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Abstract

We present an algorithm that finds, for each vertex of an undirected graph, a shortest cycle

containing it. While for directed graphs this problem reduces to the All-Pairs Shortest Paths

problem, this is not known to be the case for undirected graphs.

We present a truly sub-cubic randomized algorithm for the undirected case. Given an undi-

rected graph with n vertices and integer weights in 1, . . . ,M , it runs in Õ(
√
Mn(ω+3)/2) time

where ω < 2.376 is the exponent of matrix multiplication. As a by-product, our algorithm can be

used to determine which vertices lie on cycles of length at most t in Õ(Mnωt) time. For the case

of bounded real edge weights, a variant of our algorithm solves the problem up to an additive

error of ε in Õ(n(ω+6)/3) time.

1 Introduction

Finding shortest cycles in a graph is among the most fundamental algorithmic graph problems. The

problem has numerous applications and has been extensively studied.

Itai and Rodeh [6] presented an O(nm)-time algorithm that finds a shortest cycle (and hence,

computes the girth) of a directed graph with n vertices and m edges. They also obtain an O(nω)

time algorithm for computing a shortest cycle of an unweighted undirected graph, where ω < 2.376

is the matrix multiplication exponent [3]. For directed graphs their algorithm runs in O(nω log n)

time. The matrix multiplication based algorithms are faster than the O(mn) algorithm when the

graph is dense. Recently, Roditty and Vassilevska Williams [8] extended the result of Itai and Rodeh

to the integer weighted setting. They design an Õ(Mnω)-time algorithm that finds a shortest cycle

in a directed or undirected graph with integer edge weights in {1, . . . ,M}. Their algorithm can

also handle weights in {−M, . . . ,M} in the directed setting. If one settles for an approximation

algorithm, then faster algorithms exist. For undirected graphs, Itai and Rodeh’s algorithm can be

made to run in O(n2)-time, if one settles for a cycle whose length is at most one larger than the
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girth. Alternatively, a shortest even length cycle can be found in O(n2)-time using an algorithm

of Yuster and Zwick [12]. Finally, Roditty and Tov [7] extended Itai and Rodeh’s algorithm to

undirected graphs with weights in {1, ...,M} by showing that a cycle of length g +W can be found

in Õ(n2 logM) time, where W is the maximum edge weight on a shortest cycle and g is the girth.

Using this, they obtained an almost quadratic time 4/3-approximation for the girth. For fixed k,

finding a cycle of length at most k (or, precisely k) if such a cycle exists, can be done in Õ(nω) time

using the color-coding method of Alon et al. [1]. In fact, the color-coding method also finds in the

same time, for each vertex, a cycle of length k containing it, if one exists. Their algorithm remains

polynomial as long as k = O(log n). Unfortunately, the shortest cycle through a vertex may have

larger length and hence, the color-coding method cannot solve the problem efficiently.

In this paper we present a new algorithm that finds, for each vertex in a graph, a shortest cycle

containing it. Formally, given a graph G = (V,E), the all-nodes shortest cycle (ANSC) problem seeks

to find, for each v ∈ V , a cycle Cv containing v, with minimum weight among all cycles containing

v. If v is not on any cycle, then Cv = ∅.
An Õ(mn) time algorithm for ANSC is obtained as a by-product of the algorithm of Suurballe

and Tarjan [11], as their algorithm can be used to find the shortest cycle through a given vertex

in O(m log1+m/n n) time. Observe that this algorithm runs in cubic time for dense graphs with

m = Θ(n2) edges, even if the graph is unweighted. ANSC can be easily solved for simple digraphs

(directed graphs with no anti-parallel edges) by reducing it to the all-pairs shortest paths (APSP)

problem. After running APSP, we can obtain the length of a shortest cycle through vertex v by just

taking the minimum of δ(v, u) + w(u, v) where the minimum is taken over all incoming neighbors

u of v. (Here δ(u, v) denotes the distance from u to v and w(u, v) denotes the weight of the edge

(u, v); for unweighted graphs we have w(u, v) = 1.) The presently fastest APSP algorithm for general

weighted graphs is by Chan [2]. It runs in O(n3 log3 log n/ log2 n), and hence is only sub-cubic up to

logarithmic factors. There are truly subcubic algorithms for APSP in unweighted directed graphs,

and directed graphs with relatively small integer weights. The presently fastest such algorithm is

by Zwick [13]. In the unweighted case, it runs in O(n2.575) time, where the exponent is a function

of rectangular matrix multiplication exponents. If ω = 2 + o(1), as may turn out to be the case,

Zwick’s algorithm runs in Õ(n2.5) time. For graphs with integer edge weights of absolute value at

most M , Zwick’s algorithm runs in Õ(M1/(4−ω)n2+1/(4−ω)) (and slightly faster if rectangular matrix

multiplication is used).

