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Abstract

We consider extremal problems for algebraic graphs, that is, graphs whose vertices
correspond to vectors in Rd, where two vectors are connected by an edge according
to an algebraic condition. We also derive a lower bound on the rank of the adjacency
matrix of a general abstract graph using the number of 4-cycles and a parameter which
measures how close the graph is to being regular. From this we derive a rank bound
for the adjacency matrix A of any simple graph with n vertices and E edges which
does not contain a copy of K2,r: rank(A) ≥ E−2n(r+1)

r2
√
n

.

1 Introduction

This paper is devoted to the study of matrices in general and adjacency matrices of graphs in
particular. It is the goal of this paper to study the relation between the rank of a matrix, the
number of nonzero entries of it, and the structure of the matrix. Specifically, we will consider
n by n matrices of a given rank d that do not contain a certain pattern of nonzero entries.
We will try to bound the number of nonzero entries in those matrices in terms of n and
d. Such questions can be considered as part of the study of sign patterns of matrices. The
results in [CPR00, P02] provide a good example for such a study and they are particularly
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closely related to our paper. At the time of writing this paper we were not aware of that
part of our results can be shown to follow from the results in [CPR00, P02]. We will remark
on these results of [CPR00, P02] later.

Our paper also shades some light on the relation between extremal problems for graphs,
and the rank of the adjacency matrices of these graphs. Let G be a graph on n vertices that
does not contain a copy of Kq,r as a subgraph where q ≤ r. It is a well known theorem of

Kövari, Sós, and Turán ([KST54]) that such a graph G can have at most c(r)n2− 1
q edges.

In Section 2 we restrict our attention to a family of bipartite graphs whose vertices
correspond to two finite sets of vectors in Rd. Let U = {u1, . . . , um} and V = {v1, . . . , vn}
be two sets of vectors in Rd. We will identify U and V with the vertex classes of the
bipartite graph G where vi is connected to uj iff the scalar product (uj, vi) is positive. Such
a bipartite graph G will be called an algebraic graph of dimension d. We would like to get
an improvement over the Kövari-Sós-Turán Theorem for the family of algebraic graphs in a
given dimension. More specifically, we consider algebraic graphs that do not contain a copy
of K2,r as a subgraph and show that if d ≤ 4, these graphs have only linearly many edges in
terms of the number of their vertices.

In Section 3 we take a closer look at the case q = 2 in the Kövari-Sós-Turán Theorem.
Let A be the adjacency matrix of the graph G, that is, A = {aij} is the n-by-n matrix with
aij = 1 when {i, j} is an edge of G, and aij = 0 otherwise. We consider the rank of the
matrix A over R and show the following relation between the number of edges E in G and
rank(A), the rank of A.

Theorem 1. Let G be a simple graph not containing K2,r as a subgraph. If G has n vertices
and E edges, then the rank of A satisfies

rank(A) ≥ E − 2n(r + 1)

r2
√
n

.

At the time of writing this paper we were not aware of how closely related the result in
Theorem 1 is to the results in [CPR00, P02]. It is not hard to show that the case r = 2 in
Theorem 1 follows from the results in [CPR00, P02]. In fact also the ideas used in the proofs
are very similar. We will elaborate on this before proving Theorem 1 in Section 3.

Observe in particular that Theorem 1 implies that if G has roughly the maximum possible
number of edges determined by the Kövari-Sós-Turán theorem, then the rank of A must be
high (linear in n).

The proof of Theorem 1 will follow from a more general theorem, developed in Section 3,
that bounds the rank of an adjacency matrix using the number of 4-cycles in the graph and
a parameter that measures how close the graph is to being regular.

2 Extremal Problems for Algebraic Graphs

In this section we restrict our attention to the family of algebraic graphs, which are formally
defined as follows.
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Definition 1. Let U = {u1, . . . , um} and V = {v1, . . . , vn} be two finite sets of vectors in Rd.
The corresponding algebraic graph of dimension d is the bipartite graph with color classes
U and V and with edges connecting ui to vj iff the scalar product (ui, vj) is positive.

We would like to examine extremal problems in graph theory restricted to the family of
graphs G that are algebraic of dimension d. We begin with a geometric result.

