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Abstract

Let G and H be graphs. We say that P is an H-packing of G if P is a set of
edge-disjoint copies of H in G. An H-packing P is maximal if there is no other
H-packing of G that properly contains P. Packings of maximum cardinality have
been studied intensively, with several recent breakthrough results. Here, we consider
minimum cardinality maximal packings. An H-packing P is clumsy if it is maximal
of minimum size. Let cl(G,H) be the size of a clumsy H-packing of G. We provide
nontrivial bounds for cl(G,H), and in many cases asymptotically determine cl(G,H)
for some generic classes of graphs G such as Kn (the complete graph), Qn (the
cube graph), as well as square, triangular, and hexagonal grids. We asymptotically
determine cl(Kn, H) for every fixed non-empty graph H. In particular, we prove
that

cl(Kn, H) =

(
n
2

)
− ex(n,H)

|E(H)|
+ o(ex(n,H)),

where ex(n,H) is the extremal number of H.
A related natural parameter is cov(G,H), that is the smallest number of copies

of H in G (not necessarily edge-disjoint) whose removal from G results in an H-free
graph. While clearly cov(G,H) 6 cl(G,H), all of our lower bounds for cl(G,H)
apply to cov(G,H) as well.

Mathematics Subject Classifications: 05C70, 05C35
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1 Introduction

Let G and H be graphs. We say that P is an H-packing of G if P is a set of edge-disjoint
subgraphs of G each isomorphic to H. We shall refer to subgraphs isomorphic to H as
copies of H. An H-packing P is maximal if there is no other H-packing in G that properly
contains P . An H-packing P of G is perfect if every edge of G belongs to an element of
P . In the case when there is a perfect H-packing of G, we say that H decomposes G. The
case of perfect H-packings has been extensively studied. A seminal result of Wilson [20]
asserts that perfect H-packings of Kn always exist when certain (obviously necessary)
divisibility conditions hold. Wilson’s result has been extended from Kn to graphs with
a sufficiently large minimum degree starting with Gustavsson [10] and culminating in
results of Keevash [13] and Glock et al. [9]. In general, however, deciding if G has a
perfect H-packing, or computing pp(G,H), the maximum cardinality of an H-packing of
G, is NP-hard for every connected H with at least three edges, [7].

Here, we consider minimum cardinality maximal packings. An H-packing P is clumsy
if it is maximal of minimum size. Let cl(G,H) be the size of a clumsy H-packing of G.
Thus, we are interested in the smallest covering of all the copies of H in G with edge-
disjoint copies of H. Let cov(G,H) be the smallest cardinality of a set of (not necessarily
edge-disjoint) copies of H in G such that each copy of H in G has an edge in some
element of the set. Thus, we have pp(G,H) > cl(G,H) > cov(G,H). The notion of a
clumsy packing was introduced by Gyárfás et al. [11] for domino packings. It was further
extended to general polyominoes by Walzer et al. [19].

Our main results provide upper and lower bounds, and in many cases asymptotically
determine cl(G,H) and cov(G,H) for major generic classes of graph G such as Kn (the
complete graph), Qn (the cube graph), as well as square, triangular, and hexagonal grids.
To state our results we need to recall some notation. We assume that the graphs under
consideration are non-empty unless otherwise stated. We denote the number of edges of
a graph G by ||G||. Note that pp(G) = ||G||/||H|| if a perfect H-packing of G exists.
The extremal number ex(G,H) is the largest number of edges in a subgraph of G that
contains no copy of H and ex(n,H) = ex(Kn, H). Using these notations, a trivial lower
bound for cov(G,H), and thus for cl(G,H) is therefore

||G|| − ex(G,H)

||H||
6 cov(G,H) 6 cl(G,H) (1)

since we must cover at least ||G|| − ex(G,H) edges of G with copies of H. Our first main
result concerns the case cl(Kn, H).

Theorem 1. Let H be any fixed non-empty graph. Then,

cl(Kn, H) =
||Kn|| − ex(n,H)

||H||
+ o(ex(n,H)) .

If H is complete or bipartite, then the o(ex(n,H)) term is only linear in n and if H is a
forest, the o(ex(n,H)) term is a constant.
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Note that by (1), the same results hold for cov(G,H) instead of cl(G,H). The proof
of Theorem 1 appears in Section 2.

The asymptotic expression for ex(n,H), given by Erdős-Stone Theorem when χ(H) >
3, allows us to obtain the asymptotic ratio between the sizes of clumsy and perfect pack-
ings.

Corollary 2. For a fixed H with χ(H) > 3,

lim
n→∞

cl(Kn, H)

pp(Kn, H)
=

1

χ(H)− 1
.

Our next result concerns another well-studied generic graph, the hypercube Qn. In
this setting, it is most natural to evaluate cl(Qn, Qd) where d > 2 is fixed. Unlike the case
of Theorem 1 where the true asymptotic is determined and the main goal is to keep the
set of uncovered edges (which is small in some cases) as large as possible, in the hypercube
setting we are only able to obtain upper and lower bounds and these do not coincide.

Theorem 3. For a fixed integer d, d > 2,

Ω

(
log d

d 2d

)
6 lim inf

n→∞

||Qd||
||Qn||

cl(Qn, Qd) 6 lim sup
n→∞

||Qd||
||Qn||

cl(Qn, Qd) 6

√
2π√
d

(1 + od(1))

and for d = 2,

0.3932 6 lim inf
n→∞

||Q2||
||Qn||

cl(Qn, Q2) 6 lim sup
n→∞

||Q2||
||Qn||

cl(Qn, Q2) 6
2

3
.

It is worth noting that Offner [18] proved that ||H||
||Qn||pp(Qn, H) = 1 − o(1) for any

fixed subgraph H of a hypercube, so the ratios in Theorem 3 also serve as ratios between
pp(Qn, Qd) and cl(Qn, Qd). The proof of Theorem 3 appears in Section 3.

