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Abstract

A common ancestor of two vertices u, v in a directed acyclic graph is a vertex w that can reach both. A
{u, v}-junction is a common ancestor w so that there are two paths, one from w to u and the other from
w to v, that are internally vertex-disjoint. A lowest common ancestor (LCA) of u and v is a common
ancestor w so that no other common ancestor of u and v is reachable from w. Every {u, v}-LCA is a
{u, v}-junction, but the converse is not true. Similarly, not every common ancestor is a junction.

The all-pairs common ancestor (APCA) problem computes (or determines the non-existence of) a com-
mon ancestor for all pairs of vertices. Similarly defined are the all-pairs junction (APJ) and the all-pairs
LCA (APLCA) problems. The APCA problem also has an existence version.

Bender et al. obtained an algorithm for APCA existence by reduction to transitive closure. Their
algorithm runs in Õ(nω) time where ω < 2.376 is the exponent of fast Boolean matrix multiplication
and n is the number of vertices. Kowaluk and Lingas obtained an algorithm for APLCA whose running
time is O(n2+1/(4−ω)) ≤ o(n2.616). Our main result is an Õ(nω) time algorithm for APJ. Thus, junctions
for all pairs can also be computed in essentially the time needed for transitive closure.

For a subset of vertices S, a common ancestor of S is a vertex that can reach each vertex of S. A lowest
common ancestor of S is a common ancestor w of S so that no other common ancestor of S is reachable
from w. For k ≥ 2, the k-APCA and the k-APLCA problems are to find, respectively, a common
ancestor and a lowest common ancestor for each k-set of vertices. We prove that for all fixed k ≥ 8, the
k-APCA problem can be solved in Õ(nk) time, thereby obtaining an essentially optimal algorithm. We
also prove that for all k ≥ 4, the k-APLCA problem can be solved in Õ(nk+1/2) time.
Keywords: algorithm, directed acyclic graph, common ancestor, fast matrix multiplication

1 Introduction

The problem of finding common ancestors in a tree and, more generally, in a directed acyclic graph (dag)
is a basic, extensively-studied algorithmic problem that has numerous applications, ranging from analysis
of genealogical data to object inheritance in programming languages (see [3, 15, 10]). A common ancestor
of a pair of distinct vertices u, v in a dag is a vertex w so that both u and v are descendants of w. A lowest
common ancestor (LCA) of vertices u, v is a common ancestor of u, v that has no proper descendant that
is a common ancestor of u, v. For example, vertex c in Figure 1 is a {u, v}-LCA while vertices a and b

are common ancestors of u, v that are not {u, v}-LCA’s. One important useful feature of an LCA is that
there are two paths starting from the LCA, one to u and the other to v, that are internally vertex-disjoint.
However, a common ancestor need not be an LCA to possess this property. A common ancestor w of
u, v is called a {u, v}-junction if there are two paths, one from w to u and the other from w to v, that
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Figure 1: Types of common ancestors of a pair of vertices u, v

are internally vertex-disjoint. Clearly, a {u, v}-LCA is a {u, v}-junction. The vertex b in Figure 1 is a
{u, v}-junction that is not a {u, v}-LCA. The vertex a in Figure 1 is a common ancestor of u, v that is not
a {u, v}-junction. Thus, we have a 3-fold type hierarchy for common ancestors.

For a dag G, the all-pairs common ancestor (APCA) problem is to find (or determine the non-existence
of) a common ancestor for all pairs of vertices of G. Similarly defined are the all-pairs junction (APJ) and
the all-pairs lowest common ancestor (APLCA) problems. In all three problems, the output is a square
symmetric matrix M whose rows and columns are indexed by the vertices, and each entry M(u, v) is either
0 if u, v do not have a common ancestor, or is a common ancestor of the required type. For completeness
we define M(u, u) = u. Clearly, the complexity of the APCA problem is at most the complexity of the
APJ problem which, in turn, is at most the complexity of the APLCA problem.

Bender et al. [2] have shown that the APCA existence problem (namely, we only wish to know, for each
pair of vertices, whether or not they have a common ancestor) can be easily reduced to the problem of
computing the transitive closure of a directed graph. The latter is a classical application of Boolean square
matrix multiplication, as shown by Furman [9] and Munro [14]. The fastest algorithm for Boolean matrix
multiplication of two square matrices of order n runs in O(nω) where ω < 2.376, as shown by Coppersmith
and Winograd [5]. The exponent ω is sometimes called the exponent of fast matrix multiplication; many
researchers believe that ω = 2 + o(1). It is not difficult to modify the algorithm from [2], at the price of
a logarithmic factor, and obtain a witness common ancestor, if one exists. Thus, the APCA problem for
dags with n vertices can be solved in Õ(nω) time.

