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Abstract

We prove that a regular tournament with n vertices has more than n2

11.5 (1 − o(1)) pairwise

arc-disjoint directed triangles. On the other hand, we construct regular tournaments with a

feedback arc set of size less than n2

8 , so these tournaments do not have n2

8 pairwise arc-disjoint

triangles. These improve upon the best known bounds for this problem.
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1 Introduction

All graphs and digraphs considered here are finite and contain no parallel edges or anti-parallel arcs.

For standard graph-theoretic terminology the reader is referred to [2]. An Eulerian orientation of

an undirected graph is an orientation of its edges such that the in-degree of each vertex equals

its out-degree. It is well known that a graph G has an Eulerian orientation if and only if every

vertex is of even degree. A tournament is an orientation of a complete graph. Tournaments play

an important role in combinatorics, graph theory, and social choice theory. Properties of Eulerian

tournaments have been extensively studied in the literature (see, e.g., [11, 14]). Observe that

Eulerian tournaments must have an odd number of vertices and that they are regular; the in-

degree and out-degree of an n-vertex Eulerian tournament is (n− 1)/2. Eulerian tournaments are,

therefore, the same as regular tournaments.

There are exponentially many non-isomorphic regular tournaments with n vertices [11], but

they do all share some properties other than just being regular. Most notably, they all have the

same number of triangles and the same number of transitive triples, where a triangle is a set of

three arcs {(x, y), (y, z), (z, x)} while a transitive triple is a set of three arcs {(x, y), (y, z), (x, z)}.
Indeed, it is well-known, and easy to prove [5], that the number of transitive triples (and hence

triangles) in any tournament is determined by the score of the tournament, which is the sorted

out-degree sequence. For regular tournaments this amounts to n(n− 1)(n− 3)/8 transitive triples
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and therefore to
(
n
3

)
− n(n − 1)(n − 3)/8 = n(n2 − 1)/24 triangles. Asymptotically, this means

that a fraction of 1/4 of the triples induce triangles while 3/4 of them induce transitive triples.

Stated otherwise, a randomly selected triple induces a triangle with (asymptotic) probability 1/4.

Throughout this paper a triangle is denoted by C3 and a transitive triple is denoted by TT3.

An (edge) triangle packing of a graph is a set of pairwise edge-disjoint subgraphs that are

isomorphic to a triangle. The study of triangle packings in graphs dates back to the classical

result of Kirkman [10] who proved that Kn has a triangle packing of size n(n − 1)/6 whenever

n ≡ 1, 3 mod 6. In design-theoretic terms this is known as a Steiner triple system. This clearly

implies that for other moduli of n there are packings with (1 − on(1))n2/6 triangles, and this is

asymptotically tight as such packings cover (1− on(1))
(
n
2

)
edges.

In the directed case, a triangle packing of a tournament requires each subgraph to be isomorphic

to C3. Alternatively, one may ask for a TT3-packing where each subgraph must be isomorphic to

TT3. Triangle packings and TT3-packings of digraphs have been studied by several researchers (see,

e.g., [4, 13]). For a tournament T , we denote by ν3(T ) the size of a largest triangle packing and by

νTT3(T ) the size of the largest TT3-packing. Observe first that the fact that approximately 1/4 of

the triples of a regular tournament are isomorphic to C3 implies that ν3(T ) ≥ (1− on(1))n2/24 for

a regular tournament T . Indeed, take any optimal triangle packing of Kn (recall that it consists of

(1− on(1))n2/6 triangles) and consider the number of undirected triangles that eventually become

a C3 after assigning the orientation to the edges. As packings of Kn are invariant under vertex

permutations, the expected number of C3 in the resulting packing of the tournament is asymptot-

ically 1/4 of the elements of the (undirected) packing. Therefore, ν3(T ) ≥ (1 − on(1))n2/24. On

the other hand, we always have the trivial upper bound ν3(T ) ≤ (1− on(1))n2/6.

