
All-Pairs Bottleneck Paths in Vertex Weighted Graphs

Asaf Shapira ∗ Raphael Yuster† Uri Zwick ‡

Abstract
Let G = (V, E, w) be a directed graph, where w : V → R
is an arbitrary weight function defined on its vertices. The
bottleneck weight, or the capacity, of a path is the smallest
weight of a vertex on the path. For two vertices u, v the bot-
tleneck weight, or the capacity, from u to v, denoted c(u, v),
is the maximum bottleneck weight of a path from u to v.
In the All-Pairs Bottleneck Paths (APBP) problem we have
to find the bottleneck weights for all ordered pairs of ver-
tices. Our main result is an O(n2.575) time algorithm for
the APBP problem. The exponent is derived from the expo-
nent of fast matrix multiplication. Our algorithm is the first
sub-cubic algorithm for this problem. Unlike the sub-cubic
algorithm for the all-pairs shortest paths (APSP) problem,
that only applies to bounded (or relatively small) integer
edge or vertex weights, the algorithm presented for APBP
problem works for arbitrary large vertex weights.

The APBP problem has numerous applications, and
several interesting problems that have recently attracted
attention can be reduced to it, with no asymptotic loss
in the running times of the known algorithms for these
problems. Some examples are a result of Vassilevska and
Williams [STOC 2006] on finding a triangle of maximum
weight, a result of Bender et al. [SODA 2001] on computing
least common ancestors in DAGs and a result of Kowaluk
and Lingas [ICALP 2005] on finding maximum witnesses for
boolean matrix multiplication. Thus, the APBP problem
provides a uniform framework for these applications. For
some of these problems, we can in fact show that their
complexity is equivalent to that of the APBP problem.

A slight modification of our algorithm enables us to
compute shortest paths of maximum bottleneck weight. Let
d(u, v) denote the (unweighted) distance from u to v, and
let sc(u, v) denote the maximum bottleneck weight of a path
from u to v having length d(u, v). The All-Pairs Bottleneck
Shortest Paths (APBSP) problem is to compute sc(u, v) for
all ordered pairs of vertices. We present an algorithm for the
APBSP problem whose running time is O(n2.86).

1 Introduction

Finding optimal paths between pairs of vertices is one
of the most fundamental algorithmic graph problems.
There are various measures for optimality, depending
on the problem to be solved. Commonly, one searches
for shortest paths as in the Single Source Shortest
Paths (SSSP) problem and the All-Pairs Shortest Paths

∗Microsoft Research. Email: asafico@tau.ac.il.
†Department of Mathematics, University of Haifa, Haifa

31905, Israel. E–mail: raphy@research.haifa.ac.il
‡School of Computer Science, Tel Aviv University, Tel Aviv

69978, Israel. E–mail: zwick@cs.tau.ac.il

(APSP) problem. In many other situations, such as
in maximum flow algorithms, one searches for paths
with maximum bottleneck value, or capacity. In this
paper, we consider the fundamental problem of All-
Pairs Bottleneck Paths (APBP) in vertex weighted
graphs. Given a directed graph G = (V,E,w) where
w is an arbitrary real weight function defined on its
vertices or edges, the bottleneck weight (or capacity) of
a path is the smallest weight of a vertex (respectively
edge) on the path. In the vertex weighted case we
have the closed variant, in which the weights of the
endpoints of a path are taken into account, and the
open variant, in which they are not. We refer to the
variants as edge-APBP, open-APBP and closed-APBP.
In each one of these variants, we let c(u, v) be the
maximum bottleneck weight, or maximum capacity, of a
path from u to v. In each one of the variants, the goal is
to compute the bottleneck weight for all ordered pairs
of vertices. As we will show shortly, many problems
that have been recently studied reduce to solving an
APBP problem with weighted vertices. Let us just
mention here one illustrative example: consider the goal
of planning routes for trucks going between different
cities. One of the main constraints in planning the
trucks’ routes is the height of the bridges under which
the trucks should pass. By solving the APBP problem
on a graph in which the vertices are the cities and the
bridges, and the weight of a vertex is the height of its
bridge, or ∞ if it is a city, one can find the maximum
height of a truck that can be sent from city A to city B,
for any two cities A and B.

Let n and m denote, respectively, the number of
vertices and edges of a given graph. The edge-APBP
problem can be easily solved in O(mn) time using, as
a main procedure, a variant of Dijkstra’s algorithm.
For dense graphs this results in a cubic O(n3) time
algorithm. A truly sub-cubic algorithm for the edge-
APBP problem would imply, in particular, a truly sub-
cubic algorithm for min-max products of two real valued
matrices (see Section 6 for more details). Until the
present paper, it was not known whether open-APBP
or closed-APBP, i.e., the vertex weighted versions of the
APBP problem, are easier than edge-APBP. Our main
result in this paper is the first truly sub-cubic algorithm
for both the closed-APBP and open-APBP problems.

We mention briefly that bottleneck versions of many
other graph optimization problems were considered be-
fore. The bottleneck spanning tree problem, for exam-
ple, can be easily solved, deterministically, in O(m + n)
time. Gabow and Tarjan [11] considered bottleneck ver-
sions of the directed spanning tree problem and the
weighted matching problem.

