A coding theory bound and zero-sum square matrices

Noga Alon * Simon Litsyn ${ }^{\dagger} \quad$ Raphael Yuster ${ }^{\ddagger}$

Abstract

For a code $C=C(n, M)$ the level k code of C, denoted C_{k}, is the set of all vectors resulting from a linear combination of precisely k distinct codewords of C. We prove that if k is any positive integer divisible by 8 , and $n=\gamma k, M=\beta k \geq 2 k$ then there is a codeword in C_{k} whose weight is either 0 or at most $n / 2-n\left(\frac{1}{8 \gamma}-\frac{6}{(4 \beta-2)^{2}}\right)+1$. In particular, if $\gamma<(4 \beta-2)^{2} / 48$ then there is a codeword in C_{k} whose weight is $n / 2-\Theta(n)$. The method used to prove this result enables us to prove the following: Let k be an integer divisible by p, and let $f(k, p)$ denote the minimum integer guaranteeing that in any square matrix over Z_{p}, of order $f(k, p)$, there is a square submatrix of order k such that the sum of all the elements in each row and column is 0 . We prove that $\lim \inf f(k, 2) / k<3.836$. For general p we obtain, using a different approach, that $f(k, p) \leq p^{(k / \ln k)\left(1+o_{k}(1)\right)}$.

1 Introduction

For standard coding theory notations the reader is referred to [6]. The minimum weight of a code C is the smallest Hamming weight of a codeword of C other than zero. Coding theory bounds such as Plotkin's bound or the Linear Programming bound show that if the dimension of a binary code is large enough as a function of its length, then some linear combination has a small Hamming weight. In other words, the code spanned by the codewords of C has small minimum weight. In this paper we present an alternative coding theory bound for the code obtained by fixed size linear combinations. For a positive integer k, let C_{k} denote the code obtained by linear combinations of precisely k distinct codewords of C. In particular, $C_{1}=C$, and if C is a linear code then $C_{k} \subset C$. We call C_{k} the level k code of C. Let $w\left(C_{k}\right)$ denote the minimum weight of C_{k}. Notice that if k is odd then $w\left(C_{k}\right)$ can be very large. Indeed, consider a code $C=C(n, M)$ where M is the size of the code and n is the length of the codewords, and assume the first $n-\lceil\log M\rceil$ coordinates of

[^0]all codewords are one. We can still have all M codewords distinct, and clearly, for such a code, $w\left(C_{k}\right) \geq n-\lceil\log M\rceil$ for all odd k. (If we allow C to contain repeated words we can even have all coordinates of all its members being 1). Thus, to avoid this non-interesting case, we assume k is even. For $M \geq k$, let $w(k, n, M)$ denote the maximum possible value of $w\left(C_{k}\right)$ ranging over all codes of size M and length n. A theorem of Enomoto et al. [3] shows that $w(k, k-1, M)=0$ for $M \geq 2 k$ and the result is tight. In general, however, no nontrivial bound is known. It is interesting to find general cases which guarantee that $w(k, n, M)$ is significantly less than $n / 2$. In this paper we present a nontrivial bound of this type. Our main result is the following:
Theorem 1.1 Let k be divisible by 8. Let $C=C(n, M)$ be any code with $M \geq 2 k$. Put $M=\beta k$ and $n=\gamma k$. Then, either $0 \in C_{k}$ or else
$$
w\left(C_{k}\right) \leq \frac{n}{2}-n\left(\frac{1}{8 \gamma}-\frac{6}{(4 \beta-2)^{2}}\right)+1 .
$$