Definition 2. Let P ⊂ Rd be a set of n points. A subset A ⊂ P is called a k-set of P if
|A| = k and A is the intersection of P with some open affine half-space.

Theorem 2. Let P ⊂ R3 be a set of n points, and let r ≥ 2 be a fixed integer. Let
A1, . . . , Am be (not necessarily distinct) subsets of P . Assume that for every i, Ai is a ki-set
of P for some ki, and that |Ai1 ∩ . . . ∩ Air | ≤ 1 for every 1 ≤ i1 < . . . < ir ≤ m. Then∑m

i=1 ki ≤ m+ 4(r − 1)n.

Proof. Define a graph H whose vertices are the points of P . The edges of H are all the
edges of the polytope conv(P ). In addition, for every x ∈ P that is not a vertex of conv(P )
connect x to 4 points of P y1, . . . , y4 such that x ∈ conv({y1, . . . , y4}). H has at most 4n
edges. This is because the edges of conv(P ) form a planar graph on the vertices of conv(P ).

We claim that if A is a k-set of P , then there are at least k−1 edges of H induced by the
vertices in A. Indeed, this is because the graph H has the property that no matter which
orientation of R3 we choose, every point in P is connected in H to a higher point, except the
highest point with respect to the given orientation. This is true for the vertices of conv(P )
and for the points of P that are not vertices of conv(P ) as well, and implies that the induced
subgraph of H on the vertices of any k-set is connected.

Considering A1, . . . , Am, it follows from the condition that |Ai1 ∩ . . .∩Air | ≤ 1 for every
1 ≤ i1 < . . . < ir ≤ m that each edge in H may be induced by at most r − 1 sets Ai.
Therefore

∑m
i=1(ki − 1) ≤ 4(r − 1)n. From here it easily follows that

m∑
i=1

ki ≤ 4(r − 1)n+m.

We are now ready to prove our first theorem concerning algebraic bipartite graphs that
do not contain K2,r as a subgraph.

Theorem 3. Let G be an algebraic bipartite graph of dimension 4, where m and n are the
cardinalities of the two color classes of G. If G does not contain a copy of K2,r, then the
number of edges of G is O(m+ rn).

Proof. Let U = {u1, . . . , um} and V = {v1, . . . , vn} be the two sets of vectors corresponding
to the vertices of G. By a suitable rotation of R4 one may assume that the last coordinate
of each vi and uj is nonzero. Since the definition of the graph G depends only on the sign
of the scalar products of vectors from U and vectors from V , by multiplying each vector in
U ∪ V by a positive number, we may assume that the last coordinate of each vi and uj is
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either +1 or −1. Let U+ denote the set of all vectors in U the last coordinate of which is +1,
and let U− = U \ U+. Similarly define V + as the set of all vectors in V the last coordinate
of which is +1 and let V − = V \ V +.

Without loss of generality we assume that at least 1/4 of the edges in G are between
vectors in U+ and vectors in V +. We will restrict our attention to the subgraph G′ of
G induced by U+ ∪ V +. Without loss of generality we denote U+ = {u1, . . . , um′} and
V + = {v1, . . . , vn′}.

Let T : R4 → R3 be the projection defined by T (x1, x2, x3, x4) = (x1, x2, x3). For every
1 ≤ i ≤ m′ and 1 ≤ j ≤ n′ let ũi = T (ui) and ṽj = T (vj). For every 1 ≤ i ≤ m′ let Hi be
the affine hyperplane in R3, Hi = {ṽ ∈ R3|(ũi, ṽ) = −1}. Let P ⊂ R3 be the set of vectors
P = {ṽ1, . . . , ṽn′}. For every 1 ≤ i ≤ m′ let Ai denote the set of points ṽj of P satisfying
(ũi, ṽj) > −1. Ai is a ki-set of P for some ki. The crucial observation is that ui and vj
are connected by an edge in G′ exactly when ṽj ∈ Ai. Therefore, the number of edges in

G′ is precisely
∑m′

i=1 |Ai| =
∑m′

i=1 ki. Observe that because G′ does not contain a copy of
K2,r, for every 1 ≤ i1 < . . . < ir ≤ m′ we have |Ai1 ∩ . . . ∩ Air | ≤ 1. Hence, by Theorem 2,∑m′

i=1 ki ≤ m′ + 4(r − 1)n′ = O(m+ (r − 1)n).

