
2-connected graphs with small 2-connected

dominating sets

Yair Caro, Raphael Yuster 1

Department of Mathematics, University of Haifa at Oranim, Tivon 36006, Israel

Abstract

Let G be a 2-connected graph. A subset D of V (G) is a 2-connected dominating set
if every vertex of G has a neighbor in D and D induces a 2-connected subgraph.
Let γ2(G) denote the minimum size of a 2-connected dominating set of G. Let δ(G)
be the minimum degree of G. For an n-vertex graph G, we prove that

γ2(G) ≤ n ln δ(G)

δ(G)
(1 + oδ(1))

where oδ(1) denotes a function that tends to 0 as δ → ∞. The upper bound is
asymptotically tight. This extends the results in [3,5,10,12].
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1 Introduction

All graphs considered here are finite, undirected, and simple. For standard
graph-theoretic terminology the reader is referred to [4]. A subset D of vertices
in a graph G is a dominating set if every vertex not in D has a neighbor in D.
The domination number, denoted γ(G), is the minimum size of a dominating
set. A graph G with more than r vertices is r-connected if deleting any set
of at most r − 1 vertices results in a connected graph. If G is an r-connected
graph, then G has a dominating set that induces an r-connected subgraph
(simply take the whole graph as a dominating set). Such a dominating set is
called an r-connected dominating set. Let γr(G) denote the minimum size of
an r-connected dominating set of G. The parameter γ1(G) is also called the
connected domination number of G. Note that for r ≥ 1, every r-connected
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dominating set is a strong dominating set, namely, every vertex of G (whether
in the dominating set or not) is dominated.

The problem of finding small dominating sets is an active topic of research in
the area of graph algorithms and combinatorics (see e.g. [8,9]). In particular,
upper bounds as a function of the minimum degree of the graph are well
studied. A classic result proved independently by Lovász [10] (see another

proof in [2]), Arnautov [3], and Payan [12] states that γ(G) ≤ n1+ln(δ+1)
δ+1

for
every n-vertex graph G with minimum degree δ. This result is asymptotically
optimal for general graphs. Alon [1] proved by probabilistic methods that
when n is large there exists a δ-regular graph with no dominating set of size
less than (1 + o(1))1+ln(δ+1)

δ+1
n. (For δ ≤ 3, exact results were obtained in

[11,13]). For connected domination, Caro, West, and Yuster [5] showed by
more complicated arguments that the bound obtained by Lovász, Payan and
Arnautov also holds in a much more restricted case, namely γ1(G) ≤ n ln δ

δ
(1 +

oδ(1)). They also supplied a sequential deterministic algorithm that produces a
connected dominating set with (at most) this size, in polynomial time. Thus, it
is interesting to determine whether the bound of Lovász, Payan, and Arnautov
also holds for r-connected dominating sets, for every fixed r. Namely:

Conjecture 1 Let r be a fixed positive integer. If G is an r-connected graph
with n vertices and minimum degree δ then γr(G) ≤ n ln δ

δ
(1 + oδ(1)).

The result of Caro, West and Yuster shows that the conjecture holds for r = 1.
In this paper we prove it for r = 2.

Theorem 2 If G is a 2-connected graph with n vertices and minimum degree
δ, then γ2(G) ≤ n ln δ

δ
(1 + oδ(1)).

Notice that both Conjecture 1 and Theorem 2 are relevant (and interesting)
only for δ sufficiently large. The proof of the 2-connected case turns out to
be more complicated than the proof for the case r = 1. This is partly due to
the fact that γ1(G)/γ(G) is bounded by the constant 3 (this is shown in [6]
and also in [5]). However, one cannot bound γ2(G)/γ(G) by any constant (see
example in Section 2). There are also other obstacles when considering the
2-connected case.

The upper bound in Theorem 2 is asymptotically sharp. This is due to the
fact that γr(G) ≥ γ(G) and that the construction of Alon mentioned above
for γ(G) yields, for every fixed r, an r-connected graph (assuming that n and
δ are large enough).

