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Generalizing the closure problem

In the first two talks we discussed:

The closure problem
Given X ⊆ Rn definable in an o-minimal structure, and a lattice Λ ⊆ Rn,
what is cl(π(X)) in T = Rn/Λ?
The answer used linear spaces associated to complete types over R,
on X.

We want to extend the result in two directions:

From closure to Hausdorff limits

(From tori to nilmanifolds)
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The Hausdofff limits of a definable family

Question
Let {Xt : t ∈ T} be a family of subsets of Rn definable in an o-minimal
structure on R. For a lattice Λ ⊆ Rn, we consider the possible
Hausdorff limits of the family {πΛ(Xt) : t ∈ T} in TΛ.

When are some (or all) Hausdorff limits equal to TΛ?
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Hausdorff distance and limit

Definition
Given a metric space (M, d), and X,Y ⊆ M,

dH(X,Y) = inf{ϵ > 0 : X ⊆ Yϵ Y ⊆ Xϵ},where
Yϵ = {x ∈ M : d(x,Y) ⩽ ϵ}.

We have dH(X,Y) = 0 ⇔ cl(X) = cl(Y).
Also, dH is a metric on the collection of compact subsets of M.

Definition
Given a family F = {Xt : t ∈ (0,∞)} of relatively compact subsets of M,
we say that a compact set Y ⊆ M is a Hausdorff limit at ∞ of F if there
is an unbounded sequence tn ∈ (0,∞), such that
limn→∞ dH(cl(Xtn),Y) = 0.
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An Example

A family of ellipses

F : Xt = {(x, y) : x2 + (ty)2 = 1}, t ∈ [1, ,∞).

The (unique) Hausdroff limit at ∞ is the interval [−1, 1]× {0}.

t=1

t=2

t=4
t=10
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The new question

A question (A. Nevo)
Assume that F = {Xt : t ∈ (0,∞)} is a definable family of subsets of Rn

in an o-minimal structure, and Λ ⊆ Rn a lattice,
Describe the family of Hausdorff limits of
πΛ(F) := {πΛ(Xt) : t ∈ (0,∞)} at ∞ inside TΛ.
In particular, when is TΛ the unique Hausdorff limit at ∞, of πΛ(F)?

Notice that the closure problem is a special case of the above (for
X ⊆ RN , consider the constant family Xt = X, for all t ∈ (0,∞).

As in the closure problem, we may study the problem inside the
fundamental domain FΛ ⊆ Rn.
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Horizontal lines in R2, Λ = Z2

Let F : Xt = R× {t}, t ∈ (0,∞).

t=0.5

t=1.2

t=1.7

t=2.3

t=2.8

t=3.4

t=3.6

t
→

∞

Consider πΛ(F) = {πΛ(Xt) : t ∈ (0,∞)}.
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Horizontal lines in R2, Λ = Z2

For L = R× {0}, the Hausdorff limits at ∞ are exactly the cosets of
πΛ(L) in TΛ.

t0 = r

t1 = r + 1

t2 = r + 2

t3 = r + 3

For each r ∈ R, the sequence (πΛ(Xr+n))
∞
n=0 is constant.
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Lines of increasing slope in R2, Λ = Z2

Consider the family F : Xt = {(x, tx) : t ∈ (0,∞)}.

t=1t=2t=3t=10
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Lines of increasing slope in R2, Λ = Z2

The (unique) Hausdorff limit of {πΛ(Xt) : t ∈ (∞)} at ∞ is TΛ. This
remains true for every lattice.

X5 + Z2
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Circles of increasing radius in R2, Λ = Z2

Consider the family Xt = {(x, y) : x2 + y2 = t2}, for t ∈ (0,∞).

X1 X2
X3 X4

t →
∞
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Circles of increasing radius in R2, Λ = Z2

The (unique) Hausdorff limit of πΛ(Xt) at ∞ is TΛ. This remains true for
every lattice.

X1 + Z2
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Circles of increasing radius in R2, Λ = Z2

The (unique) Hausdorff limit of πΛ(Xt) at ∞ is TΛ. This remains true for
every lattice.

X4 + Z2
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Circles of increasing radius in R2, Λ = Z2

The (unique) Hausdorff limit of πΛ(Xt) at ∞ is TΛ. This remains true for
every lattice.

X6 + Z2
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A model theoretic approach

We let R ≻ Rfull, O ⊆ R the ring of finite elements, µ the ideal of
infinitesimals in O and st : O → R the standard part map.
For S ⊆ Rn, we let S♯ = S(R) and st(S♯) = st(S♯ ∩ On)

Fact (based on L. Narens, 1972)
Let {Xt : t ∈ (0,∞)} be a family of subsets of Rn and Λ ⊆ Rn a lattice.
For a compact Y ⊆ TΛ, the following are equivalent

1. Y is a Hausdorff limit at ∞ of {πΛ(Xt) : t ∈ (0,∞)}.
2. There is ξ > R such that

Y = πΛ(st(X
♯
ξ + Λ♯)).

Note: different ξ > R will usually give rise to different Haudorff limits.
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Summary-Closure vs. Hausdorff limit

The closure of X
We started with X ⊆ Rn defined over R and then
cl(X + Λ) = st(X♯ + Λ♯).

The Hausdorff limits of {Xt : t ∈ (0,∞)}
For each non-standard ξ > R, st(X♯

ξ + Λ♯) is a Hausdorff limit at ∞.

Again, we may partition into types but now not over R, but over R⟨ξ⟩,
the o-minimal structure generated by R and ξ.
For simplicity, below let X = X♯

ξ.

st(X + Λ♯) =
⋃

p∈SX (R⟨ξ⟩)

st(p(R) + Λ♯)

Here, SX (R⟨ξ⟩) = the o-minimal types on X = X♯
ξ, over R⟨ξ⟩.