On the other end of the scale, the fastest algorithm for the APLCA problem, due to Kowaluk and Lingas
[12], improving an earlier algorithm of Bender et al., runs in O(n2+1/(4−ω)) ≤ o(n2.616) time. A minor
improvement, using the fast rectangular matrix multiplication algorithm from [11] can improve the running
time to O(n2.575) [6]. In case ω = 2 + o(1) the algorithm of Kowaluk and Lingas runs in Õ(n2.5) time.
Recently, Kowaluk and Lingas constructed an Õ(nω) time algorithm that finds the LCA for all pair of
vertices that have a unique LCA [13]. Eckhardt et al. showed how to compute, for all pairs of vertices, the
set of all LCA’s in O(n3.34) time [7].

The main result of this paper is an algorithm for the APJ problem whose running time is Õ(nω). It is
somewhat surprising that finding a representative junction for all pairs can be done in essentially the same
time needed to find just a representative arbitrary common ancestor for all pairs. In fact, our algorithm
also yields an implicit representation of the disjoint paths from the junction to its corresponding pair.
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Theorem 1.1 (Main result) Given a dag G with n vertices, an APJ matrix M of G can be computed in
Õ(nω) time. Furthermore, given a pair of vertices u, v with M(u, v) = w 6= 0, then two internally disjoint
paths from w to u and to v can be produced in time proportional to the sum of their lengths.

Generalizing the notion of common ancestry, for a subset of vertices S, a common ancestor of S is a vertex
that can reach each vertex of S. A lowest common ancestor of S is a common ancestor w of S so that no
other common ancestor of S is a descendant of w. For k ≥ 2, the k-APCA and the k-APLCA problems are
to find, respectively, a common ancestor and a lowest common ancestor (if exist) for each k-set of vertices.
The case k = 2 corresponds to the APCA and the APLCA problems. Notice that just listing the output
requires Θ(nk) time. It turns out that for all fixed k ≥ 8, the k-APCA problem can be solved in Õ(nk)
time, and hence we have an essentially tight algorithm. For the k-APLCA problem, we can prove that for
all fixed k ≥ 4, the problem can be solved in Õ(nk+1/2) time. Here we still have a gap between the trivial
lower bound and the upper bound.

Theorem 1.2 For all fixed k ≥ 8, the k-APCA problem can be solved in Õ(nk) time. For all fixed k ≥ 4
the k-APLCA problem can be solved in Õ(nk+1/2) time.

The rest of this paper is organized as follows. Section 2 contains the algorithm proving Theorem 1.1.
Algorithms for k-APLA and k-APLCA yielding Theorem 1.2 are given in Section 3. The final section
contains some concluding remarks.

2 Finding junctions for all pairs of vertices

We describe an algorithm proving Theorem 1.1. Let G = (V,E) be a dag with n vertices, and suppose that
V = {1, . . . , n} is a topological ordering. Thus, (u, v) ∈ E implies u < v. Let A = AG be the adjacency
matrix of G with 1 in the diagonal.

The output of our algorithm consists of two matrices. The first, denoted M , is a solution to the APJ
problem. Namely, M(u, v) is either 0 if u, v do not have a common ancestor or else M(u, v) is a {u, v}-
junction. The second matrix, denoted P , serves as an implicit representation of internally disjoint paths
from a junction to its corresponding pair. We define P as follows. Suppose u < v and M(u, v) = w /∈ {0, u}.
Then, P (u, v) = x where (x, u) ∈ E and M(x, v) = w. Note that it is possible that x = w. In case u ≥ v

or M(u, v) ∈ {0, u} we leave the value of P (u, v) unspecified.

Let k = dlog2(n − 1)e. The first step of the algorithm consists of constructing several matrices. Let
A0 = A. For r = 1, . . . , k let Ar = Ar−1 ·Ar−1 (a Boolean product) and let Wr be a corresponding matrix
of witnesses. Notice also that Ak is the transitive closure matrix of G. Let F (u, v) be the smallest index r

so that Ar(u, v) 6= 0. If Ak(u, v) = 0 then define F (u, v) = k +1. Finally, let C be an APCA matrix for G.