In Section 2 we introduce the required tools needed for the proof of Theorem
2. The proof itself, which uses the probabilistic method, appears in Section 3.
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2 Preliminary Lemmas

We start with three lemmas that are required for the proof of Theorem 2. In
order to present the first lemma, we need to state several definitions. A k-
dominating set of a graph G is a subset X ⊂ V (G) such that every v outside
X has at least k neighbors in X. A block of a graph H is a maximal subgraph
B of H such that B has no cut-vertex. Every edge of H belongs to precisely
one block. A block with three or more vertices is a 2-connected subgraph. It is
an elementary exercise to see that if H is not a block then at least one block
of H (in fact, at least two) has precisely one cut-vertex of H. Such a block
is called a leaf block. For a subset X of vertices of G, let G[X] denote the
subgraph of G induced by X.

We begin with a lemma that shows that any 2-dominating set (with at least
three vertices) of a 2-connected graph can be extended into a 2-connected
dominating set by an iterative process that reduces the number of blocks until
there is only one.

Lemma 3 Let G be a 2-connected graph. If X is a 2-dominating set of G (with
|X| > 2), and G[X] has s blocks, then there exists a 2-connected dominating
set of G, containing X, whose size is less than |X|+ 10(s− 1).

Proof: Let t denote the number of components of G[X]. Clearly, 1 ≤ t ≤ s.
We shall consider the weight function w defined by w(X) = 4t+s. We will show
that, as long as s > 1, we can find at most two vertices outside X such that
adding them toX decreases w. Hence, by adding at most 8t+2s−10 ≤ 10(s−1)
vertices, we get w = 5 and s = t = 1. In particular, there exists a 2-connected
dominating set of G.

Consider first the case t > 1. Thus, we have X = A ∪ B such that no edge
of G connects a vertex in A with a vertex in B. Let a ∈ A and b ∈ B be
two vertices whose distance in G is the smallest possible. This distance is at
most 3, since otherwise there is a vertex in the middle of the shortest path
between a and b that is not dominated by X. Consider first the case where
a and b have a common neighbor, c, outside X. Adding c to X decreases the
number of components by some p ≥ 1, but it may increase the number of
blocks (by adding cut-edges) by at most p + 1. Hence, w(X ∪ {c}) ≤ 4(t −
p) + (s + p + 1) ≤ 4t + s − 2. Now consider the case where the distance in
G between a and b is 3. Let (a, c, d, b) be a shortest path from a to b; note
that c, d /∈ X. Adding c and d to X decreases the number of components by
some p ≥ 1, but may increase the number of blocks by at most p+ 2. Hence,
w(X ∪ {c , d}) ≤ 4(t− p) + (s+ p+ 2) ≤ 4t+ s− 1.

Now consider the case t = 1. If s = 1 we are done. Otherwise, let U be the
vertex set of a leaf block in G[X], and let u be the unique cut-vertex of G[X]
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belonging to U . Let a ∈ U\{u} and b ∈ X\U be two vertices whose distance in
G−u is the smallest possible. This distance is finite since G−u is connected.
We claim also that this distance is at most 3. Indeed, otherwise, there is a
vertex in the middle of the shortest path between a and b in G − u having
no neighbor in X \ {u}, contradicting the fact that X is a 2-dominating set.
Adding the one or two vertices on this shortest path between a and b to X
decreases the number of blocks and therefore decreases w. 2

Remark: Note that the requirement that X is a 2-dominating set is needed.
There are examples showing that γ2(G)/γ(G) may be arbitrary large. Here is
one: Take a cycle on the vertices v1, . . . , vn, where n ≥ 7. Connect v3 to all
the other vertices except for v1 and v5. The resulting graph is 2-connected (it
is Hamiltonian). The domination number is 3, since v1, v3, v5 is a dominating
set, and two vertices cannot dominate everything. However, every 2-connected
dominating set has at least n− 4 vertices.

The second tool we need is a special case of a theorem of Kouider and Lonc
[7].

Lemma 4 (Kouider, Lonc [7]) The vertex set of an n-vertex graph with
minimum degree d can be covered with at most n/d subgraphs such that each
is a vertex, an edge, or a cycle. 2

The third lemma shows that if a graph has many vertices of (relatively) high
degree, then it also has a large subgraph whose minimum degree is relatively
high.