Our third main result consists of constructions of clumsy packings of grid graphs
corresponding to the regular tessellations of the plane. There are only three regular tes-
sellations of the plane: the triangular, the square, and the hexagonal, each corresponding
to an infinite graph whose vertices correspond to respective k-gons (k ∈ {3, 4, 6}), and
edges correspond to pairs of k-gons sharing sides. We construct clumsy Ck-packings for
each of these graphs and compute the exact limit ratio of the covered edges in these
packings which turns out to be 2/(k + 1). In particular, for a square grid graph Grn,
our results here imply that cl(Grn, C4) = n2

5
(1 + o(1)). The main result here, stated as

Theorem 13, appears in Section 4.
Finally, it is interesting to point out that cl(G,H) is not a monotone graph parameter,

which might explain some of the difficulties that arise in its determination. Indeed,
consider the graph G′ which is the union of k + 1 graphs F0, . . . , Fk, each isomorphic to
Ck such that Fi is edge-disjoint from Fj, 1 6 i < j 6 k, and F0 shares its ith edge with
Fi, when we arbitrarily label the edges of F0 with 1, . . . , k. Let H = Ck and let G be
obtained from G′ by deleting an edge from F0. Then we see that cl(G′, H) = 1 as {F0}
forms a clumsy packing. On the other hand cl(G,H) = k − 1.
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2 Clumsy packings in Kn

Prior to proving Theorem 1 we need to recall some facts and definitions. For a graph
H, let gcd(H) denote the greatest common divisor of its vertex degrees. A graph G is
called H-divisible if gcd(H) divides gcd(G) and ||H|| divides ||G||. For example, Kn is
Km-divisible if n ≡ 1 mod m(m − 1). Clearly, a necessary condition for a perfect H-
packing of G is that G is H-divisible. A seminal result of Wilson [20] asserts that for
every fixed graph H, if n sufficiently large and Kn is H-divisible, then Kn has a perfect
H-packing. Recall also that the Turán graph T (n, k) is the complete k-partite graph on
n vertices whose parts form an equitable partition (so the size of each part is either bn/kc
or dn/ke). Turán’s Theorem asserts that ex(n,Kk+1) = ||T (n, k)|| and that T (n, k) is the
unique extremal Kk+1-free graph with n vertices.

The lower bound on cl(Kn, H) in Theorem 1 follows from (1). To prove the upper
bound, we split the proof of Theorem 1 into four parts, depending on the structure of H.
The parts correspond to the cases H = Km, χ(H) > 3, H is bipartite but not a forest,
and H is a forest. While the first two cases are rather standard, the proofs of the bipartite
and forest cases are more involved, especially since we know neither the structure nor the
asymptotic value of ex(n,H) in these cases.

2.1 H = Km

Lemma 4. For fixed m > 2, cl(Kn, Km) 6 (||Kn||−ex(n,Km))/||Km||+O(n). Moreover,
for n sufficiently large, cl(Kn, Km) = (||Kn||−ex(n,Km))/||Km|| if n is divisible by m−1
and Kn/(m−1) is Km-divisible.

Proof. We assume m > 3 as the case m = 2 trivially holds. We shall construct a maximal
H-packing with the desired number of copies of Km. Assume first that n is divisible
by m − 1 and Kn/(m−1) is Km-divisible. Given G = Kn, the Turán graph T (n,m − 1)
is a spanning subgraph of G. Denote the partite sets of T (n,m − 1) by V1, . . . , Vm−1.
If n is sufficiently large, we can use Wilson’s Theorem to find a perfect Km-packing of
each Vi. The union of these m − 1 perfect packings is a Km-packing of size (||Kn|| −
ex(n,Km))/||Km||, as required. It is a maximal packing since each copy of Km in Kn

contains an edge induced by one of Vi’s.
Next assume that n is not of the aforementioned form. Let n′ < n be the largest

integer such that m− 1 divides n′ and Kn′/(m−1) is Km-divisible. For example, every n′ of
the form n′ ≡ m−1 mod m(m−1)2 satisfies these conditions. Hence n−n′ < m(m−1)2.
Now let G = Kn and let G′ = Kn′ be a subgraph of G. By the previous paragraph, if
n is sufficiently large (and thus n′ is sufficiently large) there is a maximal Km-packing P
of G′ of size (||Kn′ || − ex(n′, Km))/||Km|| 6 (||Kn|| − ex(n,Km))/||Km||. However, there
may now be copies of Km in G that are not covered by P . Each such copy must contain
an edge incident to one of the n − n′ vertices of V (G) \ V (G′). As there are at most
(n − n′)n < m(m − 1)2n such edges, one can greedily add edge-disjoint copies of Km to
P to obtain a maximal packing of G consisting of less than |P| + m(m − 1)2n elements
which is less than (||Kn|| − ex(n,Km))/||Km||+m(m− 1)2n.
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One can improve the error term m(m− 1)2n to a better linear term using a result of
Caro and Yuster [6] asserting that for any sufficiently large ` and a fixed m, K` contains
at least ⌊

`

m

⌊
`− 1

m− 1

⌋⌋
− 1

pairwise edge-disjoint copies of Km. Thus there is a packing of Km’s in K` covering at
least

m(m− 1)

2

(⌊
`

m

⌊
`− 1

m− 1

⌋⌋
− 1

)
>
`(`− 1)

2
− (m− 2)`

2
−m(m− 1)

edges of K` where the latter inequality follows from(⌊
`

m

⌊
`− 1

m− 1

⌋⌋
− 1

)
>

1

m

(
` · `−m+ 1

m− 1
−m

)
− 1

=
1

m

(
` · (`− 1) + (−m+ 2)

m− 1
−m

)
− 1

=
`(`− 1)

m(m− 1)
+
`(−m+ 2)

m(m− 1)
− 2 .

Let G = Kn and V (G) = V1∪ · · · ∪Vm−1, where the parts form an equitable partition.
Let |Vi| = `i, i = 1, . . . ,m− 1. Let Pi be a densest Km-packing of G[Vi] with Km for i =
1, . . . ,m−1. Let P = P1∪· · ·∪Pm−1. We see that the set of edges covered by P is included
in the set of edges of the complement of the complete (m − 1)-partite graph with parts
V1, . . . , Vm−1, i.e., the Turán graph T (n,m− 1). Thus |P| 6 (||Kn|| − ex(n,Km))/||Km||.
Let the set of edges in G[Vi]’s that are not covered by P be denoted E ′. Then

|E′| 6
m−1∑
i=1

(
`i(`i − 1)

2
−
(
`i(`i − 1)

2
− (m− 2)`i

2
−m(m− 1)

))
=

(m− 2)n

2
+ m(m− 1)2 .