As usual in extremal graph theory, we are interested in closing the gap between the upper and

lower bound in the worst case. More formally, let ν3(n) denote the minimum of ν3(T ) ranging over

all regular tournaments with n vertices (recall that n is odd). So the trivial bounds above imply

that
n2

24
(1− on(1)) ≤ ν3(n) ≤ n2

6
(1− on(1)) .

Some exact values for small n are easy to compute. Clearly, ν3(3) = 1 and it is easy to see that

ν3(5) = 2. It is also not difficult to somewhat improve both the upper and lower trivial bounds,

but determining the right order of ν3(n) is an open problem. In this paper we prove new nontrivial

upper and lower bounds for ν3(n).

Theorem 1.1
n2

11.5
(1− on(1)) ≤ ν3(n) ≤ n2 − 1

8
.

In fact, the constant 11.5 can be replaced with the slightly smaller value of 1/ ln(12/11). The proof

of the lower bound in Theorem 1.1 is more involved than the proof of the upper bound. The upper

bound follows from a construction of a regular tournament with a relatively small feedback arc set,

which is a set of arcs whose removal makes a digraph acyclic. Recall that β(G) denotes the smallest
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size of a feedback arc set of a digraph G. Clearly, for any digraph G we have β(G) ≥ ν3(G) since

any feedback arc set must contain an arc from each triangle. Thus, our upper bound follows from

the existence of a regular tournament T with n vertices and with β(T ) ≤ (n2 − 1)/8.

The proof of the lower bound in Theorem 1.1 is based upon examining a fractional relaxation

of the triangle packing problem. We obtain a lower bound for the fractional version of the problem

and then utilize a result of Nutov and Yuster [12], based on a technique of Haxell and Rödl [6],

enabling us to deduce the same bound for the integral version, with only a minor loss in the

error term. Recently, several papers have made use of the relationship between the integral and

fractional solutions in dense settings [7, 8, 16, 18, 19]. All of these results, however, construct

a global fractional packing by gluing together many fractional packings of small (constant) edge-

disjoint subgraphs. We cannot use this approach as small subgraphs of a regular tournament do

not usually induce regular tournaments. Our approach is a global one. We construct a fractional

packing for our given tournament that does not decompose into disjoint fractional packings of small

subgraphs.

The rest of this paper is organized as follows. In Section 2, we define the fractional relaxation

of the problem, and show how a solution to the integral version is deduced (asymptotically) from

a solution to the fractional version. Section 3 consists of the proof of the lower bound in Theorem

1.1. Section 4 constructs the example yielding the upper bound of Theorem 1.1. Section 5 contains

some concluding remarks.

2 Integer versus fractional triangle packings

We start this section by defining the fractional relaxation of the triangle packing problem, and

define the parameter ν∗3(n) that is the fractional analogue of ν3(n). We then utilize a result of

Nutov and Yuster to obtain that ν∗3(n) ≤ ν3(n) + o(n2). This, in effect, enables us to consider only

the fractional parameter.

Let R+ denote the set of nonnegative reals. A fractional triangle packing of a digraph G is a

function ψ from the set F3 of copies of C3 in G to R+, satisfying
∑

e∈X∈F3
ψ(X) ≤ 1 for each arc

e ∈ E(G). Letting |ψ| =
∑

X∈F3
ψ(X), the fractional triangle packing number, denoted ν∗3(G), is

defined to be the maximum of |ψ| taken over all fractional triangle packings ψ. Since a triangle

packing is also a fractional triangle packing (by letting ψ = 1 for elements of F3 in the packing and

ψ = 0 for the other elements), we always have ν∗3(G) ≥ ν3(G). However, the two parameters may

differ. In particular, they may differ for regular tournaments.

Consider, for example, the 5-vertex regular tournament obtained by the following orientation

of K5 on the vertex set {1, 2, 3, 4, 5}. Orient a Hamilton cycle (1, 2, 3, 4, 5) and another Hamilton

cycle as (1, 4, 2, 5, 3). Clearly, ν3(T ) = 2. On the other hand, we may assign each of the five trian-

gles (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1), (5, 1, 2) the value 1/2 thereby obtaining a fractional triangle

packing of value 2.5.
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A result of Nutov and Yuster [12] asserts that the integral and fractional parameters differ by

o(n2). In fact, their result is more general. Let S be any given (finite or infinite) family of digraphs.

