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Abstract

It is shown that for every b > a > 0 and for every two independent identically distributed

real random variables X and Y

Prob[|X − Y | ≤ b] < (2db/ae − 1)Prob[|X − Y | ≤ a].

This is tight for all admissible pairs a, b. Higher dimensional extensions are also considered.

1 Introduction

Our first result in this note is the following theorem, which we name after the three constants in

its statement.

Theorem 1.1 (The 123 Theorem) Let X and Y be two independent, identically distributed real

random variables. Then

Prob[|X − Y | ≤ 2] < 3Prob[|X − Y | ≤ 1].

The problem of determining the smallest possible constant C so that for every two independent,

identically distributed (=i.i.d.) real random variables the inequality

Prob[|X − Y | ≤ 2] ≤ CProb[|X − Y | ≤ 1]

holds was suggested by G. A. Margulis and communicated to us by Y. Peres. Several researchers,

including Peres, observed that the smallest possible C satisfies 3 ≤ C ≤ 5, where the lower bound
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follows by considering two i.i.d. real random variablesX and Y distributed uniformly on the discrete

set {2, 4, 6, . . . , 2n}. Here Prob[|X − Y | ≤ 1] = 1/n whereas Prob[|X − Y | ≤ 2] = 3/n − 2/n2,

showing that C ≥ 3− 2/n for every n. Theorem 1.1 thus shows that in fact C = 3. As we learned

from Peres, a slightly weaker version of this theorem (without the strict inequality) has also been

proved, independently of our work (and before us) by A. Kotlov in a different way. Our proof,

presented in the next section, is shorter and has the additional advantage that it actually gives the

following more general result.

Theorem 1.2 Let b > a > 0 be two reals. Then for every two i.i.d. real random variables X and

Y

Prob[|X − Y | ≤ b] < (2db/ae − 1)Prob[|X − Y | ≤ a].

Moreover, the constant 2db/ae − 1 cannot be improved.

The above questions can be considered for vector-valued random variables as well. Let V = Rd

be a finite dimensional Euclidean space, and let b ≥ a > 0 be two reals. Let C(V, a, b) denote the

smallest possible C such that for every two i.i.d. random variables X and Y taking values in V

Prob[||X − Y || ≤ b] ≤ CProb[||X − Y || ≤ a].

Note that C(V, a, b) = C(V, a′, b′) whenever b/a = b′/a′ and hence it suffices to consider the case

a = 1. Our method supplies rather tight estimates for the function C(Rd, 1, b). However, the

problem of determining this function precisely seems difficult, even for the Euclidean plane R2.

Yet, the technique does enable us to determine this function precisely for infinitely many values of

b.

Theorem 1.3 Let V = Rd, n ≥ 2 and suppose that there is no set F of n + 1 points in a ball of

radius b so that the center belongs to F and the distance between any two points of F exceeds 1. If

there is a lattice in V with minimum distance 1 so that there are n points of it in a ball of radius

smaller than b centered at a lattice point, then C(V, 1, b) = n.

This theorem, together with the main result of [1], implies that there is an absolute constant ε > 0

such that in the Euclidean plane R2, C(R2, 1, b) = 7 for all 1 < b < 1 + ε and C(R2, 1, b) = 19

for all 2 < b < 2 + ε. Similarly, the Leech Lattice and the known bounds on kissing numbers

(see [2]) imply that there exists an ε > 0 such that in dimension 24, C(R24, 1, b) = 196, 561 for all

1 < b < 1 + ε. Also, for 1 < b < 1 + ε, C(R3, 1, b) = 13 and C(R8, 1, b) = 241, where ε > 0 is an

appropriate absolute constant.