We can greedily extend P to a maximal Km-packing of G by adding at most |E ′| elements
to cover each edge of E ′ when possible. The resulting maximal packing will have size at
most

|P|+ (m− 2)n

2
+m(m− 1)2 6

||Kn|| − ex(Kn, Km)

||Km||
+

(m− 2)n

2
+m(m− 1)2 .

It is worth noting that Lemma 4 implies that for a fixed m,

lim
n→∞

cl(Kn, Km)

pp(Kn, Km)
=

1

m− 1
.

2.2 χ(H) > 3

Lemma 5. Let H be a fixed graph with χ(H) > 3. Then, cl(Kn, H) 6 (||Kn|| −
ex(n,H))/||H||+o(n2). In particular, cl(Kn, H) 6 (||Kn||−ex(n,H))/||H||+o(ex(n,H)).
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Proof. Let χ(H) = r > 3. The Erdős-Stone Theorem implies that ex(n,H) = ||T (n, r −
1)||(1 + o(1)).

Let G = Kn and let G′ = T (n, r − 1) be a spanning subgraph of G. As in Lemma
4, we use Wilson’s Theorem to find an H-packing P of the complement of G′ in G (i.e.
the vertex-disjoint cliques induced by the r − 1 parts) which cover all but O(n) edges of
this complement. Indeed, let r = gcd(H) and h = ||H||. For each component (that is a
clique) of the complement of G′, we can delete at most 2rh vertices and edges incident
to them so that the number of remaining vertices in the clique is congruent to 1 modulo
2rh. Then the remaining clique has degree divisible by 2rh, thus in particular divisible
by r. Thus the number of edges in the remaining clique is divisible by h, that implies
that the clique is divisible by H. Note that we deleted at most a linear in n number of
edges during this process.

Let E∗ denote the uncovered edges of the complement. Notice that since G′ contains
no copy of H, any copy of H consisting only of edges of G that is not covered by P must
contain an edge from E∗. We can thus extend P to a maximal H-packing of G using at
most |E∗| = O(n) additional elements. The size of this maximal H-packing is therefore
at most

||Kn|| − ||T (n, r − 1)||
||H||

+O(n) 6
||Kn|| − ex(n,H)

||H||
+ o(n2) .

It is worth noting that Lemma 5 implies that for a fixed H with χ(H) > 3,

lim
n→∞

cl(Kn, H)

pp(Kn, H)
=

1

χ(H)− 1
.

2.3 χ(H) = 2 and H is not a forest

For this case we prove the following lemma which, in turn, relies on several breakthrough
results [4, 10, 13] that imply that for any fixed graph H, an H-divisible graph with
sufficiently many vertices and sufficiently large minimum degree has a perfect H-packing.

Lemma 6. Let H be a fixed graph. Then there exist δ = δ(H) > 0, C = C(H), and
N = N(H) such that the following holds. If G is a graph with n > N vertices and
minimum degree at least (1− δ)n, then G has an H-packing which covers all but at most
Cn edges of G.

Proof. By any one of the results [4, 10, 13], for every fixed H there exist ε = ε(H) > 0
and N1 = N1(H) such that any H-divisible graph G with n > N1 vertices and minimum
degree at least (1− ε)n has a perfect H-packing. We can assume that ε < 1/3.

Let δ = ε/3 and for notational convenience, let gcd(H) = r and ||H|| = h. Let s be
the smallest even integer larger than 6rh/ε. Let N = max{N1, d6s/εe}. Let G be a graph
with n > N vertices and minimum degree (1 − δ)n. If G were H-divisible, we would be
done as G would have a perfect H-packing. Unfortunately, this might not be the case.

Let V = V (G) = {v1, . . . , vn}. Consider a set S of new vertices, V ∩S = ∅, such that
|S| = s, where s is as defined above. Recall that s is even, s > 6rh/ε. We shall construct
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a new graph on a vertex set V ∪ S so that V induces G and so that the new graph is
H-divisible. More specifically, we shall construct this new graph in such a way that all
its vertex degrees are divisible by 2rh. Then clearly each degree is divisible by r and the
number of edges is divisible by h.

We shall define a graph G′ whose vertex set is V ∪ S, G′[V ] = G, G′[S] = Ks, and
the adjacencies between S and V are defined by the following procedure.

We define these adjacencies in n steps where initially before the first step, we take
all ns possible edges between S and V and in each step we delete a few of them. Let
di denote the degree of vi in G′ before the first step (so di = degG(vi) + s). Let bi ≡ di
(mod 2rh) so that 0 6 bi < 2rh. In the first step we arbitrarily remove b1 edges between
v1 and S. So, after this removal, the degree of v1 becomes d1 − b1 ≡ 0 (mod 2rh), and
some vertices of S (that is, precisely b1 vertices of S) have degree equal to n+ s− 2 while
the other s−b1 vertices of S have degree equal to n+s−1. In a general step i, we remove
bi edges between vi and S so that the bi endpoints of these edges in S are the ones that
presently have the highest degree. Notice that at any point in this process, the degrees
of any two vertices of S differ by at most 1. After this process ends, the resulting G′ has
the following property. The degree of each vi ∈ V in G′ is di− bi ≡ 0 (mod 2rh), and for
some q, each vertex from S has degree either q or q + 1 in G′.

Let us next estimate q. The total number of edges removed in the aforementioned
process is

∑n
i=1 bi < 2rhn. Thus, the number of non-neighbors of each vertex of S is at

most d2rhn/se implying that q > n + s − 1 − d2rhn/se. Let S1 be the set of vertices
of S with degree q + 1 in G′ and let S0 be the set of vertices of S with degree q in G′.
Recall that |S0| + |S1| = s is even. We claim that both |S0| and |S1| are even. Assume
otherwise, then both are odd. But since all the degrees of all v ∈ V in G′ are 0 (mod 2rh)
and in particular even, we have that G′ has an odd number of vertices with odd degree,
a contradiction. So, we have that both S1 and S0 are even. Take an arbitrary perfect
matching in G′[S1] (recall, G′[S] = Ks so this can be trivially done) and remove it. Thus
in the resulting new graph G′′ all the degrees of the vertices of S are precisely q and we
have not changed the degrees of the other vertices. Now, suppose q ≡ t (mod 2rh) where
0 6 t < 2rh. Take t pairwise edge-disjoint perfect matchings of S in G′′ and remove them
from G′′ (this can easily be done greedily since after removing each perfect matching
the minimum degree the subgraph induced by S is larger than s/2 since s > 4rh). The
resulting graph G∗ now has all of its degrees 0 (mod 2rh), so G∗ is divisible by H.

