6
(4β−2)2 ) + 1. In particular, if γ < (4β − 2)2/48 then

there is a codeword in Ck whose weight is n/2 − Θ(n). The method used to prove this result

enables us to prove the following: Let k be an integer divisible by p, and let f(k, p) denote the

minimum integer guaranteeing that in any square matrix over Zp, of order f(k, p), there is a

square submatrix of order k such that the sum of all the elements in each row and column is

0. We prove that lim inf f(k, 2)/k < 3.836. For general p we obtain, using a different approach,

that f(k, p) ≤ p(k/ ln k)(1+ok(1)).

1 Introduction

For standard coding theory notations the reader is referred to [6]. The minimum weight of a code

C is the smallest Hamming weight of a codeword of C other than zero. Coding theory bounds such

as Plotkin’s bound or the Linear Programming bound show that if the dimension of a binary code

is large enough as a function of its length, then some linear combination has a small Hamming

weight. In other words, the code spanned by the codewords of C has small minimum weight. In

this paper we present an alternative coding theory bound for the code obtained by fixed size linear

combinations. For a positive integer k, let Ck denote the code obtained by linear combinations of

precisely k distinct codewords of C. In particular, C1 = C, and if C is a linear code then Ck ⊂ C.

We call Ck the level k code of C. Let w(Ck) denote the minimum weight of Ck. Notice that if k

is odd then w(Ck) can be very large. Indeed, consider a code C = C(n,M) where M is the size

of the code and n is the length of the codewords, and assume the first n− dlogMe coordinates of
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all codewords are one. We can still have all M codewords distinct, and clearly, for such a code,

w(Ck) ≥ n − dlogMe for all odd k. (If we allow C to contain repeated words we can even have

all coordinates of all its members being 1). Thus, to avoid this non-interesting case, we assume k

is even. For M ≥ k, let w(k, n,M) denote the maximum possible value of w(Ck) ranging over all

codes of size M and length n. A theorem of Enomoto et al. [3] shows that w(k, k − 1,M) = 0 for

M ≥ 2k and the result is tight. In general, however, no nontrivial bound is known. It is interesting

to find general cases which guarantee that w(k, n,M) is significantly less than n/2. In this paper

we present a nontrivial bound of this type. Our main result is the following:

Theorem 1.1 Let k be divisible by 8. Let C = C(n,M) be any code with M ≥ 2k. Put M = βk

and n = γk. Then, either 0 ∈ Ck or else

w(Ck) ≤
n

2
− n

(
1

8γ
− 6

(4β − 2)2

)
+ 1.

In particular, if γ < (4β − 2)2/48 then w(Ck) = n/2−Θ(n).

The constants appearing in Theorem 1.1 are not optimal. It is not difficult to obtain somewhat

better constants for specific values of β and γ, but we prefer a general statement at the price of some

loss in the constants. For example, Theorem 1.1 gives w(64, 800, 640) ≤ 396 and w(64, 640, 640) ≤
315. Theorem 1.1 is an application of a more general technical lemma, Lemma 2.2 proved in Section

2, whose proof has another interesting application. Let A be a matrix over Zp. A submatrix B of A

is called zero-sum if the sum of all elements in each row and in each column of B is zero. Consider the

following Ramsey-type extremal problem: Let f(k, p) denote the least integer such that any square

matrix of order f(k, p) over Zp has a square submatrix of order k which is zero-sum. Standard

Ramsey-type arguments show that f(k, p) is finite for all k = 0 mod p. If p does not divide k then

the all one matrix shows that f(k, p) is infinite. The problem of determining f(k, p) was first raised

in [1]. It is proved there that lim inf f(k, 2)/k ≤ 4, lim inf f(k, 2)/k ≥ 2 and lim inf f(k, 3)/k ≤ 20

(in fact, the authors show that f(k, 2) ≤ 4k(1 + ok(1)) for all even k). It is conjectured there that

for every prime p, lim inf f(k, p)/k ≤ cp where cp is a constant depending only on p. The conjecture

is open for all primes except p = 2, 3. Using the proof method of Lemma 2.2 and the theorem

of Enomoto et al. mentioned above we are able to show that lim inf f(k, 2)/k < 3.836. We also

present a nontrivial upper bound for f(k, p) (which is, however, still very far from the conjectured

O(k) upper bound).