In particular, if $\gamma<(4 \beta-2)^{2} / 48$ then $w\left(C_{k}\right)=n / 2-\Theta(n)$.
The constants appearing in Theorem 1.1 are not optimal. It is not difficult to obtain somewhat better constants for specific values of β and γ, but we prefer a general statement at the price of some loss in the constants. For example, Theorem 1.1 gives $w(64,800,640) \leq 396$ and $w(64,640,640) \leq$ 315. Theorem 1.1 is an application of a more general technical lemma, Lemma 2.2 proved in Section 2, whose proof has another interesting application. Let A be a matrix over Z_{p}. A submatrix B of A is called zero-sum if the sum of all elements in each row and in each column of B is zero. Consider the following Ramsey-type extremal problem: Let $f(k, p)$ denote the least integer such that any square matrix of order $f(k, p)$ over Z_{p} has a square submatrix of order k which is zero-sum. Standard Ramsey-type arguments show that $f(k, p)$ is finite for all $k=0 \bmod p$. If p does not divide k then the all one matrix shows that $f(k, p)$ is infinite. The problem of determining $f(k, p)$ was first raised in [1]. It is proved there that $\lim \inf f(k, 2) / k \leq 4, \lim \inf f(k, 2) / k \geq 2$ and $\liminf f(k, 3) / k \leq 20$ (in fact, the authors show that $f(k, 2) \leq 4 k\left(1+o_{k}(1)\right)$ for all even k). It is conjectured there that for every prime p, liminf $f(k, p) / k \leq c_{p}$ where c_{p} is a constant depending only on p. The conjecture is open for all primes except $p=2,3$. Using the proof method of Lemma 2.2 and the theorem of Enomoto et al. mentioned above we are able to show that $\lim \inf f(k, 2) / k<3.836$. We also present a nontrivial upper bound for $f(k, p)$ (which is, however, still very far from the conjectured $O(k)$ upper bound).

The rest of this note is organized as follows: In Section 2 we prove Theorem 1.1 and the lemmas that are needed for its proof. In Section 3 we present the application to zero-sum square matrices.

2 The proof of the main result

The main tool in the proof of Theorem 1.1 is a more general lemma whose proof is presented next. Before we state the lemma we need some definitions and notations. An r-subvector of a vector v
is obtained by picking r (not necessarily consecutive) coordinates of v. Let s and r be positive integers where $s \geq r$. For $v \in\left(Z_{2}\right)^{s}$ let $z_{v}(r)$ denote the fraction of r-subvectors of v whose sum of coordinates is odd. Let $z(s, r)$ denote the maximum of $z_{v}(r)$ ranging over all $v \in\left(Z_{2}\right)^{s}$. This quantity can be expressed in terms of the minimum possible value of the corresponding Krawchouk polynomial (see., e.g., [6] for the definition and some properties of these polynomials). Trivially, if r is odd then $z(s, r)=1$. However, when r is even it is not difficult to show that when $s \geq r / 2$, $z(s, r)$ is close to 0.5 for large s. We shall be interested, however, in more precise approximations and in fixed values of r. An easy exercise gives that $z(s, 2)=s /(2(s-1))$ when s is even and $z(s, 2)=(s+1) /(2 s)$ when s is odd. However, for $r \geq 4$ there seems to be no nice formula.

Another tool that we use is a theorem of Enomoto et al. [3] also mentioned in the introduction:

Lemma 2.1 [[3]] Let t be an even integer. If $s \leq t-1$ then any sequence of at least $2 t$ vectors from $\left(Z_{2}\right)^{s}$ contains a t-subsequence whose sum is zero.

We are now ready to prove the following lemma.
Lemma 2.2 Let $k=0 \bmod 4$ and let r be any positive integer dividing $k / 4$. Suppose $C=C(n, M)$ is a binary code with $M \geq k+k /(2 r)$. Then, either $0 \in C_{k}$ or else

