
Efficient algorithms on sets of permutations, dominance, and real-weighted
APSP

Raphael Yuster ∗

Abstract

Sets of permutations play an important role in the de-
sign of some efficient algorithms. In this paper we design
two algorithms that manipulate sets of permutations.
Both algorithms, each solving a different problem, use
fast matrix multiplication techniques to achieve a sig-
nificant improvement in the running time over the naive
solutions.

For a set of permutations P ⊂ Sn we say that i
k-dominates j if the number of permutations π ∈ P
for which π(i) < π(j) is k. The dominance matrix
of P is the n × n matrix DP where DP (i, j) = k
if and only if i k-dominates j. We give an efficient
algorithm for computing DP using fast rectangular
matrix multiplication. In particular, when |P | = n
our algorithm runs in O(n2.684) time. Computing the
dominance matrix of permutations is computationally
equivalent to the dominance problem in computational
geometry. Thus, our algorithm slightly improves upon
a well-known O(n2.688) time algorithm of Matousek for
the dominance problem. Permutation dominance is
used, together with several other ingredients, to obtain
a truly sub-cubic algorithm for the All Pairs Shortest
Paths (APSP) problem in real-weighted directed graphs,
where the number of distinct weights emanating from
each vertex is O(n0.338). A special case of this algorithm
implies an O(n2.842) time algorithm for real vertex-
weighted APSP, which slightly improves a recent result
of Chan [STOC-07].

A set of permutations P ⊂ Sn is fully expanding if
the product of any two elements of P yields a distinct
permutation. Stated otherwise, |P 2| = |P |2 where
P 2 ⊂ Sn is the set of products of two elements of P . We
present a randomized algorithm that computes |P 2| and
hence decides if P is fully expanding. The algorithm also
produces a table that, for any σ1, σ2, σ3, σ4 ∈ P , answers
the query σ1σ2 = σ3σ4 in Õ(1) time. The algorithm
uses, among other ingredients, a combination of fast
matrix multiplication and polynomial identity testing.
In particular, for |P | = n our algorithm runs in O(nω)
time where ω < 2.376 is the matrix multiplication

∗Department of Mathematics, University of Haifa, Haifa
31905, Israel. E–mail: raphy@math.haifa.ac.il

exponent. We note that the naive deterministic solution
for this problem requires Θ(n3) time.

1 Introduction

Sets of permutations play an important role in the de-
sign of some efficient algorithms and their derandomiza-
tion (see, e.g., [1, 3]). In this paper we consider several
problems involving computational aspects of permuta-
tion sets, and some applications.

In order to describe our results which use fast
matrix multiplication as an important ingredient, we
need a definition. Let M(a, b, c) be the time needed
to multiply an a × b matrix by a b × c matrix over an
arbitrary ring R. Let ω(r, s, t) be the minimal exponent
for which M(nr, ns, nt) = O(nω(r,s,t)). (by “time” we
assume that each matrix element can be represented
with O(log n) bits). A seminal result of Coppersmith
and Winograd shows that ω = ω(1, 1, 1) < 2.376 [7].

An important computational aspect of permutation
sets is that of dominance. For a set of permutations
P ⊂ Sn we say that i k-dominates j if the number
of permutations π ∈ P for which π(i) < π(j) is k.
The dominance matrix of P is the n × n matrix DP

where DP (i, j) = k if and only if i k-dominates j.
Computing dominance matrices is a key (sometimes
implicit) ingredient of several well known algorithms.
Fredman’s non-uniform strategy for computing distance
products in sub-cubic time implicitly uses permutation
dominance [8]. Even more directly, Matousek’s well-
known result on computing dominances of vector sets
in Rn [11] is computationally equivalent to permutation
dominance (see Section 2). In the vector dominance
problem we are given a set of vectors V ⊂ Rn, and
we wish to compute, for any two vectors u, v ∈ V ,
whether u dominates v, that is, whether ui ≤ vi for
all coordinates i = 1, . . . , n. More informatively, we
wish to compute D(u, v), the number of coordinates i
for which ui ≤ vi. Matousek’s algorithm solves this
problem in O(n(ω+3)/2) time, if |V | = n. Permutation
dominance is an important ingredient in more recent
results; on all-pairs shortest paths [4], on all-pairs
bottleneck paths [14], and on finding heaviest vertex-
weighted subgraphs [13]. In Section 2 we show how to

compute the dominance matrix DP slightly faster than
was previously known. In particular, when |P | = n our
algorithm runs in O(n2.684) time. This is slightly faster
than the O(n2.688) time which follows from Matousek’s
result.