The rest of this note is organized as follows: In Section 2 we prove Theorem 1.1 and the lemmas

that are needed for its proof. In Section 3 we present the application to zero-sum square matrices.

2 The proof of the main result

The main tool in the proof of Theorem 1.1 is a more general lemma whose proof is presented next.

Before we state the lemma we need some definitions and notations. An r-subvector of a vector v
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is obtained by picking r (not necessarily consecutive) coordinates of v. Let s and r be positive

integers where s ≥ r. For v ∈ (Z2)
s let zv(r) denote the fraction of r-subvectors of v whose sum

of coordinates is odd. Let z(s, r) denote the maximum of zv(r) ranging over all v ∈ (Z2)
s. This

quantity can be expressed in terms of the minimum possible value of the corresponding Krawchouk

polynomial (see., e.g., [6] for the definition and some properties of these polynomials). Trivially, if

r is odd then z(s, r) = 1. However, when r is even it is not difficult to show that when s ≥ r/2,

z(s, r) is close to 0.5 for large s. We shall be interested, however, in more precise approximations

and in fixed values of r. An easy exercise gives that z(s, 2) = s/(2(s − 1)) when s is even and

z(s, 2) = (s+ 1)/(2s) when s is odd. However, for r ≥ 4 there seems to be no nice formula.

Another tool that we use is a theorem of Enomoto et al. [3] also mentioned in the introduction:

Lemma 2.1 [[3]] Let t be an even integer. If s ≤ t − 1 then any sequence of at least 2t vectors

from (Z2)
s contains a t-subsequence whose sum is zero. �

We are now ready to prove the following lemma.

Lemma 2.2 Let k = 0 mod 4 and let r be any positive integer dividing k/4. Suppose C = C(n,M)

is a binary code with M ≥ k + k/(2r). Then, either 0 ∈ Ck or else

w(Ck) ≤ (n− k/(2r) + 1)z(b2rM/kc − 1, 2r).

Proof: Partition each v ∈ C into two parts, va and vb where va consists of the first k/(2r) − 1

coordinates, and vb consists of the remaining coordinates (if n ≤ k/(2r)−1 take va = v and there is

no vb). Let A = {va : v ∈ C} (although the vectors in A are not necessarily distinct, we consider

each va as labeled by the original vector v, and in this sense, they are distinct). Since k/(2r) is

even and since M ≥ k/r, we have, by Lemma 2.1, that there exists A1 ⊂ A with |A1| = k/(2r)

such that the sum of all vectors in A1 is zero. Throwing the vectors of A1 away from A we can

repeat this process and find another set of k/(2r) vectors whose sum is zero. We can repeat this

process precisely d = b2rM/kc − 1 times obtaining subsets of vectors A1, . . . , Ad, that correspond

to disjoint subsets of vectors of C, such that the sum of the k/(2r) vectors in Ai is zero for

i = 1, . . . , d. Since M ≥ k + k/(2r) we have d ≥ 2r. If n ≤ k/(2r) − 1 we have that the sum

of the vectors in A1, . . . , A2r is a sum of k distinct vectors of C. Since this sum is zero, we have

0 ∈ Ck and we are done. We therefore assume n ≥ k/(2r). Let Bi = {vb : va ∈ Ai}. For each

j = 1, . . . , n − k/(2r) + 1 let uj = {u1j , . . . , udj} be defined by uij =
∑

vb∈Bi
vjb . Let Uj denote the

family of (2r)-sets of {1, . . . , d} for which the corresponding (2r)-subvector of uj has an odd number

of ones. By definition, |Uj | ≤ z(d, 2r)
(
d
2r

)
. Hence,

∑n−k/(2r)+1
j=1 |Uj | ≤ (n− k/(2r) + 1)z(d, 2r)

(
d
2r

)
.