$$
w\left(C_{k}\right) \leq(n-k /(2 r)+1) z(\lfloor 2 r M / k\rfloor-1,2 r) .
$$

Proof: Partition each $v \in C$ into two parts, v_{a} and v_{b} where v_{a} consists of the first $k /(2 r)-1$ coordinates, and v_{b} consists of the remaining coordinates (if $n \leq k /(2 r)-1$ take $v_{a}=v$ and there is no v_{b}). Let $A=\left\{v_{a}: v \in C\right\}$ (although the vectors in A are not necessarily distinct, we consider each v_{a} as labeled by the original vector v, and in this sense, they are distinct). Since $k /(2 r)$ is even and since $M \geq k / r$, we have, by Lemma 2.1, that there exists $A_{1} \subset A$ with $\left|A_{1}\right|=k /(2 r)$ such that the sum of all vectors in A_{1} is zero. Throwing the vectors of A_{1} away from A we can repeat this process and find another set of $k /(2 r)$ vectors whose sum is zero. We can repeat this process precisely $d=\lfloor 2 r M / k\rfloor-1$ times obtaining subsets of vectors A_{1}, \ldots, A_{d}, that correspond to disjoint subsets of vectors of C, such that the sum of the $k /(2 r)$ vectors in A_{i} is zero for $i=1, \ldots, d$. Since $M \geq k+k /(2 r)$ we have $d \geq 2 r$. If $n \leq k /(2 r)-1$ we have that the sum of the vectors in $A_{1}, \ldots, A_{2 r}$ is a sum of k distinct vectors of C. Since this sum is zero, we have $0 \in C_{k}$ and we are done. We therefore assume $n \geq k /(2 r)$. Let $B_{i}=\left\{v_{b}: v_{a} \in A_{i}\right\}$. For each $j=1, \ldots, n-k /(2 r)+1$ let $u_{j}=\left\{u_{j}^{1}, \ldots, u_{j}^{d}\right\}$ be defined by $u_{j}^{i}=\sum_{v_{b} \in B_{i}} v_{b}^{j}$. Let U_{j} denote the family of $(2 r)$-sets of $\{1, \ldots, d\}$ for which the corresponding $(2 r)$-subvector of u_{j} has an odd number of ones. By definition, $\left|U_{j}\right| \leq z(d, 2 r)\binom{d}{2 r}$. Hence, $\sum_{j=1}^{n-k /(2 r)+1}\left|U_{j}\right| \leq(n-k /(2 r)+1) z(d, 2 r)\binom{d}{2 r}$. It follows that there exists a $(2 r)$-set U such that if $B^{\prime}=\cup_{i \in U} B_{i}$ then $\sum_{v_{b} \in B^{\prime}} v_{b}$ contains at most $(n-k /(2 r)+1) z(d, 2 r)$ ones. Notice that $\left|B^{\prime}\right|=2 r k / 2 r=k$. Now let $C^{\prime}=\left\{v: v_{b} \in B^{\prime}\right\}$. Clearly $\sum_{v \in C^{\prime}} v \in C_{k}$ and has at most $(n-k /(2 r)+1) z(d, 2 r)$ ones.

It is interesting to obtain general cases where $w\left(C_{k}\right)$ is significantly less than $n / 2$. If we use Lemma 2.2 with $r=1$ we can obtain such a statement only when $n<M$.

Proposition 2.3 Let $k=0 \bmod 4$. Suppose $\beta \geq 2$ is an integer. Then, for any code $C=C(n, M)$ with $M \geq \beta k$ and $n<\beta k, 0 \in C_{k}$ or else $w\left(C_{k}\right) \leq n / 2-(\beta k-n) /(4 \beta-2)+1$.

Proof: Clearly we may assume $M=\beta k$. Put $n=\gamma k$. We use Lemma 2.2 with $r=1$. Using the fact that $z(2 \beta-1,2)=1 / 2+1 /(2(2 \beta-1))$ we get that either $0 \in C_{k}$ or else $w\left(C_{k}\right) \leq$ $(n-k / 2+1)(1 / 2+1 /(2(2 \beta-1)))$. Now,

$$
\begin{aligned}
\left(n-\frac{k}{2}+1\right)\left(\frac{1}{2}+\frac{1}{2(2 \beta-1)}\right) & \leq k\left(\gamma-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2(2 \beta-1)}\right)+1= \\
\frac{\gamma}{2} k-k \frac{\beta-\gamma}{2(2 \beta-1)}+1 & =\frac{n}{2}-\frac{\beta k-n}{4 \beta-2}+1 .
\end{aligned}
$$

The real power of Lemma 2.2 is demonstrated when $r \geq 2$. In this case we can show that even if $n>M$ we can still have $w\left(C_{k}\right) \leq n / 2-\Theta(n)$. In fact, we can have n / M as large as we want, assuming M is sufficiently large (but still $M=O(k)$). It turns out that using $r=2$ already suffices for this purpose. Before we complete the proof of Theorem 1.1, we need to provide a tight upper bound for $z(s, 4)$.