It is tempting to conjecture that Theorem 3 is true for algebraic bipartite graphs of any
dimension, perhaps with the bound depending linearly on a function of d. This is however
false at least when the dimension d is greater or equal to 5.

Recall that the bound O(n4/3) of Szemerédi and Trotter ([ST83]) on the number of
incidences between n point and n lines in the plane is best possible. This was shown in a
construction by Erdős (see [E87]). We consider such a construction of n lines `1, . . . , `n and
n points p1, . . . , pn with at least cn4/3 incidences. For every i = 1, . . . , n let ai and bi be the
parameters such that the line `i is represented by `i = {(x, y) ∈ R2 | aix + biy = 1}. Let
(Ai, Bi) denote the coordinates of the point pi for i = 1, . . . , n. Therefore, there are cn4/3 pairs
of a line `i and a point pj such that pj ∈ `i, that is, aiAj+biBj = 1. For every i and j consider
the number si,j = −(aiAj + biBj − 1)2. This number is always negative except when pi ∈ `j
where it is equal to zero. Let ε = minsi,j 6=0 |si,j|. Then the number −(aiAj + biBj − 1)2 + ε/2
is positive exactly when pj = (Aj, Bj) belongs to `i = {(x, y) ∈ R2 | aix+ biy = 1}.

We now present the expression −(aiAj + biBj−1)2 + ε as a scalar product of two vectors,
one depending only on pj and the other depending only on `i. This is easy to do because

−(aiAj + biBj − 1)2 + ε/2 = −a2iA2
j − b2iB2

j − 2aibiAjBj + 2aiAj + 2biBj − 1 + ε/2.

Hence, −(aiAj + biBj − 1)2 + ε = (ui, vj), where ui = (−a2i ,−b2i ,−2aibi, 2ai, 2bi, 1− ε/2) and
vj = (A2

j , B
2
j , AjBj, Aj, Bj, 1). Note that the vectors ui and vj are in R6.

Define U = {ui | 1 ≤ i ≤ n} and V = {vj | 1 ≤ j ≤ n} and consider the algebraic
graph G with vertex set U ∪ V . G is a graph of dimension d = 6 and has cn4/3 edges and
2n vertices. On the other hand G does not contain a copy of K2,2 as a subgraph, for no two
distinct points among p1, . . . , pn belong to two distinct lines among `1, . . . , `n.

In the next theorem we consider a weaker notion of an algebraic graph over any field and
in any dimension.
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Theorem 4. Let U = {u1, . . . , um} and V = {v1, . . . , vn} be two sets of vectors in Fd,
where F is any given field. Let G be the bipartite graph whose vertices are the disjoint union
U ∪ V where ui is connected by an edge to vj iff the scalar product (ui, vj) is nonzero. If G
does not contain a copy of K2,r, for some r ≥ 2, then the number of edges in G is at most
(r − 1)d(m+ n).

Proof. Let A = {ai,j} be the m by n matrix with entries in F defined by ai,j = (ui, vj).
Clearly, the number of nonzero entries in A equals the number of edges in G. We will show
that there are at most (r − 1)d(m+ n) nonzero entries in A.

Since the rank of A over F is at most d, there are d rows of A which span the entire row
space of A. Without loss of generality assume that every row in A is a linear combination
of the first d rows of A.

We claim that in each of the last m − d rows of A there are at most (r − 1)d nonzero
entries. Indeed, consider the i’th row (ai,1 . . . ai,n) of A where d+ 1 ≤ i ≤ m. Since this row
is a linear combination of the first d rows of A, for every 1 ≤ j ≤ n for which ai,j 6= 0 there
exists 1 ≤ tj ≤ d such that atj ,j 6= 0. Because G does not contain a copy of K2,r, no two rows
of A share more than r− 1 nonzero coordinates. Therefore, there are at most r− 1 indices j
such that tj is the same number between 1 and d. It follows that for at most (r− 1)d indices
1 ≤ j ≤ n ai,j 6= 0. Consequently, the nonzero entries in A consist of at most dn possible
entries in the first d rows of A, together with at most (r− 1)d(m− d) nonzero entries in the
last m− d rows of A. Adding the two bounds together we get an upper bound of (less than)
(r− 1)d(m+ n) for the number of nonzero entries in A and therefore also for the number of
edges of G.