Let us next estimate the minimum degree of G∗ which has n+ s vertices. The degree
in G∗ of every vertex vi ∈ V is degG(vi) + s− bi > degG(vi) > (1− δ)n > (1− ε/2)(n+ s).
In the last inequality we use the fact that δ = ε/3 and n is sufficiently large. The degree
of every vertex of S in G∗ is q − t > n + s − 1 − d2rhn/se − 2rh > (1 − ε/2)(n + s),
where we have used here that s > 6rh/ε. Therefore, G∗ has a perfect H-packing P . The
elements of P that are not entirely contained in G are those that have an edge incident
to S. The number of such copies of H is at most s(n + s). Deleting the edges of these
copies gives an H-packing of G that covers all but at most (n + s)s||H|| 6 Cn edges for
an appropriate constant C.
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Lemma 7. Let H be a bipartite graph that contains a cycle. Then, cl(Kn, H) 6 (||Kn||−
ex(n,H))/||H||+O(n). In particular, cl(Kn, H) = (||Kn||−ex(n,H))/||H||+o(ex(n,H)).

Proof. Suppose that H contains k vertices (so k > 4) and let 2` denote the length of a
shortest (hence even) cycle in H, k > `. On the one hand, any graph that is C2`-free is
also H-free and on the other hand, any graph that contains Kk,k also contains H. By the
known lower bounds for ex(n,C2`) [16, 17], see also the improved bounds in [15], we have

that ex(n,H) > ex(n,C2`) = Ω(n1+ 2
3`+3 ) > Ω(n1+ 4

3k+6 ).
Let δ,N,C be the constants from Lemma 6, δ < 1, and let γ = δ/2. Let G = Kn

where n > N + k(4/γ)k and let G′ be a spanning subgraph of G which is H-free and
has ||G′|| = ex(n,H). Recall that ex(n,H) 6 ex(n,Kk,k) 6 kn2−1/k as follows from
Zarankiewicz’ argument. Let L be the set of vertices of G′ whose degree in G′ is at least
γn and let S = V (G′)\L be the remaining vertices. Note that |L| 6 γn/2 since otherwise
||G′|| > γ2n2/4 > ex(n,H). In particular, we have that |S| > n/2.

We claim that |L| 6 k(4/γ)k. For consider the bipartite graph B whose parts are L, S
and that contains all the edges of G′ with one endpoint in L and the other in S. Then
||B|| > |L|(γn− |L|) > |L|γn/2 and since B is Kk,k-free, it follows from the Kovári-Sós-
Túran Theorem [14] that

|L|γ
2
n 6 (k − 1)1/kn|L|1−1/k + k|L|,

which implies that |L| < k(4/γ)k.
Let G∗ be the complement of G′[S]. So, G∗ has |S| = n − |L| > n − k(4/γ)k > N

vertices and its minimum degree is at least n− γn − |L| > |S|(1− δ). By Lemma 6, G∗

contains an H-packing P that covers all but at most C|S| 6 Cn edges of G∗. Since G′ is
H-free, any copy of H in G which does not have an edge in an element of P must contain
an edge that is either one of these at most Cn uncovered edges, or an edge incident to L.
Hence we can augment P to a maximal H-packing by adding at most Cn+ |L|n elements
to it.

2.4 H is a forest

We shall need additional results about special packings of trees in dense graphs.

Lemma 8. Let k be a fixed positive integer and N be an integer, n > 18(k− 1). Let T be
a forest on k vertices. Then if F is a graph on n vertices with minimum degree at least
2n/3 then F contains n edge-disjoint copies of T such that for each vertex of T , its n
respective images in the n copies are distinct. In particular, each vertex of F belongs to
exactly k copies of T .

Proof. We shall use induction on k with a trivial basis k = 1. Let T be a forest on k
vertices and T ′ is the forest obtained from T by removing a leaf v adjacent to a vertex
v′. Note that if there is no such leaf, then T has no edges and the result follows trivially.
Then by induction hypothesis there is a set T ′ of n pairwise edge-disjoint copies of T ′

in F such that in particular the images of v′ are distinct. Let F ′ be a graph obtained
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from F by deleting the edges of copies of T ′ from T ′ as well as by deleting all those
edges of F that join an image of v′ to the vertices of its copy of T ′, for each copy of T ′

from T ′. We see that each vertex of F is an image of each vertex of T ′ in some copy
of T ′. Each vertex of F belongs to k − 1 copies of T ′ playing a role of different vertices
of T ′. Thus the number of deleted edges that were incident to each vertex is at most∑

v∈V (T ′) deg(v) + (k − 1) = 3(k − 1). Therefore the minimum degree of F ′ is at least

2n/3− 3(k − 1) > n/2. By Dirac’s theorem, we see that there is a Hamiltonian cycle in
F ′. Extend each copy of T ′ from T ′ to a copy of T by picking a neighbor of the image
of v′ in that copy on this cycle such that distinct vertices get distinct neighbors. These
newly picked neighbors serve as images of v in respective copies of T .

Lemma 9. Let H be a forest with at least one edge. Then, cl(Kn, H) 6 (||Kn|| −
ex(n,H))/||H||+O(1). In particular, cl(Kn, H) = (||Kn||−ex(n,H))/||H||+o(ex(n,H)).