For a digraph G, let νS(G) denote the maximum number of arc-disjoint copies of elements of S
that can be found in G, and let ν∗S(G) denote the respective fractional variant. The following is

proved in [12].

Theorem 2.1 For any given family S of digraphs, if G is an n-vertex digraph then ν∗S(G)−νS(G) =

o(n2).

We note that an undirected version of Theorem 2.1 has been proved by Yuster [17] extending an

earlier result of Haxell and Rödl [6] (considering single element families) who were the first to prove

this interesting relationship between integral and fractional packings. The proof of Theorem 2.1

makes use of the directed version of Szemerédi’s regularity lemma [15] that has been used implicitly

in [3] and proved in [1].

By considering the single-element family S = {C3} we obtain the following immediate corollaries

of Theorem 2.1.

Corollary 2.2 If T is an n-vertex regular tournament then ν∗3(T )− ν3(T ) = o(n2).

Let ν∗3(n) be the minimum possible value of ν∗3(T ) ranging over all n-vertex regular tournaments

T . Obviously, ν∗3(n) ≥ ν3(n). Together with Corollary 2.2 we have:

Corollary 2.3 ν∗3(n) ≥ ν3(n) ≥ ν∗3(n)− o(n2).

3 Proof of the lower bound

In this section we prove the following theorem that, together with Corollary 2.3, yields the lower

bound in Theorem 1.1.

Theorem 3.1 A regular tournament T with n vertices has ν∗3(T ) ≥ (1− on(1)) ln(12/11)n2.

For a vertex v let D+(v) denote the set of out-neighbors of v and let D−(v) be the set of

in-neighbors of v. Any vertex v of a regular tournament thus has |D+(v)| = |D−(v)| = (n− 1)/2.

Observe that an arc (u, v) of a regular tournament appears in at most (n − 1)/2 triangles.

Indeed, any C3 containing (u, v) must contain another arc (v, w) where w ∈ D+(v). The following

proposition gives a naive lower bound for ν∗3(T ).

Proposition 3.2 Let T be a regular tournament with n vertices. Then, ν∗3(T ) ≥ n(n+ 1)/12.

Proof. Recall that the number of C3 in T is precisely n(n2−1)/24. We define a fractional triangle

packing by assigning each C3 the value 2/(n−1). This constitutes a valid fractional triangle packing
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as each arc is contained in at most (n− 1)/2 triangles. The overall value of this fractional packing

is, therefore,
n(n2 − 1)

24
· 2

n− 1
=
n(n+ 1)

12
.

The lower bound in Proposition 3.2 is optimal for regular tournaments on 3 or 5 vertices. Our

main result shows that this lower bound can be considerably improved for all sufficiently large

regular tournaments.

We call an arc α-dense if it is contained in at least αn triangles. Observe that no arc is 1/2-

dense as any arc (u, v) appears in at most (n−1)/2 triangles. We require the following lemma that

bounds the number of arcs that are α-dense.

Lemma 3.3 The number of α-dense arcs is at most 2(1/2 − α)n2. In particular, the number of

triangles that contain such arcs is less than n3(1/2− α).

Proof. For a vertex v, we compute the number of α-dense arcs entering it. Let X ⊂ N−(v) be

the set of vertices x such that (x, v) is α-dense. Consider a vertex x of maximum in-degree in

the sub-tournament T [X] induced by X. Since in any tournament with |X| vertices the maximum

in-degree is at least (|X|−1)/2 we have that x has at least (|X|−1)/2 arcs entering it in T [X]. On

the other hand, as (x, v) is α-dense, we also have that x has at least αn vertices of N+(v) entering

it. Since N+(v)∩X = ∅ we have that the in-degree of x in T is at least (|X| − 1)/2 +αn. But the

in-degree of x in T is (n− 1)/2 and thus

(|X| − 1)/2 + αn ≤ (n− 1)/2 .