Lemma 5 Fix ε and d with 1/2 > ε > 0 and d ≥ 1, and let G be a graph with
n vertices. If at most εn vertices have degree less than d, then G has a set of
at least (1 − 3ε)n vertices inducing a subgraph with minimum degree greater
than d/4.

Proof: Since ε < 0.5, we have that G has more than nd/4 edges. It is well
known that every graph with n vertices and αn edges has a subgraph with
minimum degree at least α (see, e.g. [4] p. xvii). Hence, G has a subgraph
with minimum degree greater than d/4. Let Q be the largest set of vertices
of a subgraph of G with minimum degree greater than d/4. Let q = |Q| and
let X be the vertices outside Q. By the maximality of Q, every vertex of X
has at most d/4 neighbors in Q, and every subgraph of G[X] has a vertex of
degree at most d/4. Hence, G[X] has at most (n− q)d/4 edges. Furthermore,
X contains at least n− q − εn vertices whose degree in G is at least d. Thus,
the sum of the degrees (in G[X]) is at least (n− q− εn)3d/4. Hence, we must
have

(n− q)d/4 ≥ (n− q − εn)3d/8.

Thus, q ≥ (1− 3ε)n. 2
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3 Proof of the main result

The basic idea of the proof of Theorem 2 is the following. We choose a random
subset X of vertices of the graph. Given X, we (deterministically) add to it the
subset Y of all vertices that have only a “few” (or no) neighbors in X. Clearly,
X ∪ Y is a dominating set. If necessary, we add to X ∪ Y a few more vertices
in order to make it a 2-connected dominating set. The crucial argument is
that with high probability, this process results in a 2-connected dominating
set that is not too large. The detailed proof follows.

Proof of Theorem 2: Fix ε ∈ (0, .5). We shall prove that, for sufficiently
large δ, every 2-connected n-vertex graph G with minimum degree δ has a
2-connected dominating set of size at most (1 + 100ε)n ln δ

δ
.

Let p = (1 + ε) ln δ
δ

, and let X be a random set of vertices in G, where each
vertex is chosen independently with probability p. Let Y be the set of vertices
in G that have fewer than k neighbors in X, where k = b

√
ln δc. Note that

X ∪Y is a k-dominating set of G. Let H = G[X ∪Y ], and let s be the number
of blocks of H. According to Lemma 3, we can add at most 10(s− 1) vertices
to X ∪ Y and obtain a 2-connected dominating set of G. With |X| = x and
|Y | = y, it follows that

γ2(G) < x+ y + 10s. (1)

To obtain the desired upper bound on γ2(G), we first prove an upper bound
on s in terms of other parameters. In the degree sequence of G[X], listed in
nondecreasing order, let d− 1 be the term at position bεxc. Thus G[X] has at
most εx vertices with degree less than d. By Lemma 5, X has a subset Q of size
at least (1 − 3ε)x such that δ(G[Q]) > d/4. By Lemma 4, Q can be covered
using at most 4|Q|/d subgraphs of G[Q] that are cycles, edges, or vertices.
Adding the x− |Q|+ y vertices of (X −Q) ∪ Y as 1-vertex subgraphs yields
a covering of V (H) using r such subgraphs of H, where r ≤ 4x/d+ 3εx+ y.

We claim that s, the number of blocks of H, is at most 2r − 1. Enlarge the
subgraphs in the covering to become blocks of H. This may combine some
subgraphs, but in any case we obtain a covering of V (H) using at most r
blocks of H. This implies that H has at most 2r − 1 blocks, using the fact
that if the vertices of a graph G are covered by at most r blocks in G, then
G has at most 2r − 1 blocks. (Since blocks are connected, the union of the
initial covering blocks has at most r components. The vertices of an omitted
block lie in distinct components, so adding the block reduces the number of
components, and this can happen at most r − 1 times.) We have shown that

s ≤ 8
x

d
+ 6εx+ 2y.
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It now follows from (1) that

γ2(G) < (1 + 60ε)x+ 21y + 80
x

d
. (2)

We shall bound the expectations of the summands in (2). Obviously,

E [x] = pn = (1 + ε)n
ln δ

δ
. (3)