Lemma 2.4 For $s \geq 7, z(s, 4) \leq 0.5+6 / s^{2}$.
Proof: Consider a binary vector of length s. Let x denote its Hamming weight. The number of 4 -subvectors with an odd number of ones is $(s-x)\binom{x}{3}+x\binom{s-x}{3}$. Hence, we need to show that for all $s \geq 7$,

$$
\frac{(s-x)\binom{x}{3}+x\binom{s-x}{3}}{\binom{s}{4}} \leq \frac{1}{2}+\frac{6}{s^{2}} .
$$

Consider the numerator of the left-hand-side of the last inequality as a real polynomial (of degree 4) of x (which can be expressed in terms of the corresponding Krawchouk polynomial). Its derivative is a polynomial of degree 3 , and $x=n / 2$ is a root of the derivative and is a local minimum. The other two roots are local maxima (yielding the same value, and hence each is also a global maxima) and they are $(s \pm \sqrt{3 s-4}) / 2$. The value at these maxima is $s^{4} / 48-s^{3} / 8+17 s^{2} / 48-s / 2+1 / 3$. Hence,

$$
\frac{(s-x)\binom{x}{3}+x\binom{s-x}{3}}{\binom{s}{4}} \leq \frac{s^{4} / 48-s^{3} / 8+17 s^{2} / 48-s / 2+1 / 3}{\binom{s}{4}}=\frac{1}{2}+\frac{s^{2} / 8-3 s / 8+1 / 3}{\binom{s}{4}} .
$$

It follows that for $s \geq 7$,

$$
z(s, 4) \leq \frac{1}{2}+\frac{s^{2} / 8-3 s / 8+1 / 3}{\binom{s}{4}}=\frac{1}{2}+\frac{3(s-1)(s-2)+2}{s(s-1)(s-2)(s-3)}=
$$

$$
\frac{1}{2}+\frac{3}{s(s-3)}+\frac{2}{s(s-1)(s-2)(s-3)} \leq \frac{1}{2}+\frac{6}{s^{2}}
$$

Proof of Theorem 1.1: Since $k=0 \bmod 8$ we can use $r=2$ in Lemma 2.2. Let $C=C(n, M)$ be any code with $M \geq 2 k . M=\beta k$ and $n=\gamma k$. By Lemma 2.2, either $0 \in C_{k}$ or else $w\left(C_{k}\right) \leq$ $(n-k / 4+1) z(\lfloor 4 \beta\rfloor-1,4)$. Assuming the latter, and since $\beta \geq 2$, we have $\lfloor 4 \beta\rfloor-1 \geq 7$, so using Lemma 2.4 we get

$$
\begin{gathered}
w\left(C_{k}\right) \leq(n-k / 4+1)\left(\frac{1}{2}+\frac{6}{(\lfloor 4 \beta\rfloor-1)^{2}}\right)<k\left(\gamma-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{6}{(4 \beta-2)^{2}}\right)+1= \\
\frac{n}{2}-\frac{n}{8 \gamma}+\frac{6 n}{(4 \beta-2)^{2}}-\frac{6 k}{4(4 \beta-2)^{2}}+1<\frac{n}{2}-n\left(\frac{1}{8 \gamma}-\frac{6}{(4 \beta-2)^{2}}\right)+1 .
\end{gathered}
$$

It is easy to see from Theorem 1.1, that when M grows, our upper bound for $w\left(C_{k}\right)$ approaches $n / 2-n /(8 \gamma)$. When M becomes very large we can gain some more as demonstrated by the following simple example: Suppose $m \geq 9 n 2^{0.1 n}, n=\gamma k$ with, say, $\gamma \geq 1$. We can find $9 n$ vectors that agree on the first $0.1 n$ coordinates. Putting $M^{\prime}=9 n$ and $n^{\prime}=0.9 n$ we have $M^{\prime}=10 n^{\prime}, \gamma^{\prime}=0.9 \gamma$ and $\beta^{\prime}=9 \gamma$. By Theorem 1.1 we have

$$
w\left(C_{k}\right) \leq \frac{n^{\prime}}{2}-n^{\prime}\left(\frac{1}{8 \gamma^{\prime}}-\frac{6}{(36 \gamma-2)^{2}}\right)+1=0.45 n-n\left(\frac{1}{8 \gamma}-\frac{5.4}{(36 \gamma-2)^{2}}\right)+1 \leq 0.45 n-\frac{n}{9 \gamma}+1 .
$$

3 Zero sum square matrices

In the following upper bound for $\lim \inf f(k, 2) / k$ we use Lemma 2.2 without change. In fact, the following theorem supplies an upper bound for $f(k, 2)$ valid for all $k=0 \bmod 12$.