The non standard parameter ξ gives rise to complications.
K. Peterzil and S. Starchenko O-minimality and discrete subgroups 14
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Nearest coset to a type

Proposition
For a type p ∈ Sn(R⟨ξ⟩), there is a smallest linear subspace Lp ⊆ Rn,
and α ∈ R⟨ξ⟩, such that p(R) ⊆ µ+ α+ L♯

p.

We call such translate α+ Lp a nearest coset of p.

Theorem (Λ-linearity of types)
Assume that p(x) ∈ Sn(R⟨ξ⟩), and ap + Lp is a nearest coset of p.
Then, for every lattice Λ ⊆ Rn we have

µ+ p(R) + Λ♯ = µ+ ap + L♯
p + Λ♯
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Nearest coset to a type

Proposition
For a type p ∈ Sn(R⟨ξ⟩), there is a smallest linear subspace Lp ⊆ Rn,
and α ∈ R⟨ξ⟩, such that p(R) ⊆ µ+ α+ L♯

p.

We call such translate α+ Lp a nearest coset of p.

Theorem (Λ-linearity of types)
Assume that p(x) ∈ Sn(R⟨ξ⟩), and ap + Lp is a nearest coset of p.
Then, for every lattice Λ ⊆ Rn we have

µ+ p(R) + Λ♯ = µ+ ap + L♯
p + Λ♯

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 15



Nearest coset to a type

Proposition
For a type p ∈ Sn(R⟨ξ⟩), there is a smallest linear subspace Lp ⊆ Rn,
and α ∈ R⟨ξ⟩, such that p(R) ⊆ µ+ α+ L♯

p.

We call such translate α+ Lp a nearest coset of p.

Theorem (Λ-linearity of types)
Assume that p(x) ∈ Sn(R⟨ξ⟩), and ap + Lp is a nearest coset of p.
Then, for every lattice Λ ⊆ Rn we have

µ+ p(R) + Λ♯ = µ+ ap + L♯
p + Λ♯

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 15



Nearest coset to a type

Proposition
For a type p ∈ Sn(R⟨ξ⟩), there is a smallest linear subspace Lp ⊆ Rn,
and α ∈ R⟨ξ⟩, such that p(R) ⊆ µ+ α+ L♯

p.

We call such translate α+ Lp a nearest coset of p.

Theorem (Λ-linearity of types)
Assume that p(x) ∈ Sn(R⟨ξ⟩), and ap + Lp is a nearest coset of p.
Then, for every lattice Λ ⊆ Rn we have

µ+ p(R) + Λ♯ = µ+ ap + L♯
p + Λ♯

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 15



The uniform Hausdorff limits theorem

Theorem
Let F = {Xt : t ∈ (0,∞)} be an Rom-definable family of subsets of Rn.

Then there are R-linear spaces L1, . . . ,Ls ⊆ Rn, such that for every
lattice Λ ⊆ Rn,

1. If LΛ
j = Rn for some j = 1, . . . , s then TΛ is the only Hausdroff limit

at ∞ of πΛ(F) := {πΛ(Xt) : t ∈ (0,∞)}. This remains true if Λ is
replaced by a finite index subgroup.
Call it F is strongly Λ-dense in TΛ.

2. If LΛ
j ̸= Rn for all j = 1, . . . , s, then exists K ∈ N such that for every

subgroup Λ0 ⊆ K ·Λ, no Hausdorff limit at ∞ of πΛ0(F) is equal to
TΛ0 .
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Example

F : Xt = t + [0, 2] ⊆ R , t ∈ (0,∞).

Since all Xt are bounded, the only associated nearest coset is L = {0},
so LZ = {0} ≠ R.

Still, for Λ = Z¡ or Λ = 2Z, for all t, πΛ(Xt) = TΛ (so all Hausdroff limits
equal TΛ).

However, if [Z : Λ] ⩾ 3 then all the Haudforff limits are partial arcs on
the circle TΛ. So, F is not strongly Z-dense.

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 17
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Nilmanifolds

We denote by Un(R) the group of real upper-triangular n×n matrices
with 1’s on the main diagonal.

By a unipotent group we mean a real algebraic subgroup G ⊆ Un(R). It
is a nilpotent group and when abelian G ∼= (Rk,+), for some k.

A lattice in G is a discrete subgroup Λ ⊂ G such that the quotient
space G/Λ is compact.

The quotient M = G/Λ is called a nilmanifold (it not not a group!).

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 18
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is a nilpotent group and when abelian G ∼= (Rk,+), for some k.

A lattice in G is a discrete subgroup Λ ⊂ G such that the quotient
space G/Λ is compact.

The quotient M = G/Λ is called a nilmanifold (it not not a group!).
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The nilmanifold case-reduction to the abelian case

▶ Let Gab := G/[G,G], an abelian group.
▶ πab : G → Gab is the quotient map. For a lattice Λ ⊆ G, let

Λab := πab(Λ) is a lattice in Gab.

Theorem
Let F = {Xt : t ∈ (0,∞)} be an Rom-definable family of subsets of G.
Then for every lattice Λ ⊆ G, F is strongly Λ-dense in G/Λ if and only if
{πab(Xt) : t ∈ (0,∞)} is strongly Λab-dense in Gab/Λab.
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Further problems

▶ Uniformity of the closure problem, in parameters.

▶ Equidistribution for X ⊆ Rn with dimX > 1.

▶ Describe explicitly all the family of Hausdorff limits of a definable
family F (we only knew then the family is strongly Λ-dense in TΛ).

▶ Replace unipotent groups by reductive groups: E.g. the closure
problem for definable subsets of SL(n,R) and quotients by lattices.
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