Since M is symmetric, it suffices to compute M(u, v) and P (u, v) for all pairs so that u < v. We will
compute these values in order so that M(u, v) and P (u, v) are computed before M(u′, v′) and P (u′, v′) if
and only if u < u′ or u = u′ and v < v′. In fact, in some cases the value of M(u, v) depends on previously
computed values. The algorithm computing M and P is given in Figure 2.

Lemma 2.1 The matrices M and P are computed in Õ(nω) time.
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1. for u = 1 to n− 1 do
2. for v = u + 1 to n do
3. if Ak(u, v) = 1 then
4. M(u, v)← u

5. else
6. p∗ ← C(u, v)
7. if p∗ = 0 then
8. M(u, v)← 0
9. else
10. p← p∗

11. while (p, u) /∈ E do
12. s← F (p, u)
13. p←Ws(p, u)
14. M(u, v)←M(p, v)
15. P (u, v)← p

Figure 2: Computing the matrices M and P .

Proof: Computing all the matrices Ar for r = 1, . . . , k requires O(nω log n) time and computing all the
matrices Wr requires Õ(nω log n) = Õ(nω) using, say, the algorithm of Alon and Naor [1]. The matrix F

is a by-product of the computations of A1, . . . , Ak. As noted in the introduction, an APCA matrix C can
be computed in Õ(nω) time.

It remains to show that the while loop in line 11 of Figure 2 performs O(log n) iterations (thus, even if
ω = 2+o(1), the algorithm would still run in Õ(nω) time). Indeed, the value of s in Line 12 decreases with
each iteration (see also the next lemma), while in the first iteration we already have s ≤ k = dlog2(n− 1)e.

Lemma 2.2 The algorithm correctly computes the matrices M and P .

Proof: We prove the lemma by induction. Thus, we show that M(u, v) and P (u, v) are correctly computed
assuming all previous values have been correctly computed. In the case u = 1, Line 3 guarantees that if
1 is an ancestor of v then M(1, v) = 1 and if 1 is not an ancestor of v then p∗ = 0 in Line 6 and thus
M(1, v) = 0 in line 8. In any case, a correct value for M(1, v) is established, and P (1, v) need not be
assigned in this case.

Consider the general case where 1 < u < v ≤ n. If u is an ancestor of v then Ak(u, v) = 1 and it is correct
to define M(u, v) = u (and leave P (u, v) unspecified) as is done in Line 4. If u and v have no common
ancestor then p∗ = 0 in Line 6 and it is correct to define M(u, v) = 0 (and leave P (u, v) unspecified) as is
done in Line 8. Otherwise, p∗, assigned in Line 6, is a common ancestor of u and v and p∗ 6= u.

If (p∗, u) ∈ E then the while loop in Line 11 is not performed. Notice that M(p∗, v) has already been
computed and M(p∗, v) = p∗ (since p∗ is an ancestor of v). Any path from p∗ to v is internally vertex
disjoint from the one-arc path (p∗, u) from p∗ to u and hence it is correct to define M(u, v) = M(p∗, v) = p∗

in this case and correct to define P (u, v) = p∗.
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DISJOINT(x, y)
1. w ←M(x, y)
2. if w = x

3. q1 ← (w)
4. q2 ← GENPATH(x, y)
5. else
6. z ← P (x, y)
7. [q1, q2]← DISJOINT(z, y)
8. q1 → q1 ∪ (z, x)
9. return [q1, q2]

GENPATH(x, y)
1. if (x, y) ∈ E

2. q ← (x, y)
3. else
4. s← F (x, y)
5. p←Ws(x, y)
6. q ← GENPATH(x, p)∪

GENPATH(p, y)
7. return q

Figure 3: Computing disjoint paths from a common ancestor.

If (p∗, u) /∈ E, then the goal of the while loop is to find vertices on a path from p∗ to u getting closer
and closer to u, until an incoming neighbor of u is found. Let p0 = p∗, p1, p2, . . . be the sequence of values
of p at the beginning of each iteration of the while loop, and let s1, s2, . . . be the sequence of values of s