Permutation dominance is used as an important in-
gredient in a new algorithm for the well-known All-Pairs
Shortest Paths (APSP) problem in real weighted di-
rected graphs, which is presented in Section 3. Given
a weighted directed graph G = (V,E,w) where w :
E → R, the distance matrix D is the V × V matrix
with D(u, v) = δ(u, v), the shortest distance from u
to v. The goal in the APSP problem is to compute
D, and to compute a concise data structure represent-
ing the shortest paths. No truly sub-cubic algorithm
for the APSP problem is known. The presently fastest
algorithm for the APSP problem, due to Chan, runs
in O(n3 log3 log n/ log2 n) time [5] (as usual, computa-
tions on real numbers assume the addition-comparison
model). Sub-cubic algorithms are known in the case
where the weights are integers that are not too large.
Zwick [16] obtained an algorithm for APSP that runs
in O(n2.575) time if the (absolute value of the) weights
are bounded integers. His algorithm is sub-cubic if the
largest absolute integer weight is o(n3−ω).

We present an APSP algorithm for the real weighted
case that is truly sub-cubic as long as the set of possible
weights emanating from each vertex is not too large,
but still much larger than a constant. More precisely,
for v ∈ V , let W (v) be the set of distinct weights of
edges emanating from v and let k(G) = maxv∈V |W (v)|.
Trivially, k(G) ≤ n − 1 for any graph. Our algorithm
shows that APSP can be solved in truly sub-cubic time
as long as k(G) ≤ n0.338. Notice that this allows the
possibility of up to Θ(n1.338) distinct weights in the
graph. This follows from the the following result, which
considers a more general setting. Let µ be the solution
to ω(1 + µ, 1, 1 + µ) = 3. It is known (see Section 3)
that µ > 0.338.

Theorem 1.1. Let G = (V,E,w) be a real weighted
directed graph with |V | = n and with k(G) = Θ(nρ),
where ρ < µ. There is an algorithm that solves the
APSP problem in Õ(n3−γ/2+ρ/2) time, where γ is the
solution to the equation ω(1 + ρ, 1, 1 + γ) = 3 + ρ− γ.

An important consequence of Theorem 1.1 occurs is the
special case ρ = 0 (the case where k(G) is bounded
by a constant). The solution to ω(1, 1, 1 + γ) = 3 − γ
satisfies γ > 0.3165 (see Lemma 2.1). Thus, in this
case the APSP problem can be solved in O(n2.842)
time. This case also applies to vertex-weighted APSP
by the following simple reduction: Given a real vertex-
weighted graph, construct edge weights by assigning

w(u, v) = w(u). Clearly, a shortest path from u to v of
weight δ(u, v) in the edge-weighted graph corresponds
to a shortest path of weight δ(u, v) + w(v) in the
vertex-weighted graph. Furthermore, k(G) = 1 in the
edge-weighted graph. The O(n2.842) running time we
obtain slightly improves upon the O(n2.844) time for
vertex-weighted APSP obtained by Chan [5]. Theorem
1.1 can be used to obtain a sub-cubic algorithm for
approximate shortest paths in a general APSP instance
(namely, when there is no restriction on the number
of distinct weights emanating from each vertex) by
scaling and rounding the weights. For example, if
the largest absolute weight in the graph is bounded,
linear scaling into O(n0.338) weights achieves an additive
approximation of O(n0.662). If the smallest absolute
weight is 1 and the largest isW , then logarithmic scaling
into O(n0.338) weights achieves a stretch (multiplicative
approximation) of ε = n−0.338 logW in sub-cubic time.
Zwick’s scaling algorithm [16] achieves a stretch of ε =
n−0.624 logW in sub-cubic time, but only for instances
that do not contain negative weights.

We now turn to our next result on permutation
sets. As a subset of an algebraic group, a carefully
selected relatively small set of permutations can be used
to generate much larger sets. This is important, for
example, if resources such as memory are limited. More
formally, if P is a subset of a group, we denote by
P k the subset of the same group that is generated by
all possible products of k elements of P . Notice that
|P k| ≤ |P |k, and if |P k| = η|P |k we say that P is
(η, k)-expanding, or just fully k-expanding if η = 1.
For example, the set P = {(4231), (3124)} ⊂ S4 is
fully 2-expanding as P 2 contains four distinct elements.
However, P = {(4231), (3124), (1243)} ⊂ S4 is not fully
2-expanding. In this case |P 2| = 7 < 9. If P is fully
k-expanding, then we can have an application store
only |P | elements (the generating elements), yet still
have reference to a much larger set of elements that are
guaranteed to be distinct, via group element product.

A set of permutations P ⊂ Sn of {1, . . . , n} is k-
free if the identity permutation cannot be obtained as a
product of k (not necessarily distinct) elements of P .
Clearly, P is 1-free if and only if id /∈ P and P is
2-free if and only if π ∈ P implies π−1 /∈ P . It is
easy to decide if P is fully k-expanding in O(pkn) time
where |P | = p, using the naive algorithm (we assume
that k is a constant). Similarly, one can decide if P
is k-free in O(pdk/2en) time, as follows. Let P−1 be
the inverse of all elements of P . Clearly, P−1 can be
constructed in O(pn) time. Since P is k-free if and only
if P dk/2e ∩P−bk/2c = ∅, the algorithm follows (to check
the intersection emptiness we can sort the elements in
both sets using radix sort).