The rest of this note is organized as follows. In Section 2 we consider the real case and present

the proofs of Theorems 1.1 and 1.2. In Section 3 we consider higher dimensions.
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2 Real random variables

Our basic approach is combinatorial, and (vaguely) resembles the method of Katona in [3]. Let

T = (x1, x2, . . . , xm) be a sequence of not necessarily distinct reals. For any positive b, define

Tb = {(xi, xj) : 1 ≤ i, j ≤ m, |xi − xj | ≤ b}.

We need the following simple combinatorial lemma.

Lemma 2.1 For any sequence T as above and for every integer r > 1,

|Tr| < (2r − 1)|T1|.

Proof. We apply induction on |T | = m. The result is trivial for m = 1. Assuming it holds for

m − 1, we prove it for m (> 1). Given a sequence T = (x1, . . . , xm) let t + 1 be the maximum

number of points of T in a closed interval of length 2 centered at a member of T . Let xi be any

rightmost point of T so that there are t+ 1 members of T in the interval [xi − 1, xi + 1] and define

T ′ = T \ {xi}. The number of members of T ′ in the interval [xi − 1, xi + 1] is clearly t and hence

xi appears in precisely 2t+ 1 ordered pairs of T1. Thus

|T1| = 2t+ 1 + |T ′1|.

The interval [xi − r, xi + r] is the union of the 2r − 1 smaller intervals

[xi − r, xi − r + 1), . . . , [xi − 2, xi − 1), [xi − 1, xi + 1], (xi + 1, xi + 2], . . . , (xi + r − 1, xi + r] (1)

By the choice of xi, each of these smaller intervals can contain at most t+1 members of T , and each

of the last r− 1 ones, which lie to the right of xi, can contain at most t members of T . Altogether

there are thus at most (r − 1)(t+ 1) + rt members of T ′ in [xi − r, xi + r] and hence

|Tr| ≤ 2(r − 1)(t+ 1) + 2rt+ 1 + |T ′r| = (2r − 1)(2t+ 1) + |T ′r|.

By the induction hypothesis |T ′r| < (2r−1)|T ′1| and hence |Tr| < (2r−1)|T1|, completing the proof.

2

Corollary 2.2 Let X and Y be two i.i.d real random variables. For a positive b, define pb =

Prob[|X − Y | ≤ b]. Then for every integer r, pr ≤ (2r − 1)p1.

Proof. Fix an integer m, and let S = (x1, . . . , xm) be a random sequence of m elements, where

each xi is chosen, randomly and independently, according to the distribution of X. By Lemma 2.1

|Sr| < (2r − 1)|S1|.
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Therefore, the expectation of |Sr| is smaller than that of (2r− 1)|S1|. However, by the linearity of

expectation it follows that the expectation of |Sb| is precisely m+m(m− 1)pb for every positive b.

Therefore,

m+m(m− 1)pr < (2r − 1)(m+m(m− 1)p1),

implying that for every integer m,

pr < (2r − 1)p1 +
2r − 2

m− 1
.

The desired result pr ≤ (2r − 1)p1 follows, by letting m tend to infinity. 2

The last corollary suffices to prove the assertions of Theorems 1.1 and 1.2, without the strict

inequality. To prove the strict inequality we need an additional argument, which follows. Let X and

Y be two i.i.d. real random variables, suppose r > 1 is an integer, and suppose that pr = (2r−1)p1,

where pr and p1 are defined as before. For two reals a and b, define µb(a) = Prob[|X − a| ≤ b].
Claim: there exists a real a so that µr(a) > (2r − 1)µ1(a).

Proof. Otherwise, µr(a) ≤ (2r − 1)µ1(a) for each a, and since pr = (2r − 1)p1 and pb is simply

the expectation of µb(a) when a is chosen according to the distribution of X, it follows that

µr(a) = (2r−1)µ1(a) with probability 1 (when a is chosen according to the distribution of X). Let

A be the set of all real values a for which µr(a) = (2r − 1)µ1(a), and define

δ = Sup{µ1(a) : a ∈ A}.