Before presenting our main result, we need a few
definitions. Let ω(r, s, t) be the minimal exponent for
which the Boolean product of an nr × ns Boolean
matrix and an ns×nt Boolean matrix can be computed
in O(nω(r,s,t)) time. The exponent ω = ω(1, 1, 1)
is usually called the exponent of fast Boolean matrix
multiplication. Coppersmith and Winograd [6] proved
that ω < 2.376. Let µ be the solution to ω(1, µ, 1) = 1+
2µ. The results from [5] and [12] show that µ < 0.575.

1.1 The new results For a directed graph with
n vertices, an APBP matrix is an n × n matrix C
with rows and columns indexed by the vertices, and
C(u, v) = c(u, v). If there is no path from u to v we let
c(u, v) = −∞. In open-APBP we define c(u, v) = ∞ if
(u, v) ∈ E or if u = v. The main result of this paper is:

Theorem 1.1. (Main Result) Let G = (V,E, w) be
a directed graph with w : V → R. There is an
algorithm that computes an open-APBP matrix and a
closed-APBP matrix in O(n2+µ) = O(n2.575) time. The
algorithm also computes a data structure so that, given
two vertices u, v with c(u, v) > −∞, a path from u to
v, having capacity c(u, v) can be constructed in time
proportional to its length.

The APBP problem has several interesting appli-
cations. In Section 2 we describe three such applica-
tions, and show that they can be reduced to special
cases of APBP. The first application, considered in [3], is
All-Pairs Lowest Common Ancestors in directed acyclic
graphs. The fastest algorithm for this problem, due
to Kowaluk and Lingas [13, 14], runs in O(n2+µ) time.
We show that this problem can be easily reduced to
a special case of closed-APBP. The second application,
first considered by Vassilevska and Williams [18], is the
Largest Weighted Triangle problem. Given a real vertex-
weighted graph, find a triangle (if one exists) with max-
imum total weight. The fastest algorithm for this prob-
lem, due to Vassilevska, Williams and Yuster [19], runs
in O(n2+µ) time. Clearly, if we can find, for each pair
of vertices, the maximum total weight of a 2-path, i.e.,
a path of length 2, connecting them, we can also find a
largest weight triangle. The latter problem can be eas-
ily reduced to a special case of open-APBP. The third
application, which is in fact used as a subroutine in
the proof of Theorem 1.1, is Maximum Witnesses for

Boolean Matrix Multiplication (MWBMM) (see a defi-
nition in the next section). Again, the fastest algorithm
for this problem, given in [13, 14], runs in O(n2+µ) time.
This problem turns out to be a special case of open-
APBP. In fact, we will show in Section 2, that all the
following four problems are computationally equivalent.

Theorem 1.2. The following problems are computa-
tionally equivalent (up to constant factors).

1. Open-APBP.

2. Closed-APBP.

3. Maximum Witnesses for Boolean Matrix Multipli-
cation.

4. All-Pairs Maximum Weight 2-paths in Vertex
Weighted Graphs.

When considering the variants of APBP in undi-
rected graphs, things change dramatically. It turns out
that both closed-APBP and edge-APBP can be solved
in optimal Θ(n2) time, while open-APBP is probably
more difficult, and is equivalent to the problems in The-
orem 1.2.

Theorem 1.3. For undirected graphs:

1. The edge-APBP problem can be solved in time
Θ(n2).

2. The closed-APBP problem can be solved in time
Θ(n2).

3. The open-APBP problem is computationally equiv-
alent to open-APBP in directed graphs, and thus to
all the problems mentioned in Theorem 1.2.

When computing shortest paths between pairs of
vertices, there is, in many cases, more than one solution.
Which solution (namely, which shortest path) should be
preferred? Such problems have been considered in, e.g.,
[20]. In Section 4, we look, among all shortest paths
between a pair of vertices, for the one having maximum
bottleneck weight. More formally, if G = (V,E, w)
and w : V → R, let d(u, v) denote the (unweighted)
distance from u to v, and let sc(u, v) be the maximum
capacity of a path from u to v having length d(u, v).
The APBSP problem is to compute sc(u, v) for all
ordered pairs of vertices u, v (again, we have two
versions: open-APBSP and closed-APBSP). Zwick [21]
gave an O(n2+µ) time algorithm for unweighted APSP.
(Note, however, that we do not claim that unweighted
APSP is computationally equivalent to the problems
of Theorem 1.2.) Theorem 1.1 gives an O(n2+µ) time
algorithm for open-APBP and closed-APBP. However,

when combined together, we are unable to retain this
running time, though we can still obtain a truly sub-
cubic algorithm.

Theorem 1.4. Let G = (V,E,w) be a directed graph
with w : V → R. There is an algorithm for
open-APBSP and closed-APBSP whose running time is
Õ(n(8+µ)/3) = O(n2.86).