Remark. Observe that the matrix A in the proof of Theorem 4 has rank d and can be
considered as a representation of the adjacency matrix of a bipartite graph G. Theorem
4 studies the matrix A under the additional condition that A does not contain a 2 by r
sub-matrix with nonzero entries. Such matrices were considered in [CPR00, P02] from a
slightly different points of view. Specifically, in [P02] and [CPR00] A is a square matrix
that has nonzero values on its diagonal. It is also assumed that A does not contain a 2 by
2 submatrix with nonzero entries. It is shown in [P02] that such a matrix has a very high
rank, namely, d ≥ n/2. For further extensions of this study we refer the reader to [P02].

Considering the proof of Theorem 4 in the case r = 2, one obtains the following result:
If A is an m by n matrix over a field F and A does not contain a 2 by 2 submatrix all of
whose entries are nonzero, then the rank d of A is at least the number of nonzero entries in
A divided by (m + n). In the next theorem we get a small improvement over this estimate
when the number of nonzero entries in A is small.

Theorem 5. Let A be an m-by-n matrix over an arbitrary field F. Assume that A does not
have any 2 × 2 submatrix all of whose entries are nonzero. Then the rank d of A over F
satisfies: d ≥ Ω((#NZ(A) −m − n)1/3), where #NZ(A) is the number of nonzero entries
in A.
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Proof. Let d denote the rank of A over F. Then A can be written as a product A = BC
where B is an m-by-d matrix and C is a d-by-n matrix, both of rank d. We regard the
columns of C as points in Fd that we denote by P = {p1, . . . , pn}, where the i’th column
of C represents the coordinates of pi in Fd. We regard the rows of B as vectors in Fd

perpendicular to hyperplanes H1, . . . , Hn. That is

Hi = {(x1, . . . , xd) ∈ Fd|Bi,1x1 + . . .+Bi,dxd = 0},

where (Bi,1 . . . Bi,d) is the i’th row of B. Observe that ∩mi=1Hi is trivially {0} for otherwise
the rank of B is smaller than d.

Since ∩mi=1Hi = {0} there are d hyperplanes among H1, . . . , Hm whose intersection is
trivial. Without loss of generality we will assume that H1 ∩ . . . ∩Hd = {0}.

The condition on the matrix A is equivalent to the fact that for every 1 ≤ i < j ≤ m
Hi ∪Hj includes all points of P except maybe one. Let P ′ be the set of all points of P not
included in at least one of the sets Hi ∪Hj, where 1 ≤ i < j ≤ d. Then |P ′| ≤

(
d
2

)
.

For each 1 ≤ i ≤ d let Hi = ∩j 6=i,1≤j≤dHj. Observe that for every 1 ≤ i ≤ d, Hi is a
linear space of dimension 1.

We claim that each point in P \ P ′ must lie in the union H1 ∪ . . . ∪ Hd. Indeed, let
p ∈ P \P ′. If p = 0 there is nothing to prove. For p 6= 0, there is 1 ≤ i ≤ d such that p /∈ Hi.
But then p ∈ Hi for otherwise there exists j 6= i such that 1 ≤ j ≤ d and p /∈ Hj. This is a
contradiction because as p ∈ P \ P ′ we have p ∈ Hi ∪Hj for every 1 ≤ i < j ≤ d.

Suppose next that s 6= t and ps, pt ∈ P are two nonzero points on Hi. Then ps and pt
must belong to every Hj for any j 6= i between 1 and m. This is because otherwise both ps
and pt do not belong to Hi ∪Hj contradicting our assumption. In other words if ps and pt
both belong to the same Hi then the corresponding columns of A (columns number s and t)
have only one nonzero entry each, unless one of them is the zero column.

It follows that besides the columns of A that correspond to the points of P ′ and possibly
an additional d columns corresponding to points on ∪di=1Hi, all other columns of A have at
most one nonzero entry each.

The argument above is symmetric for n and m and therefore, we conclude that apart
from at most d2 rows of A and d2 columns of A, all other rows and columns have at most
one nonzero entry.