Unfortunately, the method of reducing ANSC to APSP fails when the digraph is not simple since

a cycle may not use two anti-parallel edges. In particular, the method fails for undirected graphs.

Our main result presents an algorithm that solves the ANSC problem for unweighted undirected

graphs in truly sub-cubic time. It also applies to graphs with integer weights of value at most M .

Theorem 1.1 There is a randomized algorithm that solves the ANSC problem in undirected graphs

with weights in {1, . . . ,M}. The algorithm runs in Õ(
√
Mn(ω+3)/2) time.
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With very high probability, the algorithm produces, for each v ∈ V , a shortest cycle through v of

minimum weight.

As a by-product, our algorithm can be used to determine which vertices lie on cycles of length

at most t in Õ(Mnωt) time. For the case of bounded real edge weights (or, more liberally, weights

bounded by no(1)), a variant of our algorithm solves the ANSC problem up to an additive error of ε

in Õ(n(ω+6)/3) time.

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1 and its

aforementioned variants. The final section contains some concluding remarks.

2 A shortest cycle for each vertex

Let G = (V,E) be an undirected graph with n vertices and with integer edge weights in {1, . . . ,M}.
It will be convenient to assume that G is 2-connected, as otherwise we can solve the problem in each

2-connected component separately. In particular, we may assume that each vertex is on some cycle,

and that the length of the shortest cycle passing through v, denoted by sc(v), is well-defined.

2.1 A shortest cycle through a given vertex

Let us first consider the much simpler task of finding a shortest cycle through a given vertex s ∈ V .

We describe a simple randomized procedure that solves this problem.

A shortest cycle through s is composed of an edge (s, v), and a shortest path from s to v that

avoids (s, v). To find the length of this s-to-v path we can run a single-source shortest path algorithm

from s on the graph G without the edge (s, v). Therefore, if we knew which edge incident to s to

remove, we could find the shortest cycle through s in O(m+n log n) time, using Dijkstra’s algorithm

[4, 5]. However, clearly we don’t know which edge this is. Instead, we guess which edge incident to s

we need to remove. Let v1, v2, . . . , vdeg(s) denote the neighbors of s. We start by removing each edge

(s, vj) independently with probability 1
2 for every j = 1, . . . , deg(s). Then, we run the single-source

shortest path algorithm from s on the resulting graph.

For each edge (s, vj) that was previously removed, we estimate the length of the shortest cycle

through (s, vj) to be the weight of (s, vj) plus the length of the shortest s-to-vj path that we just

computed. We pick the shortest cycle among all these as the shortest cycle through s. We now prove

that with probability 1
2 we found the actual shortest cycle through s.

Consider the actual shortest cycle through s; it includes s and exactly two of its neighbors, say

va and vb. With probability 1
2 we have deleted (s, va) or (s, vb) but not both. Therefore, with

probability 1
2 we found the actual shortest cycle through s in O(m + n log n) time. To amplify the

probability to larger than 1
2 we apply the same procedure constantly many times. So, with very

high probability we can find the shortest cycle through s in O(m+ n log n) time. We note that it is

possible to derandomize the above procedure, resulting in an O(log n)-factor increase in the runtime.
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However, as some other ingredients of our algorithm are also randomized, we do not bother with

derandomization.

Now, if we wish to compute a shortest cycle through a given vertex for each vertex in a set S,

then, naively, the above algorithm can be applied to each vertex of S separately. The main idea

in the proof of Theorem 1.1 is to somehow implement the above algorithm “all at once” thereby

obtaining a significantly faster runtime.

2.2 Proof of the main result

For a vertex v ∈ V , let c(v) denote the smallest number of edges in a shortest cycle realizing sc(v).