It follows that there exists a (2r)-set U such that if B′ = ∪i∈UBi then
∑

vb∈B′ vb contains at most

(n− k/(2r) + 1)z(d, 2r) ones. Notice that |B′| = 2rk/2r = k. Now let C ′ = {v : vb ∈ B′}. Clearly∑
v∈C′ v ∈ Ck and has at most (n− k/(2r) + 1)z(d, 2r) ones. �
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It is interesting to obtain general cases where w(Ck) is significantly less than n/2. If we use

Lemma 2.2 with r = 1 we can obtain such a statement only when n < M .

Proposition 2.3 Let k = 0 mod 4. Suppose β ≥ 2 is an integer. Then, for any code C = C(n,M)

with M ≥ βk and n < βk, 0 ∈ Ck or else w(Ck) ≤ n/2− (βk − n)/(4β − 2) + 1.

Proof: Clearly we may assume M = βk. Put n = γk. We use Lemma 2.2 with r = 1. Using

the fact that z(2β − 1, 2) = 1/2 + 1/(2(2β − 1)) we get that either 0 ∈ Ck or else w(Ck) ≤
(n− k/2 + 1)(1/2 + 1/(2(2β − 1))). Now,(

n− k

2
+ 1

)(
1

2
+

1

2(2β − 1)

)
≤ k

(
γ − 1

2

)(
1

2
+

1

2(2β − 1)

)
+ 1 =

γ

2
k − k β − γ

2(2β − 1)
+ 1 =

n

2
− βk − n

4β − 2
+ 1. �

The real power of Lemma 2.2 is demonstrated when r ≥ 2. In this case we can show that even

if n > M we can still have w(Ck) ≤ n/2 − Θ(n). In fact, we can have n/M as large as we want,

assuming M is sufficiently large (but still M = O(k)). It turns out that using r = 2 already suffices

for this purpose. Before we complete the proof of Theorem 1.1, we need to provide a tight upper

bound for z(s, 4).

Lemma 2.4 For s ≥ 7, z(s, 4) ≤ 0.5 + 6/s2.

Proof: Consider a binary vector of length s. Let x denote its Hamming weight. The number of

4-subvectors with an odd number of ones is (s− x)
(
x
3

)
+ x
(
s−x
3

)
. Hence, we need to show that for

all s ≥ 7,
(s− x)

(
x
3

)
+ x
(
s−x
3

)(
s
4

) ≤ 1

2
+

6

s2
.

Consider the numerator of the left-hand-side of the last inequality as a real polynomial (of degree 4)

of x (which can be expressed in terms of the corresponding Krawchouk polynomial). Its derivative

is a polynomial of degree 3, and x = n/2 is a root of the derivative and is a local minimum. The

other two roots are local maxima (yielding the same value, and hence each is also a global maxima)

and they are (s±
√

3s− 4)/2. The value at these maxima is s4/48− s3/8 + 17s2/48− s/2 + 1/3.

Hence,

(s− x)
(
x
3

)
+ x
(
s−x
3

)(
s
4

) ≤ s4/48− s3/8 + 17s2/48− s/2 + 1/3(
s
4

) =
1

2
+
s2/8− 3s/8 + 1/3(

s
4

) .