1.2 Organization and overview The rest of the
paper is organized as follows: In Section 2 we prove
Theorem 1.1. The main idea is to first solve a special
case of the problem in which we only consider paths
of constant length, and then use recursion to reduce
the general case to this special case. In Section 3 we
prove Theorem 1.2 using a series of reductions. In
Section 1.3 we consider the undirected versions of the
problem and prove Theorem 1.3. In Section 5 we
consider the problem of finding shortest paths with
maximum bottleneck weight. The proof of Theorem
1.4 combines the main idea of the proof of Theorem
1.1 with a sampling technique used by Zwick [21].
Section 6 contains some concluding remarks and open
problems. All the algorithms presented in this paper
are strongly polynomial. The only operation allowed on
real numbers is comparison. Due to space limitations
many details are omitted from this version of the paper
and will appear in its full version.

2 All-Pairs Bottleneck Paths in Vertex
Weighted Graphs

An important ingredient in the proof of Theorem 1.1
is a procedure for computing maximum witnesses for
Boolean matrix multiplication. We use this procedure
to solve the APBP problem in directed graphs, when
restricted to paths of constant length. We then show
how to solve the APBP problem for general directed
graphs by using recursion together with a reduction
to the case of bounded maximum path length. We
shall prove Theorem 1.1 for the closed-APBP case.
The proof of Theorem 1.2, appearing in the next
section, supplies, in particular, two easy reductions
between open-APBP and closed-APBP, showing their
computational equivalence.

2.1 Maximum witnesses for Boolean matrix
multiplication Let A and B be two Boolean n × n
matrices. The maximum witness matrix of the product
C = AB is the n × n matrix W defined as follows. If
C(i, j) = 0, then W (i, j) = 0 . Otherwise, W (i, j) is the
largest index k such that A(i, k) = B(k, j) = 1.

A simple randomized algorithm for computing (not
necessarily maximum) witnesses for Boolean matrix

multiplication, in essentially the same time required to
perform the product, is given by Seidel [17]. Alon and
Naor [2] gave a deterministic algorithm for the problem.
An alternative, slightly slower, deterministic algorithm
was given by Galil and Margalit [10]. However, comput-
ing the maximum witness matrix seems to be a more
difficult problem. Kowaluk and Lingas [13, 14] proved
the following.

Theorem 2.1. (Kowaluk and Lingas [13, 14])
A maximum witness matrix for the product of
two n × n Boolean matrices can be computed in
O(n2+µ) = O(n2.575) time.

2.2 Constant length paths Throughout the paper
we use A ∧ B to denote the bitwise logical and of two
Boolean matrices A and B of the same dimensions.
Let G = (V,E, w) be a vertex-weighted directed graph.
Since sorting is not a bottleneck for our algorithm, we
may assume, w.l.o.g., that V = {1, . . . , n} and that
w(i) ≤ w(i + 1) for i = 1, . . . , n − 1. Let cs(u, v) be
the maximum bottleneck weight of a path from u to
v in G whose length is at most s. For completeness,
cs(u, u) = w(u) and cs(u, v) = −∞ if there is no path
from u to v whose length is at most s. In this section
we show that for any constant positive integer t, we can
compute ct(u, v) for all ordered pairs of vertices u, v ∈ V
in O(n2+µ) time.

For each s = 0, . . . , t we define two n × n Boolean
matrices, Ps and Qs as follows. Ps(u, v) = 1 if there is
a path from u to v, of length at most s, in which v has
minimum weight. Otherwise, Ps(u, v) = 0. Qs(u, v) = 1
if there is a path from u to v, of length at most s, in
which u has minimum weight. Otherwise, Qs(u, v) = 0.

Let A be the Boolean adjacency matrix of G, with
1’s on the diagonal. Let B be the Boolean matrix
with B(u, v) = 1 if and only if w(u) ≥ w(v). Clearly,
P0 = Q0 = I. P1 and Q1 are easily determined from A
and B by setting P1 = A∧B and Q1 = A∧BT . Suppose
we have computed Ps−1 and Qs−1. We show how to
compute Ps and Qs. We claim that Ps = APs−1 ∧ B.
Indeed, let p = (u, x, . . . , v) be a path of length at most
s from u to v in which v has minimum weight. Then,
A(u, x) = 1 because (u, x) is an edge of G, Ps−1(x, v) =
1 because p = (x, . . . , v) is a path of length at most s−1
from x to v in which v has minimum weight, and finally
B(u, v) = 1. It is easy to see that the converse holds as
well. Similarly, we have Qs = Qs−1A ∧BT .