Let C(v) be a set of c(v) vertices on a shortest cycle through v. Although we will never explicitly

compute c(v) nor C(v), it will be important for the analysis of our algorithm to fix one such C(v) for

each v ∈ V . For an integer t ≥ 3 to be chosen later, let Vt ⊂ V be those vertices for which c(v) ≤ t.
Let Pt be the set of partitions of V into t parts, each consisting of n/t vertices (we ignore rounding

issues as these have no effect on the asymptotic running times). Clearly, we can uniformly generate

a random element of Pt in O(n) time. Let R be a subset of 3 log n elements of Pt, each generated

uniformly and independently (we do not care if partitions in R are repeating, although this happens

with negligible probability).

Lemma 2.1 With probability at least 1 − 1/n, for each v ∈ Vt there exists an element P ∈ R such

that the part of P containing v does not contain any other element of C(v).

Proof: Consider an element P of R. Recall that P = P1 ∪ · · · ∪ Pt is a random partition of

V into t parts of size n/t each. Let v ∈ Vt and assume, without loss of generality, that v ∈ P1.

Suppose C(v) = {v, u1, . . . , ur} and note that r < t. The probability that u1 /∈ P1 is precisely

1−(n/t−1)/(n−1) ≥ 1−1/t. Similarly, the probability that uj /∈ P1 given that {u1, . . . , uj−1}∩P1 = ∅
is 1− (n/t− 1)/(n− j) ≥ 1− 1/t. Hence,

Pr[P1 ∩ C(v) = {v}] ≥
(

1− 1

t

)r

> e−1 .

It follows that for a given v ∈ Vt, the probability that there exists an element P ∈ R such that the

part of P containing v does not contain any other element of C(v) is at least

1− (1− e−1)|R| = 1− (1− e−1)3 logn > 1− 1

n2
.

It follows from the union bound that with probability 1− 1/n, this holds for all v ∈ Vt.
The next lemma proves that a shortest cycle through each vertex of Vt can be computed, with

very high probability, in Õ(Mnωt) time.

Lemma 2.2 For t ≥ 3, there is an algorithm that, with probability 1−O(1/n), computes sc(v) and

a shortest cycle realizing sc(v) for each vertex v ∈ Vt. For vertices in V \ Vt the algorithm is not

guaranteed to compute sc(v). The runtime of the algorithm is Õ(Mnωt).
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Proof: We construct a random subset R of 3 log n elements of Pt. Hence, R = {P (1), . . . , P (3 logn)},
and P (i) = {P (i)

1 , . . . , P
(i)
t } is a partition of V .

We do the following for each P
(i)
j for i = 1, . . . 3 log n and j = 1, . . . , t. For k = 1, . . . , 2 log n,

let Gi,j,k be a spanning graph of G obtained by the following method. Each edge of G not incident

with a vertex of P
(i)
j also appears in Gi,j,k. Each edge of G incident with a vertex of P

(i)
j is chosen

to remain in Gi,j,k with probability 1/2. For a given i, j, all 2 log n graphs Gi,j,1, . . . , Gi,j,2 logn are

generated independently.

We solve the APSP problem for each Gi,j,k separately, and let fi,j,k(x, y) denote the computed

distance between x and y in Gi,j,k. Since Gi,j,k has n vertices, and each edge weight is in {1, . . . ,M},
the time to compute an APSP solution for Gi,j,k is Õ(Mnω) using the algorithm of Shoshan and

Zwick [9]. Hence, the overall runtime required for computing APSP solutions for all Gi,j,k is

Õ(t|R|2 log nMnω) = Õ(Mnωt) .

By lemma 2.1, with probability at least 1− 1/n, R is good in the sense that it has the property that

for each v ∈ Vt there exists P
(i)
j such that v ∈ P (i)

j , but no other vertex of C(v) belongs to P
(i)
j . Let

us assume, therefore, that R is good. Let v ∈ Vt and let P
(i)
j be such that v ∈ P (i)

j but no other

vertex of C(v) belongs to P
(i)
j . Let x, y be the two neighbors of v on the cycle C(v). Notice that

for each k = 1, . . . , 2 log n we have that with probability 1/2, Gi,j,k contains precisely one of the two

edges (v, x) or (v, y). Suppose, without loss of generality, that Gi,j,k contains (v, x) but does not

contain (v, y). Then we must have sc(v) = fi,j,k(v, y) + w(v, y). Indeed, each edge on C(v) other

than (v, y) appears in Gi,j,k because (v, x) appears, and all other edges of this cycle connect vertices

not in P
(i)
j . Thus, fi,j,k(v, y) ≤ sc(v)− w(v, y). It cannot be smaller, though, because otherwise the

shortest cycle through v would have had weight smaller than sc(v).