Proof. Assume that the number of vertices of H is k > 3 and H has at least two edges.
If H has one edge, and n > |V (H)|, we have ex(n,H) = 0 and cl(Kn, H) = ||Kn|| =
(||Kn|| − ex(n,H))/||H||. Let G = Kn and let G′ be a spanning subgraph of G which is
H-free and satisfies ||G′|| = ex(n,H). By the simple bounds on ex(n,H) we have that
bn/2c 6 ||G′|| 6 kn. Indeed, for the lower bound note that a matching does not contain
H. For the upper bound, note that a graph on kn edges with n sufficiently large has a
sufficiently large subgraph with minimum degree k, that in turn contains H. Let L be
the set of vertices of G′ of degree at least n/4, let S be the set of remaining vertices,
and let |L| = `. Since (n/4)|L| 6 2||G′|| 6 2kn we have that |L| 6 8k. It follows that
δ(G′[S]) > n − 1 − n/4 − |L| > 2n/3 (assuming n > 12(8k + 1)) . Unlike the case
for bipartite graphs that are not forests, we shall first completely cover the edges of G′

between L and S, then we shall (almost completely) pack the remaining edges of G′[S].
Now, consider H, our given forest, let H ′ be obtained from H by deleting a leaf u′

adjacent to a vertex u. Let H∗ be a union of ` copies of H ′ that pairwise share only
a vertex corresponding to u. Apply Lemma 8 to find |S| edge-disjoint copies of H∗ in
F = G′[S] such that each vertex of S serves as an image of u in some copy of H∗. For a
vertex s ∈ S, let H∗s be the copy of H∗ such that s serves as an image of u. Let Xs be the
set of all vertices in L such that s is not adjacent to its members in G′, let ds = |Xs|, note
that 0 6 ds 6 ` = |L|. Delete `−ds copies of H ′ from H∗s and add the pairs {sx : x ∈ Xs}
to the edge set of the resulting graph, call it H ′′s . Note that H ′′s is an edge disjoint union of
ds copies of H that covers all edges from s to L in the complement of G′. Thus all graphs
H ′′s , for s ∈ S are pairwise edge-disjoint and cover all the edges between S and L in the
complement of G′. Let P = {H ′′s : s ∈ S}. Let R be a graph with a vertex set S with
remaining edges in G′[S], i.e., the edges of G′[S] that do not belong to any of H ′′s , s ∈ S.
We see that the minimum degree of R is at least 2n/3− |H∗|2 > 2n/3− `2k2 > |S|/2 for
n sufficiently large.

By a result of Yuster [21], if H is a tree and |S| is sufficiently large, a graph with |S|
vertices and minimum degree at least |S|/2 has an H-packing where less than ||H|| < k
edges remain uncovered. The proof in [21] gives the same result when H is a forest.
Another way to see this is that from any forest without isolated vertices, one can construct
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a tree consisting of two edge-disjoint copies of that forest, and pack with that tree thereby
packing with the forest.

Let then Q be an H-packing of R where less than k edges remain uncovered.
Hence P ∪ Q is an H-packing of G′ which covers all edges of G′ except for at most

k edges in G′[S] and except uncovered so far edges in G′[L]. However, there are at most(
`
2

)
6 32k2 edges induced by L in G′. Hence, we can obtain a maximal H-packing of G′

of size at most |P ∪Q|+ k+ 32k2 6 (||Kn|| − ex(n,H))/||H||+ k+ 32k2, as required.

3 Hypercubes

In this section we prove Theorem 3. We first note that computing cl(Qn, Q2) (and more-
over cl(Qn, Qd)) is difficult already for very small values of n. While cl(Q3, Q2) = 2,
cl(Q4, Q2) = 3 are trivial, it is only known that cl(Q5, Q2) ∈ {7, 8} [12]. Recall also
that Qn is an n-regular graph with 2n vertices hence ||Qn|| = n2n−1. More generally, we
observe the following.

Lemma 10. The number of copies of Qd in Qn is 2n−d(n
d

)
. Each edge of Qn belongs to(

n−1
d−1

)
copies of Qd.

Proof. Each copy of Qd can be represented by an n-vector in {0, 1, ?} with d entries of ?.
So, the first part of the lemma follows from the fact that there are 2n−d(n

d

)
such vectors.

If an edge e is fixed, its endpoints differ in exactly one position, say position i. Then the
i’th coordinate corresponds to a ? in any copy of Qd containing e. There are

(
n−1
d−1

)
ways

to choose other ? positions and the remaining coordinates must take the respective values
of endpoints of e.

Let f(n, d) = ||Qn|| − ex(Qn, Qd) be the smallest size of an edge subset S of Qn such
that each copy of Qd in Qn contains at least one element of S. Identically, f(n, d) is the
transversal number of the hypergraph whose vertices are the edges of Qn and whose edges
are the (edges of) the copies of Qd in Qn. Let

c(d) = lim
n→∞

f(n, d)

||Qn||
.

Alon, Krech, and Szabó [2] proved that for some absolute positive constant C,

Ω

(
log d

d 2d

)
6 c(d) 6

C

d2
. (2)

3.1 Lower bound

In this subsection we prove the simple lower bounds stated in Theorem 3. Let P be a
maximal Qd-packing of Qn. Since P is maximal, every copy of Qd in Qn contains an edge
of a member of P . Hence, by Lemma 10, we are counting

(
n
d

)
2n−d edges in this way, but

each edge may be counted many times, as it may appear in
(
n−1
d−1

)
copies of Qd. Thus, the
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total number of edges of all elements of P is at least
(
n
d

)
2n−d/

(
n−1
d−1

)
. Since each element

of P consists of d2d−1 edges it follows that

|P| >
(
n
d

)
2n−d(

n−1
d−1

)
d2d−1

=
2n−2d+1n

d2
.

To improve this lower bound by a factor of log d we use (2). Indeed, if P is the smallest pos-
sible set of Qd’s in Qn that contains an edge of each Qd of Qn (namely |P| = cov(Qn, Qd)),
then the set of all edges of members of P forms a transversal of Qd’s in Qn. By (2),
||Qd|| · |P| > f(n, d) > Ω

(
log d
d 2d

)
||Qn||, thus

cl(Qn, Qd) > cov(Qn, Qd) = |P| > Ω

(
log d

d 2d

)
||Qn||
||Qd||

.

To get a lower bound on cl(Qn, Q2), we use a result of Baber [3] stating that

ex(Qn, Q2) 6 0.6068||Qn||(1 + o(1)).

Thus by (1), we have

cl(Qn, Q2) >
(||Qn|| − ex(Qn, Q2))

||Q2||
> 0.3932

||Qn||
||Q2||

(1− o(1)) .

We note that Erdős conjectured that ex(Qn, Q2) = 1
2
||Qn||(1+o(1)), so if true, the constant

0.3932 in the last inequality can be replaced by 1
2
.