Already for k = 2, and with, say, p = n, the
naive algorithm for checking fully 2-expansion, as well
as computing |P 2|, requires Θ(n3) time, and, similarly,
checking 3-freeness requires Θ(n3) time. Thus, an
obvious question is whether we can do better. This task
seems to be quite difficult. Any sub-cubic algorithm
for 3-freeness, or 2-expansion, must circumvent the
construction of P 2, since the size of P 2 has a worst
case (and also average case) lower bound of Θ(n3).
Furthermore, since P is an arbitrary set of, say, n
permutations, there does not seem to be any algebraic
structure that may shortcut our way to the answer.
The proof of our first result shows that, at the price of
randomization, one can impose an efficiently computable
algebraic structure and obtain a significantly faster
algorithm.

Theorem 1.2. Fix a positive integer k ≥ 3. Let
P ⊂ Sn with |P | = nβ. There is an algorithm
that decides, whp, if P is k-free. If P is not k-free,
then a sequence π1, . . . , πk so that π1π2 · · ·πk = id
is obtained. The running time is O(nα) where α =
ω(βd(k − 2)/4e , 1 , βdk/4e). In particular, if |P | = n
and k ∈ {3, 4} the algorithm runs in O(nω) time.

The same algorithm can be used to compute |P k| and, in
particular, detect fully k-expansion. The running time
in this case is O(nα) where α = ω(βdk/2e , 1 , βbk/2c).
Thus, fully 2-expansion of an n-element set can be de-
cided in O(nω) time. It should be noted that the al-
gorithm is of a Las Vegas type. It never yields an er-
roneous answer. With very small probability the algo-
rithm would report failure. Alternatively, by repeatedly
running the algorithm one obtains an algorithm that al-
ways gives the correct result in the expected stated run-
ning time. The proof of Theorem 1.2 appears in Section
4. The final section contains some concluding remarks
and open problems.

2 Dominance matrix via rectangular matrix
multiplication

In this section we show how to compute permutation
dominance using rectangular matrix multiplication. For
simplicity, we state the result for the case |P | = n. The
generalization to other sizes of P will be obvious.

Let us first show the simple computational equiv-
alence between permutation dominance and the vec-
tor dominance problem. Recall that in the vector
dominance problem we have n vectors in Rn, denoted
v1, . . . , vn, and we need to compute an n×n matrix D so
that D(i, j) = |{k | vik ≤ vjk}|. If P = {π1, . . . , πn} ⊂
Sn we define the vector vi by vij = πj(i). Clearly, a solu-
tion to the dominance problem for the vectors v1, . . . , vn
implies the permutation dominance matrix.

For the other direction, one needs to be a bit more
careful, since two vectors may be equal in certain co-
ordinates. Let D+(i, j) = |{k | vik < vjk or i <
j and vik = vjk}|. Let D−(i, j) = |{k | vik < vjk or j <
i and vik = vjk}|. Clearly, D(i, j) = D+(i, j) if i < j
and D(i, j) = D−(i, j) if i > j. Computing D+(i, j)
(and, equivalently, computing D−(i, j)) can be reduced
to computing permutation dominance. Define a permu-
tation πk so that πk(i) < πk(j) if and only if vik < vjk or
vik = vjk and i < j. Notice that πk can easily be com-
puted in O(n log n) by sorting the numbers in the k’th
coordinate of the vectors, and breaking ties lexicograph-
ically. Thus, the set of n permutations P = {π1, . . . , πn}
can be computed in O(n2 log n) time. (Notice that the
computational equivalence that we claim is up to a log-
arithmic factor if permutation dominance can be solved
in o(n2 log n) time, an unrealistic assumption. Oth-
erwise, it is exact computational equivalence). Now,
clearly, DP is precisely D+(i, j).

We require the following bound of Huang and Pan
[10] on rectangular matrix multiplication.

Lemma 2.1. Let r > 1 be fixed. For any fixed positive
integer q and real β ∈ {0.005, 0.05},

ω(1, r, 1) ≤ logZ
(1− β) log q

where Z is

ββ((1 + r)(1− β))(1+r)(1−β)(1 + rβ)1+rβ(q + 2)2+r

(2 + r)2+r
.

Huang and Pan used their result to obtain, in particular,
that ω(1, 2, 1) < 3.334 (using r = 2, q = 9, and
β = 0.016 in Lemma 2.1), which was a breakthrough,
as the previous best bound prior to their result was the
obvious ω + 1 < 3.376. We shall require a different r
when applying Lemma 2.1. For the rest of this section
we fix a parameter r = 1.3165 and let s = r−1 = 0.3165.