Our algorithm therefore proceeds as follows. For each v ∈ V we do the following. For each

i = 1, . . . , 3 log n let j be the unique part P
(i)
j containing v. For each k = 1, . . . , 2 log n we consider

all the values of the form fi,j,k(v, y) +w(v, y) taken over all neighbors y of v for which (v, y) /∈ Gi,j,k.

We take the minimum over all such values, and denote it by f(v). Notice that f(v), if finite, is indeed

a length of a cycle containing v, since in the graph Gi,j,k for which fi,j,k(v, y) + w(v, y) = f(v), the

shortest path from v to y, together with the edge (v, y), form a cycle in G of weight f(v). By

the argument in the previous paragraph, if R is good then the probability that f(v) is not the

length of a shortest cycle through v is at most (1/2)2 logn = 1/n2. Thus, with probability at least

1− 1/n− n/n2 = 1− 2/n, we have that for each v ∈ Vt, the value f(v) computed by the algorithm

(and the cycle associated with it) is the length of a shortest cycle realizing sc(v). For vertices not in

Vt, the value f(v) is either infinite, or is the length of a cycle containing v which is not necessarily a

shortest cycle.

We are still left with the problem of correctly computing sc(v) and a shortest path realizing it,

for those vertices in V \ Vt. Moreover, we actually do not know the set Vt. Still, if we can find a way
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to compute, with high probability, the values sc(v) for the vertices in V \Vt, then we can complement

Lemma 2.2 and actually do not need to know Vt.

Suurballe and Tarjan [11], improving an earlier algorithm of Suurballe [10], described an algorithm

that for a given a vertex s, builds a data structure that, given any vertex v ∈ V , can be used to

construct two edge-disjoint paths from s to v of minimum total weight (their algorithm works for

both directed and undirected graphs). The data structure contains an implicit representation of the

n pairs of paths. The time required to construct it is O(m log1+m/n n). For a given vertex v, the

time necessary to explicitly construct the pair of paths connecting s and v is O(1) per edge on the

paths. We will make use of this algorithm in the following lemma.

Lemma 2.3 For t ≥ 3, there is an algorithm that, with probability 1−O(1/n), computes sc(v) and

a shortest cycle realizing sc(v) for each vertex v ∈ V \ Vt. For vertices in Vt the algorithm is not

guaranteed to compute sc(v). The runtime of the algorithm is Õ(n3/t).

Proof: Let S be a random set set of 3n log n/t vertices. We say that S is good if S∩(C(v)\{v}) 6= ∅
for each v ∈ V \Vt. We claim that S is good with probability at least 1−1/n. Indeed, let v ∈ V \Vt.
Since C(v) > t, the probability that S ∩ (C(v) \ {v}) = ∅ is less than (1− t/n)|S| < 1/n2. It follows

that with probability at least 1− 1/n, for each v ∈ V \ Vt some vertex of C(v) \ {v} belongs to S.

We run the algorithm of Suurballe and Tarjan [11], once for every vertex s ∈ S as a source. For a

given s ∈ S, and for each v ∈ V , we can therefore compute two edge disjoint paths connecting s and

v, denoted by p1(s, v) and p2(s, v), having minimum total weight, denoted by g(s, v). The algorithm

of [11] computes all these paths and values in Õ(n2) for a given s ∈ S, and hence in Õ(n3/t) for all

s ∈ S. We also set g(v) = mins∈S g(s, v).

We claim that if S is good then g(v) = sc(v) for each v ∈ V \ Vt. Indeed, suppose v ∈ V \ Vt.
Let s ∈ S ∩ C(v) \ {v}. We claim that p1(s, v) and p2(s, v) are not only edge disjoint; they are also

internally vertex-disjoint. Indeed, consider C(v). It defines two internally vertex-disjoint paths from

v to s, with total weight sc(v). Thus, g(s, v) ≤ sc(v). On the other hand, if p1(s, v) and p2(s, v)

were not internally vertex disjoint, then there is some vertex w 6= s on both paths so that the part

of p1 connecting v and w and the part of p2 connecting v and w together form a simple cycle of total

length less than g(s, v) and hence less than sc(v), a contradiction. Now, since p1(s, v) and p2(s, v) are

internally vertex-disjoint, they, together, form a simple cycle containing v and having weight g(s, v).