We have shown how to compute Ps and Qs for
s = 0, . . . , t in O(tnω) time, and hence in O(nω)
time when t is a constant. Now, for s = 0, . . . , t
let Ws be a maximum witness matrix for the Boolean
product PsQt−s. By Theorem 2.1, all the matrices
W0, . . . ,Wt can be computed in O(tn2+µ) time, and

hence in O(n2+µ) time when t is a constant. Having
computed them, we claim that for each ordered pair
u, v we can determine ct(u, v) in O(t) time by setting
w(0) = −∞ and

ct(u, v) = w(max
0≤s≤t

Ws(u, v)) .(2.1)

Indeed, there is no path of length at most t from u to v if
and only if Ws(u, v) = 0 for all s = 0, . . . , t. In this case,
we correctly define ct(u, v) = −∞. Otherwise, suppose
ct(u, v) = w∗, let p be a path from u to v of length at
most t having capacity w∗, and suppose y is a vertex
on p with w(y) = w∗. The path p is a concatenation
of two paths p1 = (u, . . . , y) and p2 = (y, . . . , v) where
p1 has length s and p2 has length at most t − s, where
0 ≤ s ≤ t (possibly u = y or y = v). Hence, Ps(u, y) = 1
and Qt−s(y, v) = 1. This means that Ws(u, v) ≥ y,
and therefore our choice for the value of ct(u, v) in (2.1)
yields a capacity of at most w(y) = w∗. For the other
direction, if our choice in (2.1) yields value w∗, then
there is a vertex y with w(y) = w∗ and two paths p1,
which connects u to y, and p2, which connects y to v, of
total length at most t such that y has minimum weight
on p1 and p2. This means that indeed ct(u, v) ≤ w∗.
We have thus proved the following.

Corollary 2.1. For every integer t there is an
O(tn2+µ) time algorithm for computing the values
ct(u, v) for All-Pairs of vertices in a graph on n ver-
tices.

2.3 Proof of Theorem 1.1 Let G = (V,E, w) be
a vertex-weighted directed graph. As in the previous
sub-section, we assume that V = {1, . . . , n} and that
w(i) ≤ w(i + 1) for i = 1, . . . , n − 1. We may and will
assume that n is a power of 2, as this does not affect the
asymptotic nature of our results. We need to compute
the bottleneck weight c(u, v) for all ordered pairs u, v.
Let A = {1, . . . , n/2} and B = V \ A. Let us denote
by cG′(u, v) the bottleneck weight of the pair (u, v) in a
subgraph G′ of G. Let G1 be the subgraph of G induced
by B. We recursively solve the closed-APBP problem in
G1. Note that if for u, v ∈ B we have cG1(u, v) > −∞,
then this is the correct value of c(u, v) = cG1(u, v).
Let G2 = (A,E2), where (u, v) ∈ E2 if and only if
(u, v) ∈ E or if there is path from u to v in G all whose
internal vertices are in B. We can clearly construct G2

in O(nω) time using Boolean matrix multiplication, as
in the classical transitive closure problem (the weights
play no role here). We then recursively solve the closed-
APBP problem in G2. It is clear that for any u, v ∈ A
we have c(u, v) = cG2(u, v).

It remains to compute c(u, v) for (u, v) ∈ A × B,
(u, v) ∈ B × A, and for (u, v) ∈ B × B for which

cG1(u, v) = −∞. To do that, we create a graph G′ =
(V ′, E′) as follows. The vertex set V ′ is the disjoint
union of five vertex sets V ′ = B1 ∪ A2 ∪ A3 ∪ A4 ∪ B5

where B1, B5 are copies of B and A2, A3, A4 are copies
of A. Notice that |V ′| = 2.5n. For every u ∈ V , we let
ui be the copy of u in Ai or Bi. We let w(ui) = w(u).

For every u ∈ B and v ∈ A, we have (u1, v2) ∈ E′

if and only if there is a path from u to v in G whose
internal vertices are all from B. Again, using Boolean
matrix multiplication we can determine the edges from
B1 to A2 in O(nω) time. For every u, v ∈ A, we have
(u2, v3) ∈ E′ if and only if c(u, v) = w(v) (recall that we
already know c(u, v) at this point). For every u, v ∈ A,
we have (u3, v4) ∈ E′ if and only if c(u, v) = w(u).
Finally, for every u ∈ A and v ∈ B we have (u4, v5) ∈ E′

if and only if there is a path from u to v in G whose
internal vertices are all from B. Note that G′ can be
constructed in O(nω) time.

All the paths in G′ have length at most 4. By
Corollary 2.1 we can compute a closed-APBP matrix for
G′ in O(n2+µ) time. Let u ∈ B and v ∈ A and consider
a path from u to v with maximum capacity, whose
first vertex in A is x and whose vertex with minimum
weight is y. Note that y ∈ A. By definition, we have
(u1, x2), (x2, y3), (y3, v4) ∈ E′. Therefore cG′(u1, v4) ≤
w(y3) = w(y) = c(u, v). It is also easy to see that
cG′(u1, v4) ≥ c(u, v) and hence c(u, v) = cG′(u1, v4).
Let u, v ∈ B be two vertices for which cG1(u, v) = ∞.
By the same reasoning we get that c(u, v) = cG′(u1, v5).
Similarly, if u ∈ A and v ∈ B, then c(u, v) = cG′(u2, v5).

The running time of the algorithm satisfies the
recursion f(n) ≤ O(n2+µ)+2f(n/2). Therefore f(n) =
O(n2+µ), as required.

It is not difficult to modify the algorithm so as
to obtain a data structure representing the maximum
capacity paths between all pairs of vertices, without
affecting the running time. The details will appear in
the full version of this paper.