Clearly δ > 0. Let ε be a small positive constant such that

k(δ − (2r)kε) > 1, where k = d2/δe. (2)

Pick a0 ∈ A so that µ1(a0) > δ − ε. We next define a sequence of k pairwise disjoint unit intervals

I1, . . . , Ik in the line, so that for each i, Prob[X ∈ Ii] > δ − (2r)iε. Since in view of (2) this

is impossible, the assertion of the claim will follow. The first interval I1 is simply the interval

(a0 + r − 1, a0 + r]. Observe that by the choice of a0,

Prob[a0 − r ≤ X ≤ a0 + r] ≥ (2r − 1)(δ − ε).

Split the interval [a0 − r, a0 + r] into 2r − 1 smaller intervals as in (1). Note that the definition of

δ implies that the probability that X lies in any one of these intervals is at most δ. Therefore, for

each of these smaller intervals, (and in particular for the last one- I1 = (a0 − r + 1, a0 + r]) the

probability that X lies in the interval is at least (2r − 1)(δ − ε) − (2r − 2)δ > δ − 2rε, as needed.

Suppose, now, that the pairwise disjoint unit intervals I1, . . . , Ij have already been defined, where

Ij is the rightmost interval, and Prob[X ∈ Ii] > δ − (2r)iε for all 1 ≤ i ≤ j (< k). We can now
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define Ij+1 as follows. Since X attains values in A with probability 1, and it lies in Ij with positive

probability, there is an aj ∈ Ij ∩ A. Obviously, µ1(aj) ≥ Prob[X ∈ Ij ] > δ − (2r)jε. Therefore, as

aj ∈ A,

Prob[aj − r ≤ X ≤ aj + r] ≥ (2r − 1)Prob[X ∈ Ij ] > (2r − 1)(δ − (2r)jε).

We can thus define Ij+1 = (aj + r − 1, aj + r] and conclude, as before, that

Prob[X ∈ Ij+1] > δ − (2r − 1)(2r)jε > δ − (2r)j+1ε,

as required. This supplies the desired contradiction and completes the proof of the claim. 2

Returning to our two i.i.d. real random variables X and Y for which pr = (2r − 1)p1, observe

that by the claim there is real a such that

µr(a) = (2r − 1)µ1(a) + β, (3)

where β > 0. Let α > 0 be a small constant satisfying α/(1 − α) < β/(r − 1). Define X ′ as the

random variable which has the distribution of X with probability (1 − α) and with probability α

it gets the value a. For any real b, let p′b = Prob[|X ′ − Y ′| ≤ b], where X ′, Y ′ are i.i.d. random

variables with the distribution of the above X ′. By the definition of X ′, for every positive b,

p′b = (1− α)2pb + 2α(1− α)µb(a) + α2.

By Corollary 2.2 applied to X ′, p′r ≤ (2r − 1)p′1. In view of the last equality and (3) this implies

that

(1− α)2pr + 2α(1− α)((2r − 1)µ1(a) + β) + α2 ≤ (2r − 1)[(1− α)2p1 + 2α(1− α)µ1(a) + α2].

Therefore,

pr ≤ (2r − 1)p1 − 2
α

1− α
β + (2r − 2)

α2

(1− α)2
< (2r − 1)p1,

where the last inequality follows from the choice of α. This shows that equality is impossible in

Corollary 2.2. We have thus proved the following

Proposition 2.3 In the notation of Corollary 2.2, for every integer r > 1, pr < (2r − 1)p1. 2

We can now complete the proof of Theorem 1.2 (which implies, of course, Theorem 1.1).