It follows that for s ≥ 7,

z(s, 4) ≤ 1

2
+
s2/8− 3s/8 + 1/3(

s
4

) =
1

2
+

3(s− 1)(s− 2) + 2

s(s− 1)(s− 2)(s− 3)
=
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1

2
+

3

s(s− 3)
+

2

s(s− 1)(s− 2)(s− 3)
≤ 1

2
+

6

s2
. �

Proof of Theorem 1.1: Since k = 0 mod 8 we can use r = 2 in Lemma 2.2. Let C = C(n,M)

be any code with M ≥ 2k. M = βk and n = γk. By Lemma 2.2, either 0 ∈ Ck or else w(Ck) ≤
(n− k/4 + 1)z(b4βc − 1, 4). Assuming the latter, and since β ≥ 2, we have b4βc − 1 ≥ 7, so using

Lemma 2.4 we get

w(Ck) ≤ (n− k/4 + 1)

(
1

2
+

6

(b4βc − 1)2

)
< k

(
γ − 1

4

)(
1

2
+

6

(4β − 2)2

)
+ 1 =

n

2
− n

8γ
+

6n

(4β − 2)2
− 6k

4(4β − 2)2
+ 1 <

n

2
− n

(
1

8γ
− 6

(4β − 2)2

)
+ 1. �

It is easy to see from Theorem 1.1, that when M grows, our upper bound for w(Ck) approaches

n/2−n/(8γ). When M becomes very large we can gain some more as demonstrated by the following

simple example: Suppose m ≥ 9n20.1n, n = γk with, say, γ ≥ 1. We can find 9n vectors that agree

on the first 0.1n coordinates. Putting M ′ = 9n and n′ = 0.9n we have M ′ = 10n′, γ′ = 0.9γ and

β′ = 9γ. By Theorem 1.1 we have

w(Ck) ≤
n′

2
− n′

(
1

8γ′
− 6

(36γ − 2)2

)
+ 1 = 0.45n− n

(
1

8γ
− 5.4

(36γ − 2)2

)
+ 1 ≤ 0.45n− n

9γ
+ 1.

3 Zero sum square matrices

In the following upper bound for lim inf f(k, 2)/k we use Lemma 2.2 without change. In fact, the

following theorem supplies an upper bound for f(k, 2) valid for all k = 0 mod 12.

Theorem 3.1 Let k = 0 mod 12. Every square binary matrix of order at least 50447k/13008 +

2221/2168 has a square submatrix of order k which is zero sum. In particular lim inf f(k, 2)/k <

3.879.

Proof: Let A be a square binary matrix of order n ≥ 50447k/13008 + 2221/2168. Clearly we may

assume n−1 < 4k. We consider the first n−1 rows of A as codewords of an (n, n−1) binary code.

Since k = 0 mod 12 we can use Lemma 2.2 with r = 3. Since 23 < 6(n − 1)/k < 24 we have, by

Lemma 2.2, that there are k rows of A whose sum contains at most (n−k/6 + 1)z(22, 6) ones. The

maximum number of 6-subvectors with an odd number of ones of a vector v ∈ (Z2)
22 is obtained

when v has 5 or 17 ones and it is 37757. Thus, z(22, 6) = 37757/74613 = 2221/4389. It follows

that there are k rows of A whose sum has at least

n− 2221

4389
(n− k

6
+ 1) =

2168

4389
n+

2221

26334
k− 2221

4389
≥ 2168

4389

(
50447k

13008
+

2221

2168

)
+

2221

26334
k− 2221

4389
= 2k

zeroes. Thus, A has a submatrix B with k rows and 2k columns, such that the sum of all rows of

B is zero. Ignoring the last row of B, and using Lemma 2.1 with t = k and s = k − 1 we have a
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submatrix B′ of B with k columns and k rows such that sum of all rows of B′ is zero and the sum

of all columns is a vector whose first k− 1 coordinates are zero. However, the last coordinate must

also be zero since the total number of ones in B′ is even. Hence B′ is a zero sum square submatrix

of order k. �

The choice of r = 3 in the proof of Theorem 3.1 is optimal. A similar approach using r = 2

yields the constant 144/37 > 3.89 instead of the constant 50447/13008 < 3.879 that appears in

Theorem 3.1. However, using r = 2 applies to all k = 0 mod 8. Using values of r ≥ 4 again yields

inferior results. This is because z(s, r) ≥ 0.5, by a simple probabilistic argument. Now if r ≥ 5

take n = 3.89k and then the number of ones in the sum of the k rows guaranteed by Lemma 2.2

is not less than (3.9k − k/2r)/2 ≥ 1.9k so there are less than 3.89k − 1.9k < 2k guaranteed zeroes

and we cannot define B as in the proof of Theorem 3.1. Thus, even a constant of 3.89 cannot be

guaranteed in this way. For r = 4 one can check specifically that the obtained constant is inferior.