By the theorem of Kövari, Sós, and Turán, a d2-by-d2 submatrix of A has O(d3) nonzero
entries. Therefore #NZ(A) ≤ O(d3) +m+ n, and the assertion of Theorem 5 follows.

Remark. Following the remark of one of the referees, the result in Theorem 5 can be
improved over the field of reals as follows:

Without loss of generality assume that m ≤ n and extend A to an n by n matrix with
the least n −m rows equal to zero. Let G be the bipartite graph on 2n vertices vi, . . . , vn
and u1, . . . , un whose adjacency matrix corresponds to the matrix A in the sense that vi
is connected to uj iff Aij 6= 0. The condition on the matrix A implies that G does not
contain a copy of K2,2. Let k be the largest size of a matching in G and without loss of
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generality assume that v1, . . . , vk are matched to u1, . . . , uk, respectively. Therefore, every
edge in G is incident to one of the vertices v1, . . . , vk, u1, . . . , uk. It follows that A is a
matrix whose support consists of k rows that correspond to the the vertices v1, . . . , vk and
k columns that corresponds to the vertices u1, . . . , uk. Because G does not contain K2,2 as
a subgraph it follows from the bipartite version of the Kövari-Sós-Turán Theorem that A
has at most c(k

√
n + n) nonzero entries, for some absolute constant c > 0. In other words

#NZ(A) ≤ c(k
√
n + n). On the other hand by Corollary 13 in [CPR00] (see also [P02]),

the rank of the k by k submatrix of A which correspond to the subgraph of G induced by
{v1, . . . , vk} ∪ {u1, . . . , uk} is at least k/2. Therefore d = rank(A) ≥ k/2. We can now

deduce that d ≥
1
c
#NZ(A)−n√

n
. Observe that this result implies also the case r = 2 in Theorem

1, up to constant multipliers.

From each of theorems 4 and 5 the following observation follows. Let A be an n-by-n
matrix with entries in a field F. Assume that A does not have a 2-by-2 submatrix all of whose
entries are nonzero, and that the number of nonzero entries in A is roughly the maximum
possible value determined by the Kövari-Sós-Turán theorem, that is Ω(n3/2). Then the rank
of A is Ω(

√
n). In Section 3 we will significantly improve this lower bound on the rank of A

in the case where A is a {0, 1} matrix and the field F is R.

3 Regularity, Rank, and Counting Squares

In this section we take a closer look at graphs that do not contain K2,r as a subgraph.

Definition 3. The adjacency matrix of a graph G is the matrix A = {aij} whose rows and
columns are indexed by the vertices of G, with aij equal to the number of edges from vertex
i to vertex j.

All graphs considered will be undirected simple graphs, thus for our purposes an adjacency
matrix is always a symmetric {0, 1}-matrix with zeros on the diagonal. If G has E edges,
then 2E entries of the adjacency matrix of G are equal to 1.

We will be particularly interested in the relation between the rank and the number of 1
entries in adjacency matrices of graphs not containing K2,r as a subgraph. It follows from
Theorem 4 that the rank d, over any field, of the adjacency matrix of a K2,r-free graph with
E edges and n vertices satisfies 2E ≤ 2(r−1)dn. One can interpret this inequality as saying
that the rank of the adjacency matrix of a K2,r-free graph cannot be very low if the number
of edges in this graph is high. In particular when the number of edges in a K2,r-free graph G
is the maximum possible value determined by the Kövari-Sós-Turán theorem, then the rank
of the adjacency matrix of G is at least of the order of

√
n. We will show that this bound

can be significantly improved when the field in question is R.

We begin with a definition relating graphs to {0, 1}-matrices, and two definitions which
can be applied either to graphs or to matrices.
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Definition 4. Given any {0, 1}-matrix A = {aij} of size m-by-n, the bipartite graph defined
by A is the graph whose vertices are numbered (1, . . . ,m + n), with an edge {i,m + j} iff
aij = 1.

The bipartite graph defined by A has as many edges as the sum of the entries of A.

The next definition comes in stages. To start, given a multiset of numbers there is a
natural measure of how close they are to being equal: the ratio between the square of the
average value of an element of the multiset and the average value of a square of an element.