It follows that |X| ≤ n(1− 2α). Summing over all v ∈ V we have that the number of α-dense arcs

is at most n2(1 − 2α). As each arc is contained in at most (n − 1)/2 triangles we have that the

number of triangles that contain α-dense arcs is at most n2(n− 1)(1/2− α) < n3(1/2− α).

For an arc e let f(e) denote the number of triangles that contain e. We define a fractional

triangle packing ψ by assigning to a triangle X the value

ψ(X) =
1

maxe∈X f(e)
.

In other words, we consider the three arcs of X and take the arc e of whose f(e) is maximal, setting

ψ(X) to 1/f(e). Notice that ψ is a valid fractional triangle packing. Indeed, the sum of the weights

of triangles containing any arc e is at most f(e) · f(e)−1 = 1. Theorem 3.1 is obtained by proving

that |ψ| ≥ (1− on(1)) ln(12/11)n2.

Proof of Theorem 3.1: Let k be a positive integer and let 0 < α0 < 1/2 be a constant to be

chosen later. For some constant 0 < c < 1 to be chosen later as well, let αi = α0c
i for i = 0, . . . , k.

Let

Ei = {e ∈ E(T ) : f(e) ≥ αin} .
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So, Ei is the set of all αi-dense arcs and notice that E0 ⊂ E1 ⊂ · · · ⊂ Ek. For i = 0, . . . , k, let

Si denote the set of all triangles that contain an arc from Ei and do not contain an arc from Ej

where j < i. In particular, S0 is just the set of triangles that contain an arc from E0. Finally, let

Sk+1 be the triangles that are not in ∪ki=0Si and note that S0, . . . , Sk+1 is a partition of the set of

all n(n2 − 1)/24 triangles of T .

For i = 0, . . . , k, all the elements of S0 ∪ · · · ∪ Si contain edges that are αi-dense and therefore

by Lemma 3.3 we have that for i = 0, . . . , k:

ti = | ∪ij=0 Si| < n3
(

1

2
− αi

)
. (1)

By the definition of ti we have that for i = 1, . . . , k, |Si| = ti − ti−1 and that |S0| = t0. Thus, we

also have that

|Sk+1| =
n(n2 − 1)

24
− tk .

For i = 1, . . . , k + 1, all the elements of Si receive weight that is greater than 1/(αi−1n). Indeed,

consider X ∈ Si. We know that it does not contain an arc from Ej for j < i. So the maximum

value of f(e) for an arc e of X is smaller than αi−1n. By the definition of ψ we therefore have that

ψ(X) > 1/(αi−1n). For elements X ∈ S0 we use the trivial bound ψ(X) > 2/n. Summing up the

weights of all the triangles of T we find that:

|ψ| ≥ t0 ·
2

n
+

k∑
i=1

(ti − ti−1)
1

αi−1n
+

(
n(n2 − 1)

24
− tk

)
1

αkn
.

Rearranging the terms we have:

|ψ| ≥ n2 − 1

24αk
− t0
n

(
1

α0
− 2

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
.

Using (1) we have that:

|ψ| ≥ n2 − 1

24αk
− n2

(
1

2
− α0

)(
1

α0
− 2

)
−

k∑
i=1

n2
(

1

2
− αi

)(
1

αi
− 1

αi−1

)
.

As we need to prove that |ψ| ≥ (1− on(1)) ln(12/11)n2, we conclude from the last inequality that

we must show that there exist choices of k, α0 and c such that

1

24αk
−
(

1

2
− α0

)(
1

α0
− 2

)
−

k∑
i=1

(
1

2
− αi

)(
1

αi
− 1

αi−1

)
gets arbitrarily close to ln(12/11). The last expression is identical to

k + 2− 2α0 +
1

24αk
− 1

2αk
−

k∑
i=1

αi
αi−1

.
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Recalling that αi = α0c
i and denoting the last expression as g(k, c, α0) we get that:

g(k, c, α0) = k + 2− 2α0 −
11

24α0ck
− ck . (2)

Let us first find the value of α0 that maximizes g(k, c, α0) subject to a given c and k. As f ′α0
=

−2 + 11/(24ckα2
0) the maximum is obtained when

α0 =

√
11

48
c−k/2 .