Proposition 2.1. Let P ⊂ Sn be a set of n permuta-
tions. Then DP can be computed in O(n2.684) time.

Proof: We describe a modified version of Matousek’s
idea [11]. In the following description we assume that
ns and n1−s are integers; this can obviously be assumed
since the result is asymptotic. The noted difference be-
tween the following description and Matousek’s original
proof is that we actually compute the sum of several
matrix products “at once” instead of computing each
matrix product separately, and then summing up the
results, as done in the original proof (we observe that
we actually do not need the intermediate resulting prod-
ucts; only their sum). This enables us to use rectangular
matrix multiplication.

Let K = {1, . . . , ns}. We define two n × nr

matrices A and B as follows. The rows of both matrices
are indexed by the index set [n] and the columns are
indexed by K × [n]. We set A(i, (k, j)) = 1 if πj(i) ∈
[(k−1)n1−s+1, . . . , kn1−s]. Otherwise, A(i, (k, j)) = 0.
We set B(i, (k, j)) = 1 if πj(i) > kn1−s. Otherwise,
B(i, (k, j)) = 0. Next, we compute C = ABT in
O(nω(1,r,1)) time. Notice that C(i, j) is precisely the
number of t so that dπt(i)/n1−se < dπt(j)/n1−se.

Next, we compute an n×n matrix E so that E(i, j)
is precisely the number t so that πt(i) < πt(j) and
dπt(i)/n1−se = dπt(j)/n1−se. Obviously, E + C = DP .
Computing E is done precisely as in Matousek’s proof.
We first initialize all n2 entries of E to zero. For each
pair (i, t), suppose πt(i) = `. Set b = d`/n1−se. For each
j so that dπt(j)/n1−se = b and πt(j) > ` we add 1 to
E[i, j]. Notice that for each pair (i, t) this takes at most
n1−s time. Thus, E is created in O(n3−s) = O(n4−r)
time.

The total running time of our algorithm is O(n4−r+
nω(1,r,1)). Our choice of r = 1.3165 gives that n4−r =
n2.6835. By Using q = 7 and β = 0.033 in Lemma 2.1
we get that ω(1, 1.3165, 1) < 2.6834. Consequently, the
overall running time is O(n2.6835), as required.

3 All Pairs Shortest Paths

Before proving Theorem 1.1, we need, once again,
results concerning rectangular matrix multiplication.
Before stating them we need to define two constants.

Definition 3.1.

α = sup { 0 ≤ r ≤ 1 | ω(1, r, 1) = 2 + o(1) } ,

β =
ω − 2
1− α

.

Lemma 3.1. (Coppersmith [6]) α > 0.294 .

It is not difficult to see that Lemma 3.1 implies the
following lemma. A proof can be found, for example, in
[10].

Lemma 3.2.

ω(1, r, 1) ≤
{

2 + o(1) if 0 ≤ r ≤ α,
2 + β(r − α) + o(1) otherwise.

A major part of the algorithm is based upon the
following lemma. We first need a definition.

Definition 3.2. Define µ to be the solution to ω(1 +
µ, 1, 1 + µ) = 3. By Lemma 3.2, µ > 0.338.

One applies Lemma 3.2 by using the fact that ω(1 +
µ, 1, 1 + µ) = ω(1, r, 1)/r where r = 1/(1 + µ) and

solving 2 + β(r − α) = 3r, which yields r = 0.747.
Notice that without Lemma 3.2 one can only trivially
get µ ≥ (3 − ω)/2 ≥ 0.312, so, indeed, rectangular
matrix multiplication turns out to be quite beneficial
in this case.

Matrices over R∪{∞} are called distance matrices.
Recall that the distance product C = A ? B of two
n×n distance matrices A and B is defined by C(i, j) =
minnk=1A(i, k) +B(k, j).

Lemma 3.3. Let A and B be two distance matrices,
where each row of A contains at most nρ distinct
values, and ρ < µ. Then A ? B can be computed in
O(nω(1+ρ,1,1+γ)) time where γ is the solution to the
equation ω(1 + ρ, 1, 1 + γ) = 3 + ρ− γ.

Proof: We reduce the problem of computing A ? B
to the problem of computing a Boolean product of two
large rectangular matrices. Set k = nρ and s = nγ .

For each row u of A, let W (u) = {wu1, . . . , wuku}
be the set of distinct values appearing in row u. Let
A′ be the Boolean matrix of order nk × n indexed
by the row set [k] × [n] and the column set [n]. We
set A′((j, u), v) = 1 if A(u, v) = wuj . Otherwise,
A′((j, u), v) = 0. Notice that A′ is constructed from
A in Θ(n2k) time.