3.2 Upper bound

In this subsection we prove the upper bounds stated in Theorem 3. For i = 0, . . . , n we
denote by Vi the set of vertices of Qn with i one’s in their vector representation. We say
that vertices or respective vectors from Vi have weight i. For i = 1, . . . , n, let Li be the
set of edges of Qn with endpoints in Vi−1 ∪ Vi. We call Li the ith edge layer of Qn. We
provide constructions of maximal Qd-packings P of Qn such that the edges of P cover
almost completely every (d− 1)st layer of Qn, for d > 3, and for d = 2, these edges cover
two out of every three consecutive layers of Qn almost completely.

Let I = [n/2−
√
n log n, n/2 +

√
n log n]. Since the properties of binomial distribution

give us that
∑

i 6∈I |Vi| = o(|Qn)), we have that
∑

i 6∈I |Li| = o(||Qn||), thus we shall focus
on the middle layers Li, i ∈ I and later consider any maximal packing of the remaining
layers. We denote the edge set in these middle layers by M =

⋃
j∈I Lj.

We consider first the case d = 2 and later see how to generalize our arguments to an
arbitrary d. Let M = M0 ∪M1 ∪M2, where e ∈Mi if and only if e ∈ Lj, j ≡ i (mod 3).

Lemma 11. Let j ∈ I. There is a Q2-packing, denoted Pj, such that each member
of Pj contains at least one edge of Lj ∪ Lj+1 and such that Pj covers all but at most
O(n−1/3(|Lj|+ |Lj+1|)) edges of Lj ∪ Lj+1.
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Proof. Let Hj be the hypergraph whose vertices correspond to the edges of Lj ∪Lj+1 and
whose hyperedges are four-element subsets forming a copy of Q2. Since any two copies
of Q2 intersect in at most one edge, Hj is simple (linear). Note that the degree of an
element of Lj in Hj is n − j since it appears in precisely n − j Q2’s having all of their
edges Lj ∪ Lj+1. Indeed, suppose this element is the edge e = (u, v) ∈ Lj where u is a
vector of weight j − 1 and v is a vector of weight j. Then a vertex x of a Q2 containing
e and which is adjacent to u must be also of weight j but distinct from v, so there are
n − j options to choose x. The fourth vertex of this Q2 is now completely determined.
Similarly, the degree of an element of Lj+1 in Hj is j. To see this, suppose this element
is the edge e = (u, v) ∈ Lj+1 where u is a vector of weight j and v is a vector of weight
j + 1. Then a vertex x of a Q2 containing e and which is adjacent to v must be also of
weight j but distinct from u, so there are j options to choose x. The fourth vertex of this
Q2 is now completely determined. We see, using that j ∈ I, that the absolute difference
between the degrees of any two vertices of Hj is at most |n− 2j| 6 4

√
n log n.

A result of Alon, Kim, and Spencer [1], implies that if a 4-uniform hypergraph H
has minimum degree at least D − O(

√
D logD), where D is the maximum degree, then

there is a matching in the hypergraph covering all but at most |V (H)|O(D−1/3) vertices.
Since the maximum degree of Hj is max{j, n− j} > n/2, we see that there is a matching
of Hj covering all but (|Lj| + |Lj+1|)O(n−1/3) vertices. This matching corresponds to
a Q2-packing, call it Pj, whose elements cover all but O(n−1/3(|Lj| + |Lj+1|)) edges of
Lj ∪ Lj+1.

Let P ′ =
⋃

j∈I, j≡0 (mod 3)Pj. Then P ′ is a Q2-packing that covers all but o(|M0∪M1|)
edges of M0 ∪ M1, and does not cover any edge from M2. Let F denote the set of
o(|M0 ∪M1|) uncovered edges of M0 ∪M1. Now augment P ′ to a maximal Q2-packing P
of Qn. We claim that each element of P \ P ′ contains an edge from F ∪ (E(Qn) \M).
Indeed this just follows from the obvious fact that each Q2 contains edges from precisely
two consecutive layers, hence each Q2 in P \ P ′ has an edge which is not from M2, thus
from F ∪ (E(Qn) \M).

But now, since |F ∪ (E(Qn) \M)| = o(|M0 ∪M1|) + o(||Qn||) = o(||Qn||), it follows
that

cl(Qn, Q2) 6 |P| =
2

3

|M |
||Q2||

+ o(||Qn||) 6
2

3

||Qn||
||Q2||

(1 + o(1)) .

Next consider the case d > 3. We shall apply a similar idea as in the case d = 2, by
first finding a packing P ′ of the middle layers with copies of Qd. Let M0 be the union
of Lj’s such that Lj ⊆ M and j ≡ 0 (mod d). First we find a packing P ′ such that M0

is covered almost completely, then we augment this packing with a few copies of Qd so
that the resulting packing is maximal. In what follows we assume that d is odd. For d
even the argument is very similar. Notice that each copy of Qd has edges from precisely d
consecutive layers, so when d is odd, the middle layer of a Qd is well-defined. A maximum
co-degree of a hypergraph is the largest number of hyperedges whose interection has size
at least two.
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Lemma 12. Let j ∈ I and d > 3. There is a Qd-packing denoted Pj, such that each
member of Pj contains at least one edge of Lj in its middle layer and such that Pj covers
all but at most o(|Lj|) edges of Lj.

Proof. Let Hj be the hypergraph whose vertices are the edges of Li, i ∈ J , where J =
[j − (d− 1)/2, j + (d− 1)/2] and whose hyperedges are d2d−1-element subsets forming a
copy of Qd. We see that Hj is r = d2d−1-uniform and by symmetry, all vertices from the
same layer Li have the same degree. Let the maximum degree of Hj be D, and denote
the degree of a vertex from Li in Hj by di. Observe also that D = dj.