Proof of Theorem 1.2. Applying the last proposition to X ′ = X/a, Y ′ = Y/a and r = db/ae we

conclude that

Prob[|X − Y | ≤ b] = Prob[|X ′ − Y ′| ≤ b/a] ≤ Prob[|X ′ − Y ′| ≤ r]
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< (2r − 1)Prob[|X ′ − Y ′| ≤ 1] = (2db/ae − 1)Prob[|X − Y | ≤ a],

as required. To see that the constant 2db/ae − 1 cannot be improved, let γ be a real satisfying

a < γ and γ(db/ae−1) < b. Let m be a large integer and let the two i.i.d. random variables X and

Y be distributed uniformly on the discrete set γ, 2γ, . . . ,mγ. One can easily check that the ratio

between Prob[|X − Y | ≤ b] and Prob[|X − Y | ≤ a approaches 2db/ae − 1 as m tends to infinity. 2

3 Vector valued random variables

The basic method in the previous section can be modified and extended to higher dimensions. Let

V = Rd be the d-dimensional Euclidean space. We start with the following simple observation.

Lemma 3.1 Suppose there exists a lattice in V with minimum distance 1 so that there are n points

of it in a ball of radius smaller than b centered at a lattice point, then C(V, 1, b) ≥ n.

Proof. Let L be the above lattice, and let γ > 1 be close enough to 1 so that γL contains n

points in a ball of radius b centered at a lattice point. Let R be a large real, and let XR and YR be

two i.i.d. random variables, each uniformly distributed on the points of γL whose norm is at most

R. It is easy to check that when R tends to infinity the ratio between Prob[||XR − YR|| ≤ b] and

Prob[||XR − YR|| ≤ 1] approaches the number of points of γL in a ball of radius b centered at a

point of γL, which is at least n. 2

Lemma 3.2 Suppose n ≥ 2, and suppose there is no set F of n + 1 points in a ball of radius b

in V , such that the center is in F and the distance between any two members of F exceeds 1. Let

T = (x1, . . . , xm) be a sequence of points in V . For any positive c and s, define

Tc,s = sm+ |{(xi, xj) : 1 ≤ i 6= j ≤ m, ||xi − xj || ≤ c}|.

If ns > 2n+ s, then

Tb,s < nT1,s.

Proof. We apply induction on m. The result is trivial for m = 1, since in this case Tb,s = T1,s = s.

Assuming it holds for m − 1 we prove it for m (m > 1). Given a sequence T of cardinality m as

above, let t+ 1 be the maximum number of members of T in a ball of radius 1 centered at a point

of T . Let x be a point of T with t+ 1 members of T in the radius-1 ball centered at x, and define

T ′ = T \ {x}. Clearly

T1,s = T ′1,s + s+ 2t.
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Let F be a subset of maximum cardinality of T in the ball of radius b centered at x, so that x ∈ F
and the distance between any two members of F is strictly bigger than 1. By the assumption,

|F | ≤ n. Moreover, any point of T in the ball of radius b centered at x lies in a radius-1 ball

centered at a point of F . Since, by the maximality in the choice of x, no such ball can contain

more than t+ 1 points, it follows that there are at most n(t+ 1) members of T in the ball of radius

b centered at x (including x itself). Therefore,

Tb,s ≤ T ′b,s + s+ 2(nt+ n− 1).

By the induction hypothesis T ′b,s < nT ′1,s provided ns > 2n+ s and hence, for such s,

Tb,s < nT ′1,s + s+ 2(nt+ n− 1) < nT ′1,s + ns+ 2nt = nT1,s,

completing the proof. 2

Corollary 3.3 Suppose n ≥ 2, and suppose there is no set F of n+ 1 points in a ball of radius b

in V , such that the center is in F and the distance between any two members of F exceeds 1. Then

C(V, 1, b) ≤ n. That is, for any two i.i.d. V -valued random variables X and Y

Prob[||X − Y || ≤ b] ≤ n Prob[||X − Y || ≤ 1]. (4)

Proof. For X,Y as above and for a positive c, define pc = Prob[||X − Y || ≤ c]. Fix a positive s

satisfying ns > 2n+ s. For a fixed, large integer m, let T = (x1, . . . , xm) be a random sequence of

m elements, where each xi is chosen, randomly and independently, according to the distribution of

X. By Lemma 3.2

Tb,s < nT1,s.