Let πu be a permutation so that πu(i) < πu(j)
implies B(i, u) ≤ B(j, u). We can construct π1, . . . , πn
in O(n2 log n) time by sorting each column of B. Let B′

be the Boolean matrix of order n×ns indexed by the row
set [n] and the column set [s]×[n]. We set B′(u, (j, v)) =
1 if πv(u) ∈ [1 + (j − 1)(n/s), . . . , jn/s]. Otherwise,
B′(u, (j, v)) = 0. Notice that B′ is constructed from
the permutations in Θ(n2s) time.

Next, we compute C ′ = A′B′ in O(nω(1+ρ,1,1+γ))
time. Let us now see how to deduce D = A ? B
from C ′. Fixing u and v, we show how to compute
D(u, v) in O(k(s + n/s)) time. For each i = 1, . . . , k,
let ji be the smallest index so that C((i, u), (ji, v)) = 1.
It takes O(s) time to locate ji, and if no such index
exists, we set ji = 0. If ji 6= 0, we know that we
have at least one index z so that A′((i, u), z) = 1
and B′(z, (ji, v)) = 1. In particular, this means that
πv(z) ∈ [1 + (ji − 1)(n/s), . . . , jin/s]. We wish to
locate that z for which πv(z) is minimal. Since we only
have to look at an interval of size n/s, we use πv to
locate z in O(n/s) time. Denote the located z by zi.
In particular, we know that A(u, zi) + B(zi, v) is the
minimum sum whenever the first term has weight wui.
Doing this for each i = 1, . . . , k and taking the minimum
of A(u, zi) + B(zi, v) ranging over all plausible i (for
which ji 6= 0), we obtain D(u, v).

The total running time required to compute D(u, v)
is O(k(s + n/s)). Hence, D can be computed in

O(n2k(s+ n/s)) time. Recall that

O(n2k(s+ n/s)) = O(n2+ρ+γ + n3+ρ−γ) = O(n3+ρ−γ)

where the last equality follows from the fact that γ ≤
0.5. By our assumption on γ, we also have O(n3+ρ−γ) =
O(nω(1+ρ,1,1+γ)) and hence the total running time of the
algorithm is as claimed.

Proof of Theorem 1.1: For the rest of this section
we assume that G = (V,E,w) is a weighted directed
graph with n vertices, and for each v ∈ V , W (v) is the
set of distinct weights of edges emanating from v. We
assume that |W (v)| ≤ k for each v ∈ V . We construct
an algorithm that computes the APSP distance matrix
D = D(G).

Let t be a positive integer parameter to be chosen
later. For two vertices u, v ∈ V let c(u, v) denote the
smallest possible number of edges on a shortest path
from u to v. We define c(u, u) = 0 (we assume there are
no negative weight cycles as these can easily be detected
by the algorithm). Let di(u, v) be the shortest distance
from u to v that is obtained by paths consisting of at
most i edges. Clearly, d(u, v) = dn−1(u, v). Also, for
u 6= v, d1(u, v) = w(u, v) if (u, v) ∈ E and otherwise
d1(u, v) = ∞. Finally, let Di be the n × n matrix
that records all the values di(u, v). Thus, D1 is easily
constructed in O(n2) time. The diagonal of D1, as well
as all other Di, contains only zeros.

Notice that Di is obtained as the distance product
D1 ? Di−1. This is obvious, as each shortest path from
u to v consisting of at most i edges, is a combination of
its first edge (u, x), and its remaining path which is a
shortest path from x to v containing at most i−1 edges.
It is also important to note that each row of D1 contains
at most k distinct values. Thus, putting k = nρ, we
obtain from Lemma 3.3 that Di can be constructed
in O(nω(1+ρ,1,1+γ)) time where γ is the solution to the
equation ω(1 + ρ, 1, 1 + γ) = 3 + ρ− γ.

We sequentially compute Di for all i = 1, . . . , t in
O(tnω(1+ρ,1,1+γ)) = O(tn3+ρ−γ) time. After obtaining
Dt, we switch to the second part of the algorithm, which
no longer involves fast matrix multiplication.

We already know that Dt(u, v) = D(u, v) for all
pairs with c(u, v) ≤ t. We thus need to worry about
those pairs for which c(u, v) > t. For this, we shall use
the bridging sets techniques of Zwick [16].

Definition 3.3. A set B ⊂ V is a t-bridging set if
for each u, v ∈ V with ∞ > c(u, v) > t, there exists
a shortest path p = {u = u0, u1, . . . , us = v} realizing
db3t/2c(u, v) where some vertex ui on p is from B and
i ≤ t and s− i ≤ t.