3 Applications and Computational Equivalence

In this section we prove Theorem 1.2 using a sequence
of reductions. Problem A reduces to problem B if a
solution of B in f(n) time implies a solution of A in
O(f(n)) time.

Lemma 3.1. Closed-APBP reduces to open-APBP.

Proof: Suppose G = (V,E, w) is a directed graph
with w : V → R. We reduce closed-APBP to open-
APBP in O(n2) time by creating a graph G′ = (V ∪
Vin ∪ Vout, E ∪ E′, w′) as follows. Associate with each
v ∈ V two new vertices vin ∈ Vin and vout ∈ Vout. Let
E′ = {(v, vin), (vout, v) | v ∈ V }. For every v ∈ V , let

w′(v) = w(v), and let w′(vin) and w′(vout) be arbitrary.
If C ′ is the open-APBP matrix of G′ and C is the closed-
APBP matrix of G then clearly C(u, v) = C ′(uout, vin).

Lemma 3.2. Open-APBP reduces to closed-APBP.

Proof: We reduce open-APBP to closed-APBP in
O(n2) time by creating a graph G′ = (V ∪ Vin ∪
Vout, E ∪ E′, w′) as follows. Associate with each v ∈ V
two new vertices vin ∈ Vin and vout ∈ Vout. Let
E′ = {(u, vin), (uout, v) | (u, v) ∈ E}. For every v ∈ V ,
let w′(v) = w(v) and w′(vin) = w′(vout) = ∞. If C ′

is the closed-APBP matrix of G′ and C is the open-
APBP matrix of G then for every (u, v) 6∈ E we have
C(u, v) = C ′(uout, vin).

Let f(n) = O(nω) be the complexity of Boolean ma-
trix multiplication, and of transitive closure; the two are
known to be equivalent [7, 9, 15]. Let g(n) = O(n2+µ)
be the complexity of computing maximum Witnesses for
Boolean matrix multiplication. By definition, f(n) ≤
g(n), and the proof of Theorem 1.1 gives the following
corollary.

Lemma 3.3. Closed-APBP reduces to MWBMM

We now show that the converse is also true.

Lemma 3.4. MWBMM reduces to Open-APBP.

Proof: Let A and B be two Boolean n × n ma-
trices. We create a vertex weighted 3-layered graph
G = (V,E, w) with V = V1 ∪ V2 ∪ V3, where V1 =
{x1, . . . , xn}, V2 = {y1, . . . , yn}, and V3 = {z1, . . . , zn}.
We let E = {(xi, yk) | A(i, k) = 1}∪{(yk, zj) | B(k, j) =
1}. For every 1 ≤ k ≤ n, we let w(yk) = k. The
weights w(xi) and w(zj), for 1 ≤ i, j ≤ n are arbi-
trary. If C is the open-APBP of G, then for every
1 ≤ i, j ≤ n, if C(xi, zj) = −∞, let W (i, j) = 0, other-
wise, let W (i, j) = C(i, j). It is then easy to see that
W is the maximum witness matrix for AB.

The above claims imply that the first three prob-
lems in Theorem 1.2 are equivalent. Let us conclude
with the last problem. For a real vertex-weighted graph
G = (V,E, w), let w2(u, v) be the maximum total weight
of a path of length 2 from u to v (the weights of u and v
being included in the total). We conclude the proof of
Theorem 1.2 with the following claim. As we have dis-
cussed in Section 1, this claim implies that we can use
Theorem 1.1 to derive the main result of Vassilevska and
Williams [18] on finding triangles of maximum weight.

Lemma 3.5. Finding all-pairs maximum weight 2-paths
is equivalent to open-APBP.

Proof: We start with a simple reduction from the
all-pairs maximum weight 2-paths problem to the open-
APBP. Let G = (V,E, w) be a vertex weighted directed
graph. Let w2(u, v) denote the maximum weight of a
2-path from u to v in G, or −∞ if there is no such path.
Let G′ = (V ′, E′, w′), where V ′ = {v1, v2, v3 | v ∈ V }
and E′ = {(u1, v2), (u2, v3) | (u, v) ∈ E}, and w′(v2) =
w(v), for every v ∈ V . The weights w′(v1) and w′(v3)
are arbitrary. Let C be the open-APBP matrix for G′.
Clearly, w2(u, v) = w(u) + w(v) + C(u1, v3), for every
u, v ∈ V . A reduction similar to the one given from
MWBMM to open-APBP shows the converse.

Let G = (V,E) be a directed acyclic graph (DAG).
Vertex u is said to be an ancestor of vertex v in G if and
only if there is a directed path from u to v in G. If u is
an ancestor of v, then v is said to be a descendant of u
in G. A lowest common ancestor (LCA) of two vertices
u, v in a DAG is a vertex w that is an ancestor of both
u and v, and such that no proper descendant of w is an
ancestor of both u and v. Finding LCA’s for all pairs
of vertices in a tree, or, more generally, in a DAG, has
many interesting applications (see, e.g., [3]). Kowaluk
and Lingas [13] gave a reduction from the LCA problem
in DAGs to the problem of finding maximum witnesses
for Boolean matrix multiplication. The following is a
simple reduction from the LCA problem to computing
closed-APBP.