Definition 5. Let L = (`1, . . . , `n) be a finite list of real numbers, not all zero. Then the
regularity of L, denoted ρ(L), is defined as follows:

ρ(L) =
(
∑
`i/n)2∑
`2i /n

=
(
∑
`i)

2

n
∑
`2i
.

We observe the following properties of ρ(L):

• ρ(L) ∈ [0, 1]

• ρ(L) = 1 if and only if `i = `j for all i, j.

• If `i = 0 for i > k, then ρ(L) = k
n
ρ(`1, . . . , `k), and in particular ρ(L) ≤ k

n
.

By an abuse of notation we now extend the notion of regularity to graphs and to sym-
metric matrices:

Definition 5.1. In case G is a graph on n vertices with E edges, E ≥ 1, the regularity of
G, denoted ρ(G), is the regularity of the degree sequence (d1, . . . , dn) of G.

This gives us

ρ(G) =
(
∑
di)

2

n
∑
d2i

=
4E2

n
∑
d2i
.

A regular graph is a graph G with regularity ρ(G) = 1.

Definition 5.2. In case A is a symmetric n-by-n matrix with at least one nonzero entry,
the regularity of A, denoted ρ(A), is the regularity of the spectrum (λ1, . . . , λn) of A.

This can also be expressed as follows:

ρ(A) =
(
∑
λi)

2

n
∑
λ2i

=
tr(A)2

n tr(A2)
.

Since A is symmetric, rank(A) is the number of non-zero eigenvalues, and we have

tr(A)2

tr(A2)
= ρ(A)n ≤ rank(A).
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The inequality between the right-hand-side and the left-hand-side in the above formula is
well known and has several applications, see, for example, [CPR00], [A03]. The only matrices
A with regularity ρ(A) = 1 are multiples of the identity matrix.

One last graph parameter counts the number of 4-cycles in a graph:

Definition 6. For a graph G the square count of G, denoted �(G), is the number of 4-cycles
in G.

In case G is the bipartite graph defined by a {0, 1}-matrix A, �(G) is the number of
submatrices of A equal to [ 1 1

1 1 ].

We can now state a theorem giving a rank bound on {0, 1}-matrices.

Theorem 6. Let A = {aij} be an m-by-n matrix with entries in {0, 1}, not all of them zero.
Let E be the number of nonzero entries of A, and let G be the bipartite graph defined by A,
which has (m+ n) vertices and E edges. Then the rank of A over R is bounded by

rank(A) ≥ ρ
(
AAT

)
m

and furthermore

ρ
(
AAT

)
m =

E2

4E2/ (ρ(G) (m+ n))− E + 4 �(G)
.

Proof. Let A and G be as in the statement of the theorem, and let r1, . . . , rm and
c1, . . . , cn denote the row sums and column sums of A respectively, so that the vertex degrees
(d1, . . . , dm+n) of G are (r1, . . . , rm, c1, . . . , cn), and E =

∑
ri =

∑
ci = 1

2

∑
di.

Although A is not necessarily a square matrix, we have

rank(A) = rank(AAT )

where AAT is square of size m-by-m, and

rank(AAT ) ≥ ρ
(
AAT

)
m =

tr(AAT )2

tr(AATAAT )
,

by a previous observation. We also have tr(AAT ) =
∑

i,j a
2
ij = E. To bound rank(A) in

terms of the graph G, it remains to give a combinatorial description of tr(AATAAT ). This
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we do as follows:

tr(AATAAT ) =
m∑
i,k

n∑
j,l

aijakjaklail

=

∣∣∣∣∣∣ i=k j=l

∣∣∣∣∣∣+

∣∣∣∣∣∣∣ l

j

i=k

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
i

k

j=l

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
i j

lk

∣∣∣∣∣∣∣
= E +

n∑
i=1

ci(ci − 1) +
m∑
j=1

rj(rj − 1) + 4 �(G)

= E +
m+n∑
i=1

d2i − 2E + 4 �(G)

=
4E2

ρ(G) (m+ n)
− E + 4 �(G) .

We thus have

rank(A) ≥ ρ
(
AAT

)
m =

tr
(
AAT

)2
tr (AATAAT )

=
E2

4E2/ (ρ(G) (m+ n))− E + 4 �(G)

as claimed.