A slightly better upper bound for lim inf f(k, 2)/k is obtained using the following idea, that

supplies an upper bound for f(k, 2) valid for large k that is of the form k = 12q where q is a prime

power. The following coding theory bound has been proved by Bassalygo et al. in [2] using a

theorem of Frankl and Wilson [5]:

Lemma 3.2 Let λ ≤ 0.5. For every n sufficiently large, if λn is twice a prime power and C is a

linear code of dimension dn that does not contain the weight λn then

d ≤ 1−H(λ) +H(λ/2)

where H(x) = −x log2(x)− (1− x) log2(1− x) is the binary entropy. �

We therefore obtain the following corollary:

Corollary 3.3 For every sufficiently large m for which m/2 is a prime power, the following holds:

Every binary matrix with d1.41me rows and d5.95me columns has m columns whose sum is the zero

vector of (Z2)
d1.41me.

Proof: Choose m sufficiently large such that n = d5.95me is sufficiently large for the parameter

λ = m/n ≤ 1/5.95 in Lemma 3.2 and so that λ > 1/5.9449. Let A be a binary matrix with d1.41me
rows and n columns. Consider the linear code C whose parity check matrix is A. The dimension

of C is at least n− d1.41me > 4.54m− 1 > 0.763n. Now, since

1−H(λ) +H(λ/2) < 0.763

it follows from Lemma 3.2 that C contains the weight λn = m. In particular, there are m columns

whose sum is zero. �

Corollary 3.3, together with (a slightly modified) version of Lemma 2.2 give the following:

Theorem 3.4 For k sufficiently large for which k/12 is a prime power, f(k, 2) < 3.836k + 1.
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Proof: Assume m is sufficiently large and chosen as in Corollary 3.3. Put k = 6m. Let A be a

square matrix of order t > 3.836k = 23.016m. By Corollary 3.3 we can arrange the rows of A such

that the sum of all m rows sm + 1, . . . , (s + 1)m is zero in the first d1.41me coordinates, for each

s = 0, . . . , 17. For each of these 18 sums, let Si denote the vector corresponding to the remaining

t − d1.41me coordinates of the corresponding sum vector. As in Lemma 2.2, we can find a set

of 6 vectors of the Si such that their sum has at most z(18, 6)(t − d1.41me) ones. This implies

the existence of 6m = k rows of A whose sum has at least t − z(18, 6)(t − d1.41me) zeroes. Since

z(18, 6) = 26/51 we have t− z(18, 6)(t− d1.41me) ≥ 12m = 2k. Thus, A has a submatrix B with

k rows and 2k columns, such that the sum of all rows of B is zero. As in Theorem 3.1 we get that

there exists a zero sum square submatrix B′ of order k. �

We note here that use of Lemma 3.2 allows improvement on the coding bound of Theorem 1.1.

However, the conditions on the length are much more restrictive. We omit the details.

We conclude this section with an upper bound for f(k, p). In fact, our upper bound follows

from a proposition which is a (weak) analog of the theorem of Enomoto et al. for Zp instead of Z2.