Lemma 3.6. Finding all-pairs LCA in DAGs reduces
to computing closed-APBP (and thus to computing wit-
nesses for boolean matrix multiplication).

Proof: Let G = (V,E) be a DAG. Assume that
V = {1, . . . , n} and that (i, j) ∈ E implies i < j
(topological sort can be done in linear time). Construct
a vertex weighted graph G′ = (V ′, E′, w′) as follows:
V ′ = {v1, v2 | v ∈ V } and E′ = {(v1, u1), (u2, v2) |
(u, v) ∈ E} ∪ {(v1, v2) | v ∈ V }. Note that G′ has 2|V |
vertices and 2|E|+ |V | edges. Let w′(v1) = w′(v2) = v,
for every v ∈ V . (Recall that V = {1, . . . , n}.) Let C
be a closed-APBP matrix for G′. If C(v1, u2) = −∞,
then u, v have no LCA in G. Otherwise C(v1, u2) is an
LCA of u, v in G, as required.

4 All Pairs Bottleneck Paths in Undirected
Graphs

In this section we prove Theorem 1.3. We begin by
showing that the open-APBP problem in undirected
graphs is not easier than the open-APBP problem in
directed graphs. By Theorem 1.2, it suffices to reduce
MWBMM to open-APBP in undirected graphs. The
reduction is very similar to the one used in the directed
case, as shown in the previous section. The only

difference is that the weights of the vertices in V1 and
in V3 are now defined to be 0, and that the edges are
considered to be undirected. The solution of open-
APBP for G implies the maximum witness matrix for
AB. Indeed, c(xi, zj) = 0 or c(xi, zj) = −∞ implies
W (i, j) = 0 and c(xi, zj) = k > 0 implies W (i, j) = k.

Next, we prove that closed-APBP in undirected
graphs is not harder than edge-APBP in undirected
graphs. Suppose G = (V,E,w) is an undirected graph
and that w : V → R. We make G an edge-weighted
graph by assigning w(u, v) = min{w(u), w(v)}. It is
easy to see that an edge-APBP matrix for the edge-
weighted graph is also a closed-APBP matrix for the
vertex-weighted graph.

In order to complete the proof of Theorem 1.3 we
present a Θ(n2) time algorithm for edge-APBP.

Lemma 4.1. The edge-APBP problem for undirected
graphs can be solved in Θ(n2) time.

Proof: Let G = (V,E, w) is an undirected graph,
where w : E → R. We may assume, without loss of
generality, that G is connected and that all edge weights
are distinct. Let T = (V,E′) be a spanning tree of G of
maximum weight. The tree T can be easily computed
in O(m + n log n) = O(n2) time using, say, Prim’s
algorithm [16, 8]. We claim that c(u, v) = cT (u, v),
for every u, v ∈ V . Clearly, c(u, v) ≥ cT (u, v), for every
u, v ∈ V , as T is a subgraph of G. Let p be a path from u
to v in G. Each edge e on p closes a cycle with some edge
of T . As T is a maximum spanning tree, the weights
of all the edges on this cycle are larger than the weight
of e. (Recall that all edge weights are distinct.) Thus,
every edge of p not in T can be replaced by a path in T
of larger capacity. Thus, c(u, v) ≤ cT (u, v), as required.
Now, for every u ∈ V , the capacities cT (u, v), for all
v ∈ V can be easily computed in O(n) time by running
BFS. Thus, all the capacities cT (u, v), and hence c(u, v),
can be computed in O(n2) time, as claimed.

5 All-Pairs Bottleneck Shortest Paths

In this section we prove Theorem 1.4. We describe an
algorithm for the closed-APBSP problem. An algorithm
for the open-APBSP problem is obtained using the same
reduction used to reduce the open-APBP problem to the
closed-APBP problem. (See Lemma 3.2.) We start with
a simple lemma showing that a variant of BFS solves the
single source version of the closed-APBSP.

Lemma 5.1. Let G = (V,E,w) be a directed graph, with
w : V → R, and let u ∈ V . Then, there is an O(m + n)
time algorithm that computes sc(u, v) for all v ∈ V .

Proof: We start by setting d(u, u) = 0, sc(u, u) =
w(u), and place u in the queue. All other vertices are

initialized with d(u, v) = ∞.
When x leaves the queue, for each (x, y) ∈ E

the following is performed. If d(u, x) ≥ d(u, y) we
do nothing. Otherwise we have d(u, x) < d(u, y). If
d(u, y) = ∞ we set d(u, y) = d(u, x) + 1, place y
in the queue and set sc(u, y) = min{sc(u, x), w(y)}.
Otherwise, we already have d(u, y) = d(u, x) + 1, so
we do not place y in the queue, but we still update
sc(u, y) = max{sc(u, y),min{w(y), sc(u, x)}}. The cor-
rectness and the claimed running time are straightfor-
ward to verify.