established in Line 12. We cannot have s1 = 0 since A0(p0, u) = 0 (as (p0, u) /∈ E). Since p0 = p∗ is an
ancestor of u we have Ak(p0, u) = 1. Thus, 1 ≤ s1 ≤ k. The minimality of s1 guarantees that p1 is an
internal vertex on a path from p0 to u. Since As1 = As1−1As1−1 we have that As1−1(p1, u) = 1. Thus,
F (p1, u) ≤ s1 − 1. Either (p1, u) ∈ E or else s2 < s1 and p2 is an internal vertex on a path from p1 to u.
Since s always decreases and never reaches 0, we eventually end up with some pz so that (pz, u) ∈ E and
there is a path from p∗ = p0 to u of the form (p∗, . . . , pz, u). Suppose M(pz, v) = w. Clearly w 6= 0 since
pz and u have a common ancestor (e.g. p∗ is one such ancestor). It may be the case that pz is an ancestor
of v. In this case we have w = pz and any path from pz to v is internally disjoint from the one-edge path
(pz, u) (since u is not an ancestor of v). Thus, it is correct to define M(u, v) = M(pz, v) = pz = w in this
case and to define P (u, v) = pz = w. If pz is not an ancestor of v then consider two internally disjoint
paths one from w to pz denoted q1 and the other from w to v denoted q2. Since both pz and u do not
appear on q2 we may extend q1 to a path from w to u which is internally disjoint from q2. Thus, it is
correct to define M(u, v) = M(pz, v) = w and to define P (u, v) = pz.

Lemma 2.3 Given two vertices u, v that have a common ancestor M(u, v) = w, two internally disjoint
paths, q1 = (w, . . . , u) and q2 = (w, . . . , v) so that V (q1)∩V (q2) = w can be produced in O(|q1|+ |q2|) time.

Proof: We shall use two algorithms, the first GENPATH(x, y) assumes that x < y and that x is an
ancestor of y. It returns a path q from x to y in O(|q|) time. The code for GENPATH(x, y), given on the
r.h.s. of Figure 3 is easily verified to produce the required path in the claimed running time. The second
algorithm, DISJOINT (x, y) assumes that x and y have a common ancestor and that x < y. It returns a
pair of paths q1 and q2 as in the statement of the lemma. The code for DISJOINT (x, y) is given on the
l.h.s. of Figure 3. The correctness of DISJOINT (x, y) follows immediately from the definition of P . To
produce the disjoint paths as in the statement of the lemma we simply call DISJOINT (u, v) (assuming
u < v).
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3 Algorithms for k-APCA and k-APLCA

Let ω(r, s, t) be the minimal exponent so that the Boolean product of an nr × ns matrix with an ns × nt

matrix can be computed in O(nω(r,s,t)) time. Recall that ω = ω(1, 1, 1) < 2.376. For the proof of Theorem
1.2 we will need bounds for ω(1, r, 1), the exponent of rectangular matrix multiplication of a particular
form.

We define two more constants, α and β, related to rectangular matrix multiplication.

Definition 3.1 α = sup{ 0 ≤ r ≤ 1 | ω(1, r, 1) = 2 + o(1) } , β =
ω − 2
1− α

.

The following result has been proved by Coppersmith [4].

α > 0.294 . (1)

It is not difficult to see that (1) implies the following theorem. A proof can be found, for example, in
Huang and Pan [11].

Theorem 3.2 ω(1, r, 1) ≤
{

2 + o(1) if 0 ≤ r ≤ α,
2 + β(r − α) + o(1) otherwise.

Note that with ω = 2.376 and α = 0.294 we get β ' 0.533. If ω = 2 then α = 1. (In this case β is not
defined, but also not needed.) Another point to notice is that the algorithm of Alon and Naor [1] finds
witnesses to the Boolean product of an n× nr matrix with an nr × n matrix in Õ(nω(1,r,1)) time.

Proof of Theorem 1.2: Suppose our input dag G = (V,E) has its vertices {1, . . . , n} given in topological
order. We begin by computing the transitive closure matrix TG in O(nω) time.

We consider first the k-APCA problem for k ≥ 3. Assume first that k is even. Let Sk/2 be the set of
all

( n
k/2

)
subsets of k/2 vertices. We create a Boolean matrix R with rows indexed by Sk/2 and columns

indexed by V . For each S ∈ Sk/2 and for each v ∈ V , we let R(S, v) = 1 if v is a common ancestor of
each element of S. Otherwise, R(S, v) = 0. Notice that given TG, R can be constructed in O(nk/2+1) time.
Consider the Boolean product M = RRt. Suppose S is a k-subset and suppose that S1 ∪ S2 = S is an
arbitrary partition of S with |S1| = |S2| = k/2. Clearly, M(S1, S2) = 1 if and only if S has a common
ancestor. Thus, if W is a matrix of witnesses for the Boolean product M = RRt then W contains the
solution to the k-APCA problem. In fact, for each k-subset S there are

( k
k/2

)
locations in W that provide

(possibly distinct) common ancestors of S.