It is quite easy to show (see [16]) that a random
set B of vertices of size Θ(n log n/t) is a t-bridging

set. In fact, Zwick has shown how to find such a
B deterministically using Dt, in O(n2.5) time (more
precisely, a t-bridging set of size max{

√
n, n log n/t} can

be found deterministically in O(n2.5) time).
Having found a t-bridging set B, we compute a

matrix which, in a sense, is better than D(3/2)t, as
follows (although we should write b3t/2c we ignore
floors an ceilings for clarity). Take the sub-matrix of
D(B)t of Dt consisting of all the rows but only the
columns belonging to B. Now compute C = D(B)t ?
D(B)Tt in the straightforward way in Õ(n3/t) time. By
the definition of B, in the resulting distance product
C(u, v) ≤ D(3/2)t. In particular, we have C(u, v) =
D(u, v) for all pairs with c(u, v) ≤ 3t/2. Repeating the
same squaring process a logarithmic number of times,
we eventually obtain D. Notice that in iteration i we
obtain a distance matrix which is better than D(3/2)it.
In fact, notice that we do not need to take smaller and
smaller bridging sets as the process continues; we can
do with bridging sets of size Θ(n log n/t) throughout all
the iterations. The overall running time would still be
Õ(n3/t).

Summing up the running times of the two parts of
the algorithm, the overall running time is Õ(tn3+ρ−γ +
n3/t). Choosing t = n(γ−ρ)/2 we obtain that the overall
running time of the algorithm is Õ(n3−γ/2+ρ/2), as
required.

We have not shown how to compute the actual
shortest paths yielding the shortest distances. However,
this is a standard procedure which is based upon
witnesses for Boolean matrix multiplication [2, 9] and
that has been used in all shortest paths algorithms that
involve fast matrix multiplication (see, e.g., [16]). Full
details will appear in the full version.

4 Expanding sets of permutations

In this section we prove Theorem 1.2. For the rest of
this section we assume P ⊂ Sn has size |P | = p and is
given in a p× n array.

With each π ∈ Sn we associate a signature s(π)
which is the bilinear expression defined by

s(π) =
n∑
i=1

xiyπ(i).

Hence, for example, for (2341) ∈ S4 we have s(2341) =
x1y2+x2y3+x3y4+x4y1. It is obvious, but important, to
note that indeed s(π) is a signature. Namely, if π 6= π′,
then s(π) 6= s(π′).

For a permutation π the characteristic x-vector of
π is the vector x(π) = (xπ(1), . . . , xπ(n)). Similarly, the
characteristic y-vector is y(π) = (yπ(1), . . . , yπ(n)).

The following identity, whose proof is straightfor-
ward, shows how to compute the signature of a prod-
uct of two permutations using the inner product of two
characteristic vectors.

s(π1π2) = x(π−1
1)y(π2)T .(4.1)

Indeed, consider a term xiyj in s(π1π2). This term
appears since π2(π1(i)) = j. Let π1(i) = k. Then
π−1

1 (k) = i. Thus, the k’th coordinate of x(π−1
1) is

xi. Similarly, the k’th coordinate of y(π2) is yj . Thus,
xiyj is also a term in the inner product x(π−1

1)y(π2)T .
The converse is equally true as well.

As a concrete example, consider two permutations
of S6, π1 = (641352) and π2 = (425631). Then,
π1π2 = (164532), π−1

1 = (364251),

x(π−1
1) = (x3, x6, x4, x2, x5, x1)

y(π2) = (y4, y2, y5, y6, y3, y1)

and indeed,

x(π−1
1)y(π2)T

= x3y4 + x6y2 + x4y5 + x2y6 + x5y3 + x1y1

= s(π1π2).

As defined in the introduction, for a positive integer
j, let P j be the set of all permutations obtained as
a product of a sequence of j elements of P . We also
define P−1 = {π−1 : π ∈ P} and P−j = (P−1)j .
Notice that (P j)−1 = (P−1)j , |P | = |P−1| = p, and
|P j | = |P−j | ≤ pj . Finally, for Q ⊂ Sn we define
S(Q) = {s(π) : π ∈ Q}.

Lemma 4.1. For any 1 ≤ j ≤ k − 1, P is k-free if and
only if S(P j) ∩ S(P j−k) = ∅.

Proof: As signatures identify permutations uniquely,
it suffices to prove that P is k-free if and only if
P j ∩ (P k−j)−1 = ∅. Indeed, if P is not k-free, then
π1 · · ·πk = id for some sequence of k permutations.
Hence, π1 · · ·πj = π−1

k · · ·π
−1
j+1. But π1 · · ·πj ∈ P j and

π−1
k · · ·π

−1
j+1 ∈ (P k−j)−1. The converse is equally true

as well.

Corollary 4.1. P is k-free if and only if S(P dk/2e)∩
S(P−bk/2c) = ∅.

The correctness of our algorithm is based upon
Corollary 4.1. We will efficiently hash all the element in
S(P dk/2e) in a set A and efficiently hash all the elements
in S(P−bk/2c) in a set B. We will then quickly check
if A ∩ B = ∅. If so, we conclude that P is k-free.
Otherwise, using the properties of our hashing, this will

imply that P is not k-free whp, and we will be able to
produce a witness to this fact.