Therefore, the expectation of Tb,s is smaller than that of nT1,s. By linearity of expectation the

expectation of Tc,s is precisely sm+m(m− 1)pc for every positive c. Therefore,

sm+m(m− 1)pb < n(sm+m(m− 1)p1),

implying that for every integer m,

pb < np1 +
(n− 1)s

m− 1
.

The desired result (4) follows, by letting m tend to infinity. 2

Theorem 1.3 follows from Lemma 3.1 and Corollary 3.3. We next describe some consequences

of this theorem.
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In [1] it is shown that the minimum radius of a two dimensional ball containing 8 points one

of which is at the center, so that all mutual distances are at least 1, is 1
2cosec(π/7) = 1.15.... It is

also shown that the minimum radius of a two dimensional ball containing 20 points one of which

is its center such that all mutual distances are at least 1 is strictly bigger than 2. This, together

with Theorem 1.3 (and the existence of the hexagonal lattice) implies the following.

Proposition 3.4 (i) If 1 < b < 1
2cosec(π/7) then C(R2, 1, b) = 7.

(ii) There exists an ε > 0 so that for all 2 < b < 2 + ε, C(R2, 1, b) = 19. 2

Similarly, one can determine the asymptotic behaviour of C(R2, 1, b) as b tends to infinity. It

is well known (see [1]), that the maximum number of points that can be placed in a radius-b two

dimensional ball so that one of the points is at the center, and all mutual distances are at least 1, is

(1 + o(1)) 2π√
3
b2. This is realized by the hexagonal lattice and hence, by Theorem 1.3 the following

statement holds.

Proposition 3.5 As b tends to infinity,

C(R2, 1, b) = (1 + o(1))
2π√

3
b2. 2

The kissing number τd is the maximum number of points that can be placed on the boundary of

a unit ball in Rd, so that the distance between any two of the points is at least 1. By compactness

it follows that the minimum radius of a ball in Rd containing τd + 2 points one of which is at the

center, so that all mutual distances are at least 1, is strictly bigger than 1. The exact values of

τd are known only for d = 1, 2, 3, 8 and 24. Trivially τ1 = 2 and τ2 = 6. The value of τ3 was the

subject of a discussion between Isaac Newton and David Gregory in 1694. Newton believed that

τ3 = 12, and as shown by various researchers in the nineteenth century, this is indeed the case. A

very short proof of this fact appears in [4]. In [6], [5] it is shown that τ8 = 240 and τ24 = 196, 560.

In all the above cases the highest possible kissing numbers are attainable by lattices. (It is known

that this is not the case in dimension 9.) The relevant lattices are the trivial one in dimension 1,

the hexagonal lattice in dimension 2, the face-centered cubic lattice in dimension 3, the lattice E8,

(sometimes called the 8-dimensional diamond lattice), in dimension 8, and the well known Leech

lattice in dimension 24. See [2] for more details. Theorem 1.3 thus gives the following.

Proposition 3.6 For every d ∈ {1, 2, 3, 8, 24} there exists an εd > 0 such that for all 1 < b < 1+εd,

C(Rd, 1, b) = τd + 1. 2

Note that the above result for d = 1, 2 has already been proved (in a stronger form) in Theorem

1.2 and in Proposition 3.4, part (i).
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The basic results in this section can be extended to other norms in finite dimensional real spaces.

Some norms, like the l∞-norm, are simpler than the Euclidean one for this purpose, and it is not

too difficult to determine the function C(ld∞, b, 1) (defined in the obvious way) precisely for many

values of b. However, for any fixed d ≥ 2 we are unable to determine any of the functions C(Rd, b, 1)

or C(ld∞, b, 1) for all b and this problem remains open.

Acknowledgement We would like to thank Yuval Peres for helpful discussions and comments.
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