We shall construct an r-uniform hypergraph H ′ containing Hj as a spanning subhy-
pergraph such that H ′ is almost regular, i.e., has degrees D or D − 1 and such that
E(H ′)−E(Hj) forms a simple hypergraph. Let H ′ = Hj ∪

⋃
i∈J H

′
i, where H ′i is a simple

r-uniform hypergraph satisfying V (H ′i) = Li, and all of the degrees of H ′i are either D−di
or D− di− 1. Note that since dj = D we have that H ′j is an empty hypergraph. A result
of Bollobás [5] asserts that such an H ′i exists if 1) x(D− di) + y(D− di− 1) is divisible by
r, where x and y are the numbers of vertices of degree D−di and D−di−1, respectively,
2) |E(H ′i)| approaches infinity as |V (Hi)| approaches infinity. The second condition is
clearly satisfied when D > di. To see that the first condition is satisfied for some x and
y, x+ y = |V (H ′i)|, observe that x(D − di) + y(D − di − 1) = (D − di)|V (H ′i)| − y, so we
can choose y to be an integer between 0 and r such that (D − di)|V (H ′i)| − y is divisible
by r. We have that |V (H ′i)| = |Li| =

(
n
i

)
i. So, H ′ is a hypergraph whose vertices have

degrees D or D − 1 and whose co-degree is at most the co-degree of Hj.
Next we shall compare the degree D of H ′ and its maximum co-degree coD. We shall

view the vertices of Qn as subsets of [n]. For a vertex x ⊆ [n], let Up(x) and Down(x) be
the up-set and down-set of x, respectively, i.e., the set of all supersets of x and the set of
all subsets of x. Let Vk be the kth vertex layer of Qn, k = 0, . . . , n.

The degree of a vertex e = xy, x ⊆ y in Hj corresponds to the number of copies of Qd’s
containing e and having middle layer in Lj. The number of ways to choose the maximal
element of such a Qd is equal to u = |Up(y) ∩ Vj+(d−1)/2| > cnk. The number of ways
to choose the minimal element of such a Qd is equal to d = |Down(x) ∩ Vj−(d−1)/2−1| >
c′nd−1−k, where c, c′ are constants depending on d and k is the distance in Qn between
the vertex-layer containing y and the vertex layer Vj+(d−1)/2. Then the degree of e in Hj

is at least cc′nd−1.
Now we upper bound the co-degree of two vertices of Hj: xy, x

′y′, x ⊆ y and x′ ⊆ y′.
We therefore need to find the number of copies of Qd containing xy and x′y′ and having
middle layer in Lj. The number of ways to choose the maximal element of such a Qd

is equal to |Up(y ∪ y′) ∩ Vj+(d−1)/2| 6 c′′nk, where k is the distance in Qn between the
vertex-layer containing y ∪ y′ and the vertex layer Vj+(d−1)/2. The number of ways to
choose the minimal element of such a Qd is equal to |Down(x∩x′)∩Vj−(d−1)/2−1| 6 c′′′nk′ ,
where k′ is is the distance in Qn between the vertex-layer containing x∩x′ and the vertex
layer Vj−(d−1)/2−1. Then the co-degree of xy and x′y′ is at most c′′c′′′nk+k′ . We see that
x ∩ x′ ⊆ y ∪ y′ and |(y ∪ y′) − (x ∩ x′)| > 2, so k′ 6 d − 2 − k. Thus coD 6 Cnd−2, for
a constant C. Since any two hyperedges from E(H ′) − E(Hj) intersect in at most one
vertex, the maximum co-degree of H ′ is also at most Cnd−2.
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We need a result of Frankl and Rödl [8] on near perfect matchings of uniform hy-
pergraphs. They have proved that for an integer r > 2 and a real β > 0 there exists
µ = µ(r, β) > 0 such that if the r-uniform hypergraph L has the following properties for
some t: (i) The degree of each vertex is between (1 − µ)t and (1 + µ)t, (ii) the maxi-
mum co-degree is at most µt, then L has a matching of size at least (|V (L)|/r)(1 − β).
Applying their result to our hypergraph H ′ (which is almost regular) we obtain that it
has a matching W that covers all but o(|V (H ′)|) = o(|Lj|) vertices of H ′. In particular,
we see that W covers all, but at most o(|Lj|) vertices from Lj. Since all edges from H ′

that contain vertices from Lj are all from Hj, we see that the set W ′ of hyperedges of W
containing vertices from Lj corresponds to a set of pairwise edge-disjoint copies of Qd with
middle layer in Lj. These copies cover all but o(|Lj|) edges of Lj. Let Pj be a Qd-packing
corresponding to the hyperedges of W ′. We have that |Pj| = (|Lj|/md)(1 + o(1)), where
md is the number of edges in the middle layer of Qd:

md =

(
d

(d− 1)/2

)
(d+ 1)/2 ≈ (d/2)2d/

√
πd/2 = 2d−1/2

√
d/
√
π.

The rest of the construction is done as in the case d = 2. Let P ′ = ∪j∈I,j≡0 (mod d)Pj.
Let M = M0 ∪ · · · ∪Md−1, where e ∈ Mi if and only if e ∈ Lj, j ≡ i (mod d). Thus, P ′
covers all but o(|M0|) edges of M0. Let F denote these o(|M0|) uncovered edges of M0.
Now augment P ′ to a maximal Qd-packing P of Qn. We claim that each element of P \P ′
contains an edge from F ∪ (E(Qn) \M). Indeed this just follows from the obvious fact
that each Qd contains edges from precisely d consecutive layers, hence each Qd in P \ P ′
has an edge which is not from M1 ∪ · · · ∪Md−1, thus from F ∪ (E(Qn) \M).

But now, since |F ∪ (E(Qn) \M)| = o(|M0|) + o(||Qn||) = o(||Qn||), it follows that

cl(Qn, Qd) 6 |P| =
1

d

||Qn||
md

+ o(||Qn||) =

√
2π√

d(1− od(1))

||Qn||
||Qd||

(1 + on(1)) .

4 Regular planar tilings

In this section we consider the regular tessellations (tilings) of the Euclidean plane. It
is well-known that there are only three such tilings. The triangular tiling R3, the square
tiling R4, and the hexagonal (honeycomb) tiling R6. Viewed as infinite graphs, the vertices
and edges of Rk (k = 3, 4, 6) are those of the regular k-gons comprising it.

To naturally define clumsy packing and perfect packing ofRk, we consider parametrized
finite subgraphs of Rk. Assume that the edges of Rk have unit length and that there is an
edge of Rk connecting the origin (0, 0) and (1, 0). This uniquely defines all the Euclidean
points of the vertices of Rk. For an integer n, let Rk(n) be the induced subgraph of Rk

on vertices inside [0, n)× [0, n). So, for example R4(n) is just the square n× n grid Grn.
Let

cl(Rk) = lim
n→∞

k · cl(Rk(n), Ck)

||Rk(n)||
pp(Rk) = lim

n→∞

k · pp(Rk(n), Ck)

||Rk(n)||
.