The algorithm: We set t1 = d(k − 2)/4e, t2 = dk/4e,
and notice that t1 + t2 = dk/2e. We compute P t1

in O(pt1n) time in the obvious way; for each possible
sequence of t1 elements of P , their product is computed
in O(t1n) = O(n) time. Notice that we can avoid
multiplicities in P t1 using radix sort (this is not crucial,
however). We compute P−1 in O(pn) time and using
P−1 we compute P−t2 in O(pt2n) time. We note that
for k ∈ {3, 4} we actually have t1 = t2 = 1 so in these
cases there is nothing to compute but P−1, as P t1 = P
and P−t2 = P−1 in these cases.

For Q ⊂ Sn, let X(Q) be the |Q| × n matrix where
X(π, i) = xπ(i). Namely, the row corresponding to
π is x(π), the characteristic x-vector of π. Similarly,
let Y (Q) be the |Q| × n matrix where Y (π, i) = yπ(i).
Namely, the row corresponding to π is y(π). Using the
previously computed P t1 and P−t2 we can now show
the following.

Lemma 4.2. The set of entries of the matrix product
X(P−t2)Y (P t1)T is precisely S(P dk/2e).

Proof: Consider an element π ∈ P dk/2e and its
signature s(π) ∈ S(P dk/2e). Since t1 + t2 = dk/2e we
can write π as π = π2π1 where π2 ∈ P t2 and π1 ∈ P t1 .
As π−1

2 ∈ P−t2 there is a row of X(P−t2) corresponding
to x(π−1

2). Similarly, there is a row of Y (P t1) (which is
a column of Y (P t1)T) corresponding to y(π1). Thus, in
the matrix product, there is an element corresponding
to the inner product x(π−1

2)y(π1)T . By (4.1), this inner
product is just s(π2π1) = s(π). The converse is equally
true as well.

We set t3 = bk/4c, t4 = b(k + 2)/4c, and notice
that t3 + t4 = bk/2c. We compute P t4 in O(pt4n) time
and P−t3 in O(pt3n) time as in the case of t1 and t2
shown earlier. Notice that if k = 3, then t3 = 0, so
P−t3 = P 0 = {id} in this case. As in Lemma 4.2 we
analogously have that:

Lemma 4.3. The set of entries of the matrix product
X(P t4)Y (P−t3)T is precisely S(P−bk/2c).

Using Corollary 4.1 we have that by comput-
ing both products Z = X(P−t2)Y (P t1)T and W =
X(P t4)Y (P−t3)T we can determine, by examining the
entries of Z and W , whether P is k-free. Clearly, if we
find two equal entries in Z and W we can immediately
obtain a witness to the non k-freeness of P . Unfortu-
nately, computing Z and W is time consuming as these
are matrices over the ring of polynomials (each is a bi-
linear term) with 2n indeterminates. Fortunately, how-
ever, by paying with randomization, we can reduce the

computation time considerably. To show this, we need
the following result of Zippel [15] and Schwartz [12].

Lemma 4.4. If f(x1, . . . , xn, y1, . . . , yn) is a non-zero
polynomial of degree d with integer coefficients and R =
{1, . . . , r}, then the probability that f equals zero on a
random element (c1, . . . , c2n) ∈ R2n is at most d/r.

We choose r = Θ(pk+1) and assign to each variable
xi and each variable yj an integer from {1, . . . , r} se-
lected uniformly and independently at random. We re-
place each occurrence of each indeterminate in X(P t4),
Y (P−t3)T , X(P−t2), and Y (P t1)T with its correspond-
ing assigned random value. Denote the resulting ran-
dom matrices by XR(P t4), YR(P−t3)T , XR(P−t2), and
YR(P t1)T , respectively. We can now show:

Lemma 4.5. With high probability, there is a common
entry in ZR = XR(P−t2)YR(P t1)T and in WR =
XR(P t4)YR(P−t3)T if and only if there is a com-
mon entry in Z = X(P−t2)Y (P t1)T and in W =
X(P t4)Y (P−t3)T .

Proof: One direction is trivial. If there is an entry
common to Z and W , then there is also a common
entry in ZR and WR since the latter are obtained by
consistently replacing each indeterminate with specific
values. Let T be the set of all distinct entries in Z and
in W . Notice that T consists of at most 2pdk/2e nonzero
polynomials (each is a signature of some permutation).
The probability that a pair of elements of T are equal
after replacing the x’s and the y’s with the random
integers is at most 2/r, by Lemma 4.4 (for each distinct
pair f1, f2 of elements of T we have that the polynomial
f1 − f2 is non-zero and has degree 2). As there are less
than |T |2 ≤ 4pk+1 possible pairs, and as r = Θ(pk+1),
the probability that the elements of T are replaced with
distinct integers is very high (say, higher than 0.99).
The result follows.