Theorem 3.1 Let $k=0 \bmod 12$. Every square binary matrix of order at least $50447 k / 13008+$ $2221 / 2168$ has a square submatrix of order k which is zero sum. In particular $\lim \inf f(k, 2) / k<$ 3.879 .

Proof: Let A be a square binary matrix of order $n \geq 50447 k / 13008+2221 / 2168$. Clearly we may assume $n-1<4 k$. We consider the first $n-1$ rows of A as codewords of an $(n, n-1)$ binary code. Since $k=0 \bmod 12$ we can use Lemma 2.2 with $r=3$. Since $23<6(n-1) / k<24$ we have, by Lemma 2.2, that there are k rows of A whose sum contains at most $(n-k / 6+1) z(22,6)$ ones. The maximum number of 6 -subvectors with an odd number of ones of a vector $v \in\left(Z_{2}\right)^{22}$ is obtained when v has 5 or 17 ones and it is 37757 . Thus, $z(22,6)=37757 / 74613=2221 / 4389$. It follows that there are k rows of A whose sum has at least
$n-\frac{2221}{4389}\left(n-\frac{k}{6}+1\right)=\frac{2168}{4389} n+\frac{2221}{26334} k-\frac{2221}{4389} \geq \frac{2168}{4389}\left(\frac{50447 k}{13008}+\frac{2221}{2168}\right)+\frac{2221}{26334} k-\frac{2221}{4389}=2 k$ zeroes. Thus, A has a submatrix B with k rows and $2 k$ columns, such that the sum of all rows of B is zero. Ignoring the last row of B, and using Lemma 2.1 with $t=k$ and $s=k-1$ we have a
submatrix B^{\prime} of B with k columns and k rows such that sum of all rows of B^{\prime} is zero and the sum of all columns is a vector whose first $k-1$ coordinates are zero. However, the last coordinate must also be zero since the total number of ones in B^{\prime} is even. Hence B^{\prime} is a zero sum square submatrix of order k.

The choice of $r=3$ in the proof of Theorem 3.1 is optimal. A similar approach using $r=2$ yields the constant $144 / 37>3.89$ instead of the constant $50447 / 13008<3.879$ that appears in Theorem 3.1. However, using $r=2$ applies to all $k=0 \bmod 8$. Using values of $r \geq 4$ again yields inferior results. This is because $z(s, r) \geq 0.5$, by a simple probabilistic argument. Now if $r \geq 5$ take $n=3.89 k$ and then the number of ones in the sum of the k rows guaranteed by Lemma 2.2 is not less than $(3.9 k-k / 2 r) / 2 \geq 1.9 k$ so there are less than $3.89 k-1.9 k<2 k$ guaranteed zeroes and we cannot define B as in the proof of Theorem 3.1. Thus, even a constant of 3.89 cannot be guaranteed in this way. For $r=4$ one can check specifically that the obtained constant is inferior.

A slightly better upper bound for $\lim \inf f(k, 2) / k$ is obtained using the following idea, that supplies an upper bound for $f(k, 2)$ valid for large k that is of the form $k=12 q$ where q is a prime power. The following coding theory bound has been proved by Bassalygo et al. in [2] using a theorem of Frankl and Wilson [5]:

Lemma 3.2 Let $\lambda \leq 0.5$. For every n sufficiently large, if λn is twice a prime power and C is a linear code of dimension dn that does not contain the weight λn then

$$
d \leq 1-H(\lambda)+H(\lambda / 2)
$$

where $H(x)=-x \log _{2}(x)-(1-x) \log _{2}(1-x)$ is the binary entropy.
We therefore obtain the following corollary:
Corollary 3.3 For every sufficiently large m for which $m / 2$ is a prime power, the following holds: Every binary matrix with $\lceil 1.41 m\rceil$ rows and $\lceil 5.95 m\rceil$ columns has m columns whose sum is the zero vector of $\left(Z_{2}\right)^{\lceil 1.41 m\rceil}$.