The fact that these limits exist will follow in particular from the proof below. So, in cl(Rk)
and pp(Rk) we want to measure the “fraction” of edges of Rk that are covered by the
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“smallest” (resp. “largest”) maximal packing of Rk. Note that it is straightforward that
R3 has a perfect triangle packing and that R4 has a perfect C4-packing hence pp(R3) =
pp(R4) = 1. Clearly, R6 does not have a perfect C6-packing as it is 3-regular, but it is a
straightforward exercise to pack R6 with C6 such that the unpacked edges form a perfect
matching, hence pp(R6) = 2/3. In the next theorem we determine cl(Rk).

Theorem 13. cl(Rk) = 2
k+1

.

Proof. Consider first the case of R3. The pattern on the right side of Figure 1 shows how
to obtain a maximal triangle packing of R3 where the ratio between covered and uncovered
edges is 1

2
. More formally, this pattern shows that cl(R3(n),C3)

||R3(n)|| 6 1
6

+ on(1) implying that

lim supn→∞
3·cl(R3(n),C3)
||R3(n)|| 6 1

2
. Consider the subgraph H of R3 shown on the left side of

Figure 1. Observe that H has three internal edges and 6 boundary edges. Clearly, there is
a covering C of R3 with copies of H such that the internal edges of each copy are pairwise
edge-disjoint, while the boundary edges are shared between two copies in C. Consider
some maximal C3-packing P of R3 and consider some H ∈ C. We weigh the number of
edges of H covered by P by giving each covered internal edge of H a weight 1 and each
covered boundary edge the weight 1

2
. We claim that the weight of each H ∈ C is at least

3. Indeed, if the internal triangle of H is in P , we are done. Otherwise, at least one of
the internal edges is covered, which means that there is a non-internal triangle of H in P
which consists of one internal edge and two boundary edges. This already yields a weight
of 2. But then the other two non-internal triangles of H must intersect elements of P
as well, so each gives an additional weight of at least 1

2
. Now, since the weight of each

H ∈ C is at least 3 and since its total weight to the edge count is 6 as it has three internal
edges and six boundary edges (so 6× 1

2
+ 3× 1 = 6), we have that cl(R3(n),C3)

||R3(n)|| > 1
6
− on(1)

implying that lim infn→∞
3·cl(R3(n),C3)
||R3(n)|| > 1

2
.

Figure 1: A clumsy triangle packing of R3 (right) and a gadget subgraph for the lower
bound proof (left).

Consider next the case of R6. The pattern on the right side of Figure 2 shows how to
obtain a maximal C6-packing of R6. Take the packing to consist of the internal C6 of each
colored region. It is easy to verify that the ratio between covered and uncovered edges of
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this maximal packing is 2/7. More formally, this pattern shows that cl(R6(n),C6)
||R3(n)|| 6 1

21
+on(1)

implying that lim supn→∞
6·cl(RR(n),C6)
||R3(n)|| 6 2

7
. Consider now the subgraph H of R6 shown

on the left side of Figure 2. Observe that H has 12 internal edges and 18 boundary edges.
As the left side of Figure 2 shows, there is a covering C of R6 with copies of H such that
the internal edges of each copy are pairwise edge-disjoint, while the boundary edges are
shared between two copies in C. Consider some maximal C6-packing P of R6 and consider
some H ∈ C. We weigh the number of edges of H covered by P by giving each covered
internal edge of H a weight 1 and each covered boundary edge the weight 1

2
. We claim

that the weight of each H ∈ C is at least 6. Indeed, if the internal C6 of H is in P , we are
done. Otherwise, at least one of the internal edges of the internal C6 is covered, which
means that there is a non-internal C6 of H, call it X ∈ P which consists of three internal
edges of H and three boundary edges of H. This already yields a weight of 4.5. If P
contains an additional non-internal C6 of H, then we get a weight of 9 and we are done.
Otherwise, the three non-internal C6 of H which are edge-disjoint from X each contribute
at least 1

2
as P is a maximal packing, hence overall weight at least 6 as claimed. Now,

since the weight of each H ∈ C is at least 6 and since its total weight to the edge count is
21 as it has 12 internal edges and 18 boundary edges (so 18× 1

2
+ 12× 1 = 21), we have

that cl(R6(n),C6)
||R6(n)|| > 1

21
− on(1) implying that lim infn→∞

6·cl(R6(n),C6)
||R6(n)|| > 2

7
.

Figure 2: A clumsy C6 packing of R6 (right) and a gadget subgraph for the lower bound
proof (left).

Consider next the case of R4(d)-packings of R4. The idea in this case is close to the
one on clumsy packings of polyominoes [19]. The pattern on the right side of Figure 3
shows how to obtain a maximal R4(d)-packing of R4. In fact, the figure specifically shows
the case d = 4 but the generalization is obvious. Notice also that R4(2) = C4. Observing
the proportion of the edges of the packing in each column and each row of R4, we have

cl(R4(n), R4(d)) 6
d(d− 1)

2(d− 1)(2d− 2) + 1

||R4(n)||
||R4(d)||

(1 + o(1))

=
d2 − d

4d2 − 8d+ 5

||R4(n)||
||R4(d)||

(1 + o(1)).
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For the lower bound, assume that P is a maximal R4(d)-packing of R4(n). We see that
each copy of R4(d) in R4(n) shares an edge with a copy of an element of P . From
the left side of Figure 3 we see marked all the positions of the lower left corner of a
copy of R4(d) that shares an edge with the marked copy of R4(d). The number of such
positions is (2d − 1)2 − 4. Therefore, if x is the total number of R4(d)’s in R4(n), then
x 6 ((2d− 1)2 − 4)P(1 + o(1)). Since x = n2(1− o(1)), we have that

cl(R4(n), R4(d)) > |P|

>
n2

((2d− 1)2 − 4)
(1 + o(1))

=
||R4(n)||

2((2d− 1)2 − 4)
(1 + o(1))

=
(d− 1)2d

2((2d− 1)2 − 4)

||R4(n)||
||R4(d)||

(1 + o(1))

=
d2 − d

4d2 − 4d− 3

||R4(n)||
||R4(d)||

(1 + o(1)).

Note that the upper and the lower bounds match for d = 2, giving the claimed value
cl(R4) = 2/5.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Figure 3: Clumsy packing of R4(d) in R4 (right) and the lower bound argument (left).
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