Let G = (V,E, w) be a directed graph, with w :
V → R, and |V | = n. Let 0 < t < n − 1 be an
integer parameter to be chosen later. Suppose T ⊂ V
has the property that for any pair of vertices u, v with
t < d(u, v) < n, there is a path from u to v of length
d(u, v), containing a vertex from T . A set T having
this property is called a t-bridging set. It was shown
in [21], using a simple probabilistic argument, that
a random subset of min{n, 9n log n/t} vertices is a t-
bridging set, with high probability. It is also shown
in [21] that a t-bridging set of size O(n log n/t) can be
found, deterministically, in Õ(n2t) time. We need here
a slight strengthening of the notion of t-bridging sets,
as we would like the set T to hit specific shortest paths,
namely shortest paths that have maximum capacity:

Lemma 5.2. Let G = (V,E) be a directed graph on n
vertices and let S be a set of paths connecting distinct
pairs of vertices, where each path is of length at least
t. Then, a randomly chosen set of vertices B ⊆ V ,
where each vertex of V is put in B, independently,
with probability min{(9 log n)/t, 1}, contains, with high
probability, at least one vertex from each path in S.

Proof: If (9 log n)/t ≥ 1, then B = V and the
claim is obvious. Suppose, therefore, that (9 log n)/t <
1. For a fixed path in S of length k ≥ t, the probability
that we do not choose any of the vertices of the path
is at most (1 − (9 log n)/t)t � n−2. As S contains at
most n2 paths, we conclude by the union bound that
with high probability we “hit” all the paths in S.

Note that Lemma 5.2 implies that the set B can be
chosen without knowing S explicitly. It is shown in [21]
how to obtain a set B as in Lemma 5.2 deterministically
in Õ(tn2) time, given a (partial) representation of S.
Such a representation is available in our setting. The
details of the deterministic procedure for constructing B
will appear in the full version of this paper.

Proof of Theorem 1.4: We first show how to
compute sc(u, v) for all pairs u, v with d(u, v) ≤ t. As
in Section 2 we may assume that V = {1, . . . , n} and

that w(i) ≤ w(i + 1) for i = 1, . . . , n − 1. Slightly
modifying the definitions from Section 2, let cs(u, v) be
the maximum capacity of a path from u to v whose
length is precisely s. Clearly, c0(u, u) = w(u), and
c0(u, v) = −∞ for v 6= u. For completeness, cs(u, v) =
−∞ if there is no path from u to v whose length is
precisely s.

For each s = 0, . . . , t we define two n × n Boolean
matrices, Ps and Qs as follows. Ps(u, v) = 1 if there is
a path from u to v, of length precisely s, in which v has
minimum weight. Otherwise, Ps(u, v) = 0. Qs(u, v) = 1
if there is a path from u to v, of length precisely s, in
which u has minimum weight. Otherwise, Qs(u, v) = 0.
Let A be the Boolean adjacency matrix of G (with 0’s
on the diagonal). Let B be the Boolean matrix with
B(u, v) = 1 if and only if w(u) ≥ w(v). Clearly,
P0 = Q0 = I. As in the proof in Section 2, we have
Ps = APs−1 ∧ B and Qs = Qs−1A ∧ BT . We compute
Ps and Qs, for s = 0, . . . , t, in O(tnω) time. Now, for
two nonnegative integers r, s with r + s ≤ t, let Wr,s

be a maximum witness matrix for the Boolean product
PrQs. By Theorem 2.1, all the matrices Wr,s can be
computed in O(t2n2+µ) time. Having computed them,
we claim that for each ordered pair u, v with d(u, v) ≤ t,
we can determine sc(u, v) in O(t2) time by setting

sc(u, v) = w(max
0 ≤ r, s ≤ t

r + s = d(u, v)

Wr,s(u, v)) .(5.2)

Indeed, as in the proof of Theorem 1.1, suppose there is
a path p from u to v of length d(u, v) having capacity
sc(u, v). Let y be a vertex on p with w(y) = sc(u, v).
The path p is a concatenation of two paths p1 =
(u, . . . , y) and p2 = (y, . . . , v) with p1 having length
r ≥ 0 and p2 having length s ≥ 0, so that r + s =
d(u, v) ≤ t. Thus, Pr(u, y) = 1 and Qs(y, v) = 1. Thus,
Wr,s(u, v) ≥ y. Hence, in (5.2) we get value bounded by
w∗, and it is easy to see that we in fact get the correct
value.

It remains to compute sc(u, v) for pairs u, v with
d(u, v) > t. Let S be the set of shortest paths with
maximum capacity between all the pairs of vertices
(u, v) ∈ V × V for which d(u, v) ≥ t. Let B be a
set of vertices as guaranteed by Lemma 5.2. Suppose
that we have computed sc(y, v) and sc(v, y) for each
y ∈ B, in O(n2|B|) time using Lemma 5.1. Now suppose
that u, v have d(u, v) > t. In that case there is a
path p from u to v of length d(u, v) that has capacity
sc(u, v) and that contains a vertex y ∈ B. Notice that
sc(u, v) = min{sc(u, y), sc(y, v)}. Hence, setting

sc(u, v) =

max
y ∈ B

d(u, y) + d(y, v) = d(u, v)

min{sc(u, y), sc(y, v)}

yields the correct value of sc(u, v). The overall running
time of the algorithm is therefore

Õ
(
t2n2+µ + n2 n

t

)
.