By Lemma 4.5 our algorithm is completed by check-
ing for common entries in ZR and WR. The most time
consuming part of the algorithm is the computation of
the matrix products yielding ZR and WR. Using fast
matrix multiplication, and setting p = nβ we have that
ZR can be computed using O(nα) arithmetic operations
where α = ω(βd(k − 2)/4e , 1 , βdk/4e). Each element
in XR(P−t2) and in YR(P t1)T is an integer not exceed-
ing nr2 = Θ(n2kβ+1) and hence has only Θ(log n) bits.
Thus the actual running time required to compute ZR
is also O(nα). The same holds for the time required to
compute WR (notice that t3 ≤ t1 and t4 ≤ t2). Con-
sequently, the overall running time of the algorithm is
O(nα), completing the proof of Theorem 1.2.

5 Concluding remarks and open problems

An interesting open problem is whether our bound of
n0.338 possible distinct weights emanating from each
vertex, which suffices for a truly sub-cubic APSP algo-
rithm, can be improved upon (without improving ma-
trix multiplication exponents). Clearly, if one can show
that Θ(n) distinct weight are allowed this would solve
the longstanding open problem of computing a distance
product in truly sub-cubic time. Still, any improvement
over the Θ(n0.338) bound would be of interest, and im-
portance.

We have also shown an efficient algorithm for de-
tecting fully k-expansion or k-freeness of a set of per-
mutations. However, our algorithm is randomized. Per-
haps the first interesting open problem is to find a sub-
cubic deterministic algorithm for deciding, say, if a set
of n permutations of Sn is fully 2-expanding.

References

[1] N. Alon, Generating pseudo-random permutations and
maximum-flow algorithms, Information Processing Let-
ters, 35 (1990), pp. 201–204.

[2] N. Alon and M. Naor, Derandomization, witnesses for
Boolean matrix multiplication and construction of per-
fect hash functions, Algorithmica, 16 (1996), pp. 434–
449.

[3] A. Z. Broder, M. Charikar, and M. Mitzenmacher, A
derandomization using min-wise independent permuta-
tions, Journal of Discrete Algorithms, 1 (2003), pp. 11–
20.

[4] T. M. Chan, All Pairs Shortest Paths with Real
Weights in O(n3/ log n) Time, Proceedings of the
9th Workshop on Algorithms and Data Structures
(WADS), Lecture Notes in Computer Science, 3608
(2005), pp. 318–324.

[5] T. M. Chan, More Algorithms for All-Pairs Shortest
Paths in Weighted Graphs, Proceedings of the 39th

ACM Symposium on Theory of Computing (STOC),
ACM Press (2007), pp. 590–598.

[6] D. Coppersmith, Rectangular matrix multiplication re-
visited, Journal of Complexity, 13 (1997), pp. 42–49.

[7] D. Coppersmith and S. Winograd, Matrix multiplica-
tion via arithmetic progressions, Journal of Symbolic
Computation, 9 (1990), pp. 251–280.

[8] M. L. Fredman, New bounds on the complexity of the
shortest path problem, SIAM Journal on Computing, 5
(1976), pp. 49–60.

[9] Z. Galil and O. Margalit, Witnesses for Boolean matrix
multiplication and for transitive closure, Journal of
Complexity, 9 (1993), pp. 201–221.

[10] X. Huang and V. Y. Pan, Fast rectangular matrix mul-
tiplications and applications, Journal of Complexity, 14
(1998), pp. 257–299.

[11] J. Matousek, Computing dominances in En, Informa-
tion Processing Letters, 38 (1991), pp. 277–278.

[12] J. T. Schwartz, Fast Probabilistic Algorithms for Veri-
fication of Polynomial Identities, Journal of the ACM,
27 (1980), pp. 701–717.

[13] V. Vassilevska and R. Williams, Finding a maximum
weight triangle in n3−δ time, with applications, Pro-
ceedings of the 38th ACM Symposium on Theory of
Computing (STOC), ACM Press (2006), pp. 225–231.

[14] V. Vassilevska, R. Williams, and R. Yuster, All pairs
bottleneck paths for general graphs in truly sub-cubic
time, Proceedings of the 39th ACM Symposium on
Theory of Computing (STOC), ACM Press (2007),
pp. 585–589.

[15] R. Zippel, Probabilistic algorithms for sparse polynomi-
als, Proceedings of Symbolic and Algebraic Computa-
tion (EUROSAM), Lecture Notes in Computer Science
72 (1979), pp. 216–226.

[16] U. Zwick, All-pairs shortest paths using bridging sets
and rectangular matrix multiplication, Journal of the
ACM, 49 (2002), pp. 289–317.