Examining any δ neighbors of a vertex v in G yields an upper bound on the
probability that v has fewer than k neighbors in X. Thus,

Pr[x ∈ Y ] ≤
k−1∑
i=0

(
δ

i

)
pi(1− p)δ−i <

k−1∑
i=0

(δp)ie−p(δ−k) = (4)

O
(
k(2 ln δ)kδ−(1+ε/2)

)
,

which is at most o(δ−1), so

E[y] = o
(
n

δ

)
. (5)

The estimation of E[x
d
] is somewhat more delicate. Using conditional expec-

tation, we split the computation into three parts. Let A be the event that
x > 3np. Let B be the event that x ≤ 3np and d < k. Let C be the event that
x ≤ 3np and d ≥ k. Hence,

E
[
x

d

]
= E

[
x

d
| A
]

Pr[A] + E
[
x

d
| B

]
Pr[B] + E

[
x

d
| C

]
Pr[C]

Thus,

E
[
x

d

]
≤ nPr[x > 3np] + 3npPr[d < k] +

3np

k
. (6)

We need to bound the two probabilities Pr[x > 3np] and Pr[d < k]. Since x
has binomial distribution B(n, p), we can use large deviation inequalities to
bound Pr[x > 3np]. We use the inequality of Chernoff (cf. [2] Appendix A)
which states that for every β ≥ 1,

Pr[x > βpn] <
(
eβ−1β−β

)pn
.

Putting β = 3 and using the inequality ln 27− 2(1 + ε) > 1 yields

Pr[x > 3np] <

(
e2

27

)pn
<

(
e2

27

)(1+ε) ln δ

<
1

δ
. (7)
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By (4) the probability that a vertex v of G has fewer than k neighbors in X is
at most o(δ−1). The event that v is chosen for X is independent of the number
of neighbors it has in X (since there are no loops in the graph). Thus, for δ
sufficiently large,

Pr[v ∈ X and dG[x](v) < k] < p
1

δ
.

Let z denote the number of vertices in G[X] with degree less than k. By the
last inequality E[z] < np/δ. By Markov’s inequality,

Pr[z > 0.5εnp] = Pr[z > 0.5δε(np/δ)] <
2

δε
.

Let q = 1 − 2/(δε) − Pr[x < 0.6np]. Hence, z ≤ 0.5εnp and x ≥ 0.6np with
probability at least q. In this situation, z ≤ bεxc − 1. Thus, with probability
at least q, the element at position bεxc in the degree sequence of G[X] has
value at least k. It follows that Pr[d ≥ k + 1] ≥ q and therefore

Pr[d ≤ k] ≤ 1− q =
2

δε
+ Pr[x < 0.6np]. (8)

As before, we can bound Pr[x < 0.6np] using large deviation inequalities. We
shall use the inequality of Chernoff (cf. [2]) appendix A) which states that for
every a > 0,

Pr[x− np < −a] < exp

(
− a2

2pn

)
.

In particular, for a = 0.4np we get

Pr[x < 0.6np] < exp(−0.08pn) < exp(−0.08 ln δ) =
1

δ0.08
.

Plugging the last inequality into (8) we get

Pr[d ≤ k] <
2

δε
+

1

δ0.08
. (9)

By (6), (7), and (9),

E
[
x

d

]
≤ n

1

δ
+ 3np

(
2

δε
+

1

δ0.08

)
+

3np

k
. (10)

Notice that (10) yields E
[
x
d

]
= o(n ln δ/δ). By (2), (3), (5), it holds for suffi-

ciently large δ that

γ2(G) = E[γ2(G)] < (1 + 60ε)E[x] + 21E[y] + 80E
[
x

d

]
≤
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(1 + 60ε) (1 + ε)n
ln δ

δ
+ 21o

(
n

δ

)
+ 80o

(
n

ln δ

δ

)
< (1 + 100ε)n

ln δ

δ
. 2

Remark: The proof of theorem 2 in fact gives a 2-connected k-dominating
set of size at most n ln δ

δ
(1 + oδ(1)) whenever k ≤ b

√
ln δc.
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