Setting t = n(1−µ)/3 we obtain an overall running time
of Õ(n(8+µ)/3) = O(n2.86).

The above algorithm solves the case were the edges
of the graph are unweighted. The algorithm can be
extended to the case of small edge weights as well, that is
edge weights from the set {1, . . . ,M}. For M = no(1) we
get essentially the same running time. The full details
will appear in the full version.

6 Concluding Remarks and Open Problems

• Let A and B be two n × n real-valued matri-
ces. The MIN-MAX product C = A ∗ B is de-
fined by C(i, j) = maxn

k=1 min{A(i, k), B(k, j)}.
Clearly computing min-max product is a spe-
cial case of edge-APBP on a 3-layer graph con-
structed as in the proof of Theorem 1.2. The
converse can be shown as well using a method
from Aho et al. [1], Section 5.9, Corollary 2.
The min-max product problem resembles the min-
plus product problem where one defines C(i, j) =
minn

k=1 A(i, k) + B(k, j). The fastest published al-
gorithm for the latter, due to Chan [4], runs in
O(n3/ log n) time (a mild improvement having run-
ning time O(n3(log log n/ log n)5/4) was recently
announced by Y. Han).

• Our algorithm for the APBP problem runs in time
O(n2+µ), which is equivalent to the fastest algo-
rithm [21] for the all-pairs shortest paths problem
on directed unweighed graphs. It will be interesting
to see if it can be shown that one of the problems is
not harder then the other, or if they can be shown
to be equivalent.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, 1974.

[2] N. Alon and M. Naor. Derandomization, witnesses
for Boolean matrix multiplication and construction
of perfect hash functions. Algorithmica, 16:434–449,
1996.

[3] M.A. Bender, M. Farach-Colton, G. Pemmasani,
S. Skiena, and P. Sumazin. Lowest common ancestors
in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005. Also, Proc. of SODA 2001.

[4] T.M. Chan. All-Pairs Shortest Paths with Real
Weights in O(n3/ log n) Time. In Proc. of the 9th
WADS, Lecture Notes in Computer Science 3608,
Springer (2005), 318–324.

[5] D. Coppersmith. Rectangular matrix multiplication
revisited. Journal of Complexity, 13:42–49, 1997.

[6] D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. J. Symbol. Comput.,
9:251–280, 1990.

[7] M.J. Fischer and A.R. Meyer. Boolean matrix multi-
plication and transitive closure. In Proc. of the 12th
Symposium on Switching and Automata Theory, East
Lansing, Mich., (1971), 129–131.

[8] M.L. Fredman and R.E. Tarjan. Fibonacci heaps
and their uses in improved network optimization al-
gorithms. Journal of the ACM, 34:596–615, 1987.

[9] M.E. Furman. Application of a method of fast mul-
tiplication of matrices in the problem of finding the
transitive closure of a graph. Dokl. Akad. Nauk SSSR,
11 (1970), no. 5, p. 1252.

[10] Z. Galil and O. Margalit. Witnesses for Boolean matrix
multiplication and for transitive closure. Journal of
Complexity, 9(2):201–221, 1993.

[11] H.N. Gabow and R.E. Tarjan. Algorithms for two bot-
tleneck optimization problems. Journal of Algorithms,
9(3):411–417, 1988.

[12] X. Huang and V.Y. Pan. Fast rectangular matrix mul-
tiplications and applications. Journal of Complexity,
14:257–299, 1998.

[13] M. Kowaluk and A. Lingas. LCA Queries in Directed
Acyclic Graphs. In Proc. of the 32nd ICALP, Lecture
Notes in Computer Science 3580, Springer (2005), 241–
248.

[14] A. Lingas. Result announced at ICALP 2005 presen-
tation of [13].

[15] I. Munro. Efficient determination of the strongly
connected components and the transitive closure of
a graph. Unpublished manuscript, Univ. of Toronto,
Toronto, Canada, 1971.

[16] R.C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal,
36:1389-1401, 1957.

[17] R. Seidel. On the All-Pairs-Shortest-Path Problem in
Unweighted Undirected Graphs. J. Comput. Syst. Sci.,
51(3):400–403, 1995.

[18] V. Vassilevska and R. Williams. Finding a maximum
weight triangle in n3−δ time, with applications. In
Proc. of the 38th STOC, 225–231, 2006.

[19] V. Vassilevska, R. Williams, and R. Yuster. Finding
the smallest H-subgraph in real weighted graphs and
related problems. In Proc. of the 33rd ICALP, Lecture
Notes in Computer Science, Springer (2006), 262-273.

[20] U. Zwick. All Pairs Lightest Shortest Paths. In Proc.
of the 31st STOC, 61–69, 1999.

[21] U. Zwick. All-pairs shortest paths using bridging sets
and rectangular matrix multiplication. Journal of the
ACM, 49:289–317, 2002.