For k a multiple of p, let g(k, p) be the minimum integer that guarantees that in any sequence of

g(k, p) elements of (Zp)
k there is a k-subsequence whose sum is zero. The theorem of Enomoto et

al. gives, almost immediately, that g(k, 2) ≤ 4k−1 for all even k. In fact, using a theorem of Olson

[7] we can get g(k, 2) ≤ 2k+ 1 whenever k is a power of 2. In [1] it is proved that g(k, 3) ≤ 15k− 8

if k is a power of 3 (no linear bound is known for all k divisible by 3). For p > 3 there is no

known linear bound for g(k, p) which holds for infinitely many values of k. A trivial upper bound

is obviously (k − 1)pk + 1. A much smaller upper bound (but still, a non polynomial one) is given

in the following theorem:

Proposition 3.5 Let p be a fixed prime. For infinitely many values of k, g(k, p) ≤ p(k/ ln k)(1+ok(1)).

Proof: Let r be a positive integer. Let k be the smallest integer such that k/p is divisible by

all 1 ≤ s ≤ r. Clearly, k/p is obtained by multiplying appropriate powers of all primes q up to

r, where each prime q is raised to the maximum power xq for which qxq ≤ r. Hence k/p < rπ(r)

where π(r) is the number of primes up to r. It is well known that π(r) ≤ (1 + o(1))r/ ln r, and

hence k/p < er(1+or(1)). Now, suppose m satisfies
(
m−kr2

r

)
≥ pkrrpr+1. We claim that g(k, p) ≤ m.

Consider a sequence of m vectors from (Zp)
k. By the pigeonhole principle, there is a family T

of at least t ≥ pr+1rr r-subsequences, such that for each U ∈ T , the sum of all r vectors of U

is the same. It is well-known that in any family of at least (p − 1)r+1r! < t distinct (but non

necessarily disjoint) sets, each with r elements, there is a delta system with p petals [4]. In other

words, there are p sets in the family such that the common intersection of all of them is identical

to the intersection of any two of them. Hence, there are U1, . . . , Up ∈ T , where ∩pi=1 = S and

(Ui \ S) ∩ (Uj \ S) = ∅ for i 6= j. Putting Wi = Ui \ S we have that the sum of all the vectors in

Wi is the same for all i = 1, . . . , p. Hence the sum of all vectors in ∪pi=1Wi is zero (in Zp). Now,
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r ≥ |Wi| = r − |S| ≥ 1. Putting r − |S| = q1 we have found q1p distinct vectors whose sum is

zero. Recall that k is divisible by q1p. Deleting these q1p vectors and repeating this process kr/p

times we have kr/p disjoint subsequences of qip vectors for i = 1, . . . , kr/p, such that the sum of

the vectors in each subsequence is zero. There exist some 1 ≤ s ≤ r such that qi = s for at least

k/p distinct values of i. As k/(ps) < k/p is an integer, we can select k/(ps) sequences of size sp

each. The union of these sequences is a sequence of k vectors whose sum is zero, as required. Now,

m = p(k/ ln k)(1+ok(1)) satisfies
(
m−kr2

r

)
≥ pkrrpr+1 and the result follows. �

It remains to show the relation between f(k, p) and g(k, p). Let z(s, k, p) denote the minimum

possible fraction of k-subvectors of a vector v ∈ (Zp)
s whose sum is divisible by p. This generalizes

the definition of z(s, k) = 1 − z(s, k, 2) appearing in Section 2. It is proved in [1] that z(s, k, p) ≥
21−p(1−ok(1)) for k ≤ s/2. This, together with an immediate counting argument, shows that in any

matrix over Zp with s ≥ 2k rows and t columns there is a submatrix with k rows and t21−p(1−ok(1))

columns such that the sum of the rows is zero. By definition of g(k, p), if t21−p(1 − ok(1)) ≥
g(k, p) then there is a square zero-sum submatrix of order k. Since t > s, it follows that any

square matrix of order t over Zp has a square submatrix of order k which is zero-sum. Hence

f(k, p) ≤ 2p−1g(k, p)(1 + ok(1)). By Proposition 3.5 we have that for infinitely many values of k,

f(k, p) ≤ 2p−1p(k/ ln k)(1+ok(1)) = p(k/ ln k)(1+ok(1)).
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