Before giving the proof of Theorem 1, we remark again that our ideas are very similar
to those in [CPR00, P02], and we were unaware of this at the time of writing this paper. In
fact the case r = 2 in Theorem 1 can be easily deduced, up to constant multipliers, from the
results in [CPR00, P02]. This was shown in the remark after the proof of Theorem 5.

Theorem 1 is a little more general because it deals also with the case r > 2. We shall
now bring its proof.

Proof of Theorem 1

We claim that less than 2
√
n vertices of G have degree greater than 2r

√
n. Indeed, let

k = d2
√
ne and let B = {b1, . . . , bk} be a set of vertices of G with degree greater than 2r

√
n.

Each vertex inB has more than 2(r−1)
√
n neighbors in V (G)\B. Since for every i 6= j, bi and

bj have at most r−1 common neighbors, it follows that the number of vertices in V (G)\B that
are neighbors of at least one of b1, . . . , bk is at least 2(r−1)

√
n+(2(r−1)

√
n−(r−1))+· · ·+1 >

n, a contradiction.

Let B denote be the set of vertices in G with degree greater than 2r
√
n. By the bipartite

version of the Kövari-Sós-Turán Theorem ([KST54]), denoting by dv the number of neighbors
in B for a vertex v ∈ V (G) \B we know that∑

v∈V (G)\B

(
dv
2

)
≤ (r − 1)

(
|B|
2

)
.
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Since |B| < 2
√
n we have that the number of edges connecting the vertices in B to vertices

not in B, which is at most
∑

v∈V (G)\B dv is, in turn, at most 2nr.

We therefore consider the subgraph G′ of G obtained from G by deleting from it the
vertices in B and all the edges incident to them. The number of vertices in G′ is n′ =
n − |B| ≥ n − 2

√
n and the number of edges of G′ is E ′ ≥ E − 2n(r + 1). The maximum

degree in G′ is at most 2r
√
n.

Let A denote the adjacency matrix of G′. Let H be the bipartite graph defined by A, so
that H has 2n′ vertices and 2E ′ edges.

We have
∑n′

i=1 ci = 2E ′. Moreover, for every 1 ≤ i ≤ n′ we have ci ≤ 2r
√
n. Therefore:

n′∑
i=1

c2i ≤
2E ′

2r
√
n

(2r
√
n)2 = 4rE ′

√
n.

We deduce:

ρ(c1, . . . , cn′) =
(2E ′)2

n′
∑
c2i
≥ E ′

rn′
√
n
.

We can also bound the quantity �(H). Observe that because G′ does not contain a copy

of K2,r, we have �(H) ≤
∑n′

i=1 (ci
2 )

r−1

(
r−1
2

)
. Hence,

�(H) ≤ r − 2

4
(

n′∑
i=1

c2i −
n′∑
i=1

ci) ≤
r − 2

4
(4rE ′

√
n− 2E ′) ≤ (r − 2)rE ′

√
n.

Since A is symmetric, we have ρ(H) = ρ(c1, . . . , cn′), and by Theorem 6 we have:

rank(A) ≥ (2E ′)2

4 (2E ′)2 / (ρ(H) 2n′)− 2E ′ + 4�(H)

≥ 4E ′2

8E ′r
√
n+ 4(r − 2)rE ′

√
n

≥ E ′

r2
√
n
≥ E − 2n(r + 1)

r2
√
n

.

Since the adjacency matrix of G′ is a submatrix of the adjacency matrix of G, then the
rank of the adjacency matrix of G is at least E−2n(r+1)

r2
√
n

, as claimed.

Remark. The result in Theorem 1 is asymptotically best possible. To see this recall that
there exists a graph G with n vertices and cn3/2 edges that does not contain K2,2 as a
subgraph, where c > 0 is an absolute constant. Let A be the adjacency of G. Let E be an

11



integer smaller than cn3/2. A has k = E
c
√
n

rows with a total of at least E 1-entries. Let A′

be the n× n matrix which consists only of these k rows of A and zeros otherwise. Consider
the 2n× 2n matrix

B =
[

0 A′

A′T 0

]
.

B is a symmetric matrix which is the adjacency matrix of a graph on 2n vertices that
does not contain K2,2 as a subgraph. B has at least 2E 1-entries while rank(B) ≤ 2k = 2E

c
√
n
.
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