Proof: Choose m sufficiently large such that $n=\lceil 5.95 m\rceil$ is sufficiently large for the parameter $\lambda=m / n \leq 1 / 5.95$ in Lemma 3.2 and so that $\lambda>1 / 5.9449$. Let A be a binary matrix with $\lceil 1.41 m\rceil$ rows and n columns. Consider the linear code C whose parity check matrix is A. The dimension of C is at least $n-\lceil 1.41 m\rceil>4.54 m-1>0.763 n$. Now, since

$$
1-H(\lambda)+H(\lambda / 2)<0.763
$$

it follows from Lemma 3.2 that C contains the weight $\lambda n=m$. In particular, there are m columns whose sum is zero.

Corollary 3.3, together with (a slightly modified) version of Lemma 2.2 give the following:
Theorem 3.4 For k sufficiently large for which $k / 12$ is a prime power, $f(k, 2)<3.836 k+1$.

Proof: Assume m is sufficiently large and chosen as in Corollary 3.3. Put $k=6 m$. Let A be a square matrix of order $t>3.836 k=23.016 \mathrm{~m}$. By Corollary 3.3 we can arrange the rows of A such that the sum of all m rows $s m+1, \ldots,(s+1) m$ is zero in the first $\lceil 1.41 m\rceil$ coordinates, for each $s=0, \ldots, 17$. For each of these 18 sums , let S_{i} denote the vector corresponding to the remaining $t-\lceil 1.41 m\rceil$ coordinates of the corresponding sum vector. As in Lemma 2.2, we can find a set of 6 vectors of the S_{i} such that their sum has at most $z(18,6)(t-\lceil 1.41 m\rceil)$ ones. This implies the existence of $6 m=k$ rows of A whose sum has at least $t-z(18,6)(t-\lceil 1.41 m\rceil)$ zeroes. Since $z(18,6)=26 / 51$ we have $t-z(18,6)(t-\lceil 1.41 m\rceil) \geq 12 m=2 k$. Thus, A has a submatrix B with k rows and $2 k$ columns, such that the sum of all rows of B is zero. As in Theorem 3.1 we get that there exists a zero sum square submatrix B^{\prime} of order k.

We note here that use of Lemma 3.2 allows improvement on the coding bound of Theorem 1.1 . However, the conditions on the length are much more restrictive. We omit the details.

We conclude this section with an upper bound for $f(k, p)$. In fact, our upper bound follows from a proposition which is a (weak) analog of the theorem of Enomoto et al. for Z_{p} instead of Z_{2}. For k a multiple of p, let $g(k, p)$ be the minimum integer that guarantees that in any sequence of $g(k, p)$ elements of $\left(Z_{p}\right)^{k}$ there is a k-subsequence whose sum is zero. The theorem of Enomoto et al. gives, almost immediately, that $g(k, 2) \leq 4 k-1$ for all even k. In fact, using a theorem of Olson [7] we can get $g(k, 2) \leq 2 k+1$ whenever k is a power of 2 . In [1] it is proved that $g(k, 3) \leq 15 k-8$ if k is a power of 3 (no linear bound is known for all k divisible by 3). For $p>3$ there is no known linear bound for $g(k, p)$ which holds for infinitely many values of k. A trivial upper bound is obviously $(k-1) p^{k}+1$. A much smaller upper bound (but still, a non polynomial one) is given in the following theorem:

Proposition 3.5 Let p be a fixed prime. For infinitely many values of $k, g(k, p) \leq p^{(k / \ln k)\left(1+o_{k}(1)\right)}$.
Proof: Let r be a positive integer. Let k be the smallest integer such that k / p is divisible by all $1 \leq s \leq r$. Clearly, k / p is obtained by multiplying appropriate powers of all primes q up to r, where each prime q is raised to the maximum power x_{q} for which $q^{x_{q}} \leq r$. Hence $k / p<r^{\pi(r)}$ where $\pi(r)$ is the number of primes up to r. It is well known that $\pi(r) \leq(1+o(1)) r / \ln r$, and hence $k / p<e^{r\left(1+o_{r}(1)\right)}$. Now, suppose m satisfies $\binom{m-k r^{2}}{r} \geq p^{k} r^{r} p^{r+1}$. We claim that $g(k, p) \leq m$. Consider a sequence of m vectors from $\left(Z_{p}\right)^{k}$. By the pigeonhole principle, there is a family T of at least $t \geq p^{r+1} r^{r} r$-subsequences, such that for each $U \in T$, the sum of all r vectors of U is the same. It is well-known that in any family of at least $(p-1)^{r+1} r!<t$ distinct (but non necessarily disjoint) sets, each with r elements, there is a delta system with p petals [4]. In other words, there are p sets in the family such that the common intersection of all of them is identical to the intersection of any two of them. Hence, there are $U_{1}, \ldots, U_{p} \in T$, where $\cap_{i=1}^{p}=S$ and $\left(U_{i} \backslash S\right) \cap\left(U_{j} \backslash S\right)=\emptyset$ for $i \neq j$. Putting $W_{i}=U_{i} \backslash S$ we have that the sum of all the vectors in W_{i} is the same for all $i=1, \ldots, p$. Hence the sum of all vectors in $\cup_{i=1}^{p} W_{i}$ is zero (in Z_{p}). Now,
$r \geq\left|W_{i}\right|=r-|S| \geq 1$. Putting $r-|S|=q_{1}$ we have found $q_{1} p$ distinct vectors whose sum is zero. Recall that k is divisible by $q_{1} p$. Deleting these $q_{1} p$ vectors and repeating this process $k r / p$ times we have $k r / p$ disjoint subsequences of $q_{i} p$ vectors for $i=1, \ldots, k r / p$, such that the sum of the vectors in each subsequence is zero. There exist some $1 \leq s \leq r$ such that $q_{i}=s$ for at least k / p distinct values of i. As $k /(p s)<k / p$ is an integer, we can select $k /(p s)$ sequences of size $s p$ each. The union of these sequences is a sequence of k vectors whose sum is zero, as required. Now, $m=p^{(k / \ln k)\left(1+o_{k}(1)\right)}$ satisfies $\binom{m-k r^{2}}{r} \geq p^{k} r^{r} p^{r+1}$ and the result follows.

It remains to show the relation between $f(k, p)$ and $g(k, p)$. Let $z(s, k, p)$ denote the minimum possible fraction of k-subvectors of a vector $v \in\left(Z_{p}\right)^{s}$ whose sum is divisible by p. This generalizes the definition of $z(s, k)=1-z(s, k, 2)$ appearing in Section 2. It is proved in 1 that $z(s, k, p) \geq$ $2^{1-p}\left(1-o_{k}(1)\right)$ for $k \leq s / 2$. This, together with an immediate counting argument, shows that in any matrix over Z_{p} with $s \geq 2 k$ rows and t columns there is a submatrix with k rows and $t 2^{1-p}\left(1-o_{k}(1)\right)$ columns such that the sum of the rows is zero. By definition of $g(k, p)$, if $t 2^{1-p}\left(1-o_{k}(1)\right) \geq$ $g(k, p)$ then there is a square zero-sum submatrix of order k. Since $t>s$, it follows that any square matrix of order t over Z_{p} has a square submatrix of order k which is zero-sum. Hence $f(k, p) \leq 2^{p-1} g(k, p)\left(1+o_{k}(1)\right)$. By Proposition 3.5 we have that for infinitely many values of k, $f(k, p) \leq 2^{p-1} p^{(k / \ln k)\left(1+o_{k}(1)\right)}=p^{(k / \ln k)\left(1+o_{k}(1)\right)}$.

References

[1] P. Balister, Y. Caro, C. Rousseau and R. Yuster, Zero-sum square matrices, European J. Combin. 23 (2002), 489-497.
[2] L. Bassalygo, G. Cohen and G. Zémor, Codes with forbidden distances, Discrete Mathematics 213 (2000), 3-11.
[3] H. Enomoto, P. Frankl, N. Ito and N. Nomura, Codes with given distances, Graphs and Combinatorics 3 (1987), 25-38.
[4] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[5] P. Frankl and R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, New York, 1977.
[7] J. E. Olson, A combinatorial problem on finite Abelian groups, I, II, J. Number Theory 1 (1969), 8-10, 195-199.

[^0]: ${ }^{*}$ School of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: nogaa@post.tau.ac.il
 ${ }^{\dagger}$ Department of Electrical Engineering - Systems, Tel Aviv University, Tel Aviv, Israel.
 E-mail: litsyn@yarkon.eng.tau.ac.il
 ${ }^{\ddagger}$ Department of Mathematics, University of Haifa at Oranim, Tivon 36006, Israel.
 E-mail: raphy@research.haifa.ac.il