Let N = nk/2. The matrix R has Θ(N) rows and N2/k columns. Thus, by Theorem 3.2 using r = 2/k,
and the comment following it, a k-APCA solution can be computed in Õ(Nω(1,2/k,1)) time. For all k ≥ 8
we have 2/k ≤ 1/4 < α and hence ω(1, 2/k, 1) = 2 + o(1). Thus, a k-APCA solution can be computed
in Õ(N2) = Õ(nk) time, as required. We note that for k = 6 we can use ω(1, 1/3, 1) < 2.021 and obtain
that a 6-APCA solution can be computed in O(n6.063) time. Likewise, a 4-APCA solution is computed in
O(n4.22) time.

If k is odd we can reduce the k-APCA problem to n subproblems of (k− 1)-APCA. Indeed, fix any vertex
u, and let Ru be a matrix with rows indexed by all (k−1)/2-subsets of V −{u} and columns indexed by V .
We let Ru(S, v) = 1 if v is a common ancestor of S ∪ {u}. Clearly, a witness matrix for Ru ×Rt

u contains
the required solution for all k-subsets that contain u. By performing this for each u ∈ V , the solution to
the k-APCA problem is obtained.
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We now consider the k-APLCA problem for k ≥ 3. Assume first that k is even and let m =
√

n (we may
assume that m is an integer as this will not affect the asymptotic nature of our result). We partition V

into m parts V1, . . . , Vm where Vj = {(j−1)m+1, . . . , jm} for j = 1, . . . ,m. Let Sk/2 be the set of all
( n
k/2

)
subsets of k/2 vertices. We create m Boolean matrices R1, . . . , Rm with the rows of Rj indexed by Sk/2

and columns indexed by Vj . For each S ∈ Sk/2 and for each v ∈ Vj , we let Rj(S, v) = 1 if v is a common
ancestor of each element of S. Otherwise, Rj(S, v) = 0. Notice that given TG, Rj can be constructed in
O(nk/2+1/2) time. Consider the Boolean products Mj = RjR

t
j for j = 1, . . . ,m. Suppose S is a k-subset

and suppose that S = S1 ∪ S2 is an arbitrary partition of S with |S1| = |S2| = k/2. It takes O(m) time to
locate the largest index j so that Mj(S1, S2) = 1. If no such j exists we conclude that S does not have a
common ancestor. Otherwise, we look, in O(m) time, for the largest v ∈ Vj for which Rj(S1, v) = 1 and
Rj(S2, v) = 1. Clearly, the largest v found is an LCA of S. Thus, the running time to compute a solution
to the k-APLCA problem is at most the time needed to compute the m products Mj = RjR

t
j .

Let N = nk/2 = mk. The matrix Rj has Θ(N) rows and N1/k columns. Thus, by Theorem 3.2 using
r = 1/k, and the comment following it, a k-APLCA solution can be computed in Õ(mNω(1,1/k,1)) time.
Since k ≥ 4 we have 1/k ≤ 1/4 < α and hence ω(1, 1/k, 1) = 2 + o(1). Thus, a k-APLCA solution can be
computed in Õ(mN2) = Õ(nk+1/2) time, as required. The case where k is odd is reduced to n subproblems
of (k − 1)-APLCA, as for the k-APCA problem.

4 Concluding remarks and open problems

We have shown that computing junctions (which are special types of common ancestors) for all pairs of
vertices can be done in essentially the same time needed to find just arbitrary common ancestors.

Not all junctions are of the same quality. The ancestral distance between two vertices u and v of a dag that
have a common ancestor, denoted d(u, v), is the minimum sum of lengths of paths from a common ancestor
to each of them. Clearly, a common ancestor exhibiting d(u, v) is also a {u, v}-junction. However, the
fastest algorithm for computing d(u, v) for all pairs of vertices runs in O(n2.575) time, as shown in [2]. The
problem is reduced to an instance of the all-pairs shortest paths (APSP) problem. In fact, it is not difficult
to use the APSP algorithm of Zwick [16] so that a junction exhibiting d(u, v) is found in O(n2.575) time, for
all plausible pairs. It would be interesting to find a Õ(nω) time algorithm for APJ which guarantees that
the junctions found exhibit the shortest ancestral distance or, at least, are close to it. The approximate
APSP algorithm of Zwick, which does run in Õ(nω) time does guarantee an ancestor (but not necessarily
a junction) which approximates the ancestral distance.
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