It therefore follows that we must have g(s, v) = sc(v). For the same reason, we cannot have any

vertex s′ ∈ S for which g(s′, v) < sc(v). It follows that g(v) = sc(v), as required, and that the two

paths realizing g(v) form a simple cycle through v of minimum length. As S is good with probability

at least 1− 1/n, the lemma follows.

Completing the proof of Theorem 1.1: We will set t = n(3−ω)/2M−1/2. We then run the two

algorithms of Lemma 2.2 and of Lemma 2.3. By our choice of t, the runtime of both algorithms is

Õ(
√
Mn(ω+3)/2). We therefore obtain, for each v ∈ V , the value f(v) resulting from Lemma 2.2 and
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the value g(v) resulting from Lemma 2.3. We set h(v) = min{g(v) , f(v)}, and from Lemmas 2.2

and 2.3 we know that with probability 1−O(1/n) we have that for each v ∈ V , h(v) = sc(v). Notice

that we can also generate a cycle having weight h(v) for each v ∈ V in the same Õ(
√
Mn(ω+3)/2)

time.

3 Extensions

The algorithm of Lemma 2.2 also applies to directed graphs. In this case, however, the runtime of

the algorithm of Lemma 2.2 becomes slower, as it must now invoke applications of APSP in directed

graphs, the fastest algorithm to date being Zwick’s algorithm [13] running in Õ(M1/(4−ω)n2+1/(4−ω))

(in fact, a bit faster using fast rectangular matrix multiplication). Thus, the overall runtime of

the algorithm of Lemma 2.2 becomes Õ(M1/(4−ω)n2+1/(4−ω)t). This, however, can be improved by

the following observation. Zwick’s algorithm, actually computes shortest paths that use at most r

edges in Õ(Mnωr3−ω) time. When applying that algorithm of Lemma 2.2, we are only interested in

shortest paths that use at most t edges (since we claim nothing on vertices in V \Vt). It follows that

the algorithm of Lemma 2.2 can be implemented in Õ(Mnωt4−ω) time.

Given the target value t, deciding which vertices lie on simple cycles of length at most t, as well

as computing sc(v) for those vertices, can be done by just invoking the algorithm of Lemma 2.2, as,

with very high probability, these are precisely the vertices for which f(v) ≤ t. We therefore obtain

the following corollary.

Corollary 3.1 There is a randomized algorithm that, given a graph and an integer t > 0, determines

the set of all vertices that lie on cycles of length at most t (and computes sc(v) for those vertices).

The algorithm runs in Õ(Mnωt) for undirected graphs and Õ(min{Mnωt4−ω , M1/(4−ω)n2+1/(4−ω)})
for directed graphs.

Notice that if both t = no(1) and M = no(1) the runtime becomes Õ(nω) (in both the undirected and

directed cases).

Suppose that the weights on the edges are positive reals and the largest weight is W = no(1).

Given an error requirement ε, it suffices for the algorithm of Lemma 2.2 to invoke an APSP algorithm

that additively approximates paths with at most t edges up to an O(ε/(Wt)) additive error. As the

latter can be done in Õ(nωt) time using either the method from Section 2 or the stretch factor

approximation algorithm from [13], the runtime of the algorithm of Lemma 2.2 becomes Õ(nωt2).

Since the algorithm of Surballe and Tarjan is capable of handling positive real weights, the runtime

in Lemma 2.3 remains intact. By choosing t = n(3−ω)/3, the overall runtime is Õ(n(ω+6)/3). We

therefore obtain the following corollary.

Corollary 3.2 There is a randomized algorithm that solves the ANSC problem up to an ε-additive

error in undirected graphs with positive real weights bounded by no(1). The running time of the
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algorithm is Õ(n(ω+6)/3).

4 Concluding remarks

The algorithm of Theorem 1.1 is randomized. It would be interesting to obtain a deterministic

version of it.
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