Plugging the value of α we get that at this point g(k, c) (now a function of two variables) is

g(k, c) = k + 2− ck − c−k/2
√

11/3 .

The value of c that maximizes g(k, c) subject to a given k is therefore

c = (11/12)1/(k+2) .

So for a given k, g(k, c, α0) is maximized when c = (11/12)1/(k+2) and α0 = 1
2(11/12)1/(k+2), so

indeed 0 < c < 1 and 0 < α0 < 1/2. Plugging these values we get that at this point g(k) (now a

function of a single variable) is

g(k) = (k + 2)

(
1−

(
11

12

)1/(k+2)
)
.

By l’Hôpital’s ’s Rule,

lim
k→∞

g(k) = ln(12/11) .

It is possible to slightly improve the lower bound constant of ln(12/11) in the proof of Theorem

3.1. Indeed, in the proof of Theorem 3.1, when considering αi-dense arcs that are not αi−1 dense,

we may use the fact that each such arc lies on less than αi−1n triangles, so the total number of

triangles containing such arcs as maximal edges (w.r.t. the function f(e)) is only the number of

such arcs multiplied by αi−1n instead of multiplying by (n−1)/2 as we do in the last line of Lemma

3.3. However this observation has a marginal effect on the lower bound and improves it by less

than 0.002, while the analysis becomes considerably more difficult.

4 Proof of the upper bound

We construct an n-vertex regular tournament Tn with a feedback arc set of size β(Tn) ≤ (n2−1)/8.

In particular, ν3(Tn) ≤ (n2 − 1)/8.

Consider two disjoint sets of vertices A = {a1, . . . , a(n−1)/2} and B = {b1, . . . , b(n−1)/2}. We

construct a regular tournament Tn on the vertex set A∪B ∪{c} as follows. We induce a transitive
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tournament on A by orienting (ai, aj) whenever i > j. We induce a transitive tournament on B

by orienting (bi, bj) whenever i > j. We orient (c, ai) for all ai ∈ A and orient (bi, c) for all bi ∈ B.

Finally we orient (ai, bj) whenever j ≥ i and orient (bj , ai) whenever j < i.

Observe that Tn is indeed a regular tournament, as each vertex has an out-degree and an in-

degree of (n − 1)/2. How many arcs go from B to A? The vertex bj has precisely (n − 1)/2 − j
out-neighbors in A which are {aj+1, . . . , a(n−1)/2}. Altogether, there are

(n−1)/2∑
j=1

n− 1

2
− j =

(n− 1)(n− 3)

8

arcs from B to A. Deleting all of these arcs and deleting all of the (n − 1)/2 arcs entering c we

obtain an acyclic digraph. Indeed, in the remaining subgraph, any three vertices that induce three

arcs must all be either in A or in B but both of these sets induce transitive tournaments. We have

shown that:

β(Tn) ≤ (n− 1)(n− 3)

8
+
n− 1

2
=
n2 − 1

8

as required.

5 Concluding remarks

Interestingly, the analogous problem of vertex triangle packing of regular tournaments is almost

settled. A vertex triangle packing is a set of pairwise vertex-disjoint subgraphs that are isomorphic

to a triangle. Given an n-vertex regular tournament, we can hope for a vertex triangle packing

of size at most bn/3c, and it has been conjectured by the author as well as by Cuckler that this

is always achievable. Recently, Keevash and Sudakov [9] proved that there always exists a vertex

triangle packing that covers all but at most 3 vertices. Observe that, unlike for vertex triangle

packing, the upper bound in Theorem 1.1 shows that there are regular tournaments for which we

cannot expect to cover more than a fraction of 3/4 of the arcs even in an optimal edge triangle

packing.

The proof of Theorem 1.1 can be extended, with very minor modifications, to almost regular

tournaments. We say that a tournament is almost regular if the minimum in-degree and the

minimum out-degree are both at least (1/2 − o(1))n (more formally, a family of tournaments is

almost regular if each tournament in the family has minimum in-degree and minimum out-degree

at least (1/2− o(1))n). The bounds in Theorem 1.1 remain intact for almost regular tournaments.
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