# Tarski Lecture III

# From closure to Hausdorff limits in tori (and nilmanifolds)

Kobi Peterzil U. of Haifa Sergei Starchenko U. of Notre Dame

April 26, 2024

In the first two talks we discussed:

The closure problem

Given  $X \subseteq \mathbb{R}^n$  definable in an o-minimal structure, and a lattice  $\Lambda \subseteq \mathbb{R}^n$ , what is  $cl(\pi(X))$  in  $\mathbb{T} = \mathbb{R}^n / \Lambda$ ?

The answer used linear spaces associated to complete types over  $\mathbb{R}$ , on *X*.

We want to extend the result in two directions:

From closure to Hausdorff limits

(From tori to nilmanifolds)

In the first two talks we discussed:

The closure problem

Given  $X \subseteq \mathbb{R}^n$  definable in an o-minimal structure, and a lattice  $\Lambda \subseteq \mathbb{R}^n$ , what is  $cl(\pi(X))$  in  $\mathbb{T} = \mathbb{R}^n / \Lambda$ ?

The answer used linear spaces associated to complete types over  $\mathbb{R}$ , on *X*.

We want to extend the result in two directions:

From closure to Hausdorff limits

(From tori to nilmanifolds)

In the first two talks we discussed:

The closure problem

Given  $X \subseteq \mathbb{R}^n$  definable in an o-minimal structure, and a lattice  $\Lambda \subseteq \mathbb{R}^n$ , what is  $cl(\pi(X))$  in  $\mathbb{T} = \mathbb{R}^n / \Lambda$ ?

The answer used linear spaces associated to complete types over  $\mathbb{R}$ , on *X*.

We want to extend the result in two directions:

From closure to Hausdorff limits

(From tori to nilmanifolds)

#### Question

Let  $\{X_t : t \in T\}$  be a family of subsets of  $\mathbb{R}^n$  definable in an o-minimal structure on  $\mathbb{R}$ . For a lattice  $\Lambda \subseteq \mathbb{R}^n$ , we consider the possible Hausdorff limits of the family  $\{\pi_\Lambda(X_t) : t \in T\}$  in  $\mathbb{T}_\Lambda$ .

When are some (or all) Hausdorff limits equal to  $\mathbb{T}_{\Lambda}$ ?

## Definition

Given a metric space (M, d), and  $X, Y \subseteq M$ ,

$$d_H(X, Y) = \inf\{\epsilon > 0 : X \subseteq Y^{\epsilon} \ Y \subseteq X^{\epsilon}\}, \text{ where}$$
$$Y^{\epsilon} = \{x \in M : d(x, Y) \leqslant \epsilon\}.$$

We have  $d_H(X, Y) = 0 \Leftrightarrow \operatorname{cl}(X) = \operatorname{cl}(Y)$ .

Also,  $d_H$  is a metric on the collection of compact subsets of M.

#### Definition

Given a family  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  of relatively compact subsets of M, we say that a compact set  $Y \subseteq M$  is a Hausdorff limit at  $\infty$  of  $\mathcal{F}$  if there is an unbounded sequence  $t_n \in (0, \infty)$ , such that  $\lim_{n\to\infty} d_H(\operatorname{cl}(X_{t_n}), Y) = 0$ .

## Definition

Given a metric space (M, d), and  $X, Y \subseteq M$ ,

$$d_H(X, Y) = \inf\{\epsilon > 0 : X \subseteq Y^{\epsilon} \ Y \subseteq X^{\epsilon}\}, \text{ where}$$
$$Y^{\epsilon} = \{x \in M : d(x, Y) \leqslant \epsilon\}.$$

We have  $d_H(X, Y) = 0 \Leftrightarrow \operatorname{cl}(X) = \operatorname{cl}(Y)$ .

Also,  $d_H$  is a metric on the collection of compact subsets of *M*.

#### Definition

Given a family  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  of relatively compact subsets of M, we say that a compact set  $Y \subseteq M$  is a Hausdorff limit at  $\infty$  of  $\mathcal{F}$  if there is an unbounded sequence  $t_n \in (0, \infty)$ , such that  $\lim_{n\to\infty} d_H(\operatorname{cl}(X_{t_n}), Y) = 0$ .

## Definition

Given a metric space (M, d), and  $X, Y \subseteq M$ ,

$$d_H(X, Y) = \inf\{\epsilon > 0 : X \subseteq Y^{\epsilon} \ Y \subseteq X^{\epsilon}\}, \text{ where}$$
$$Y^{\epsilon} = \{x \in M : d(x, Y) \leqslant \epsilon\}.$$

We have  $d_H(X, Y) = 0 \Leftrightarrow \operatorname{cl}(X) = \operatorname{cl}(Y)$ .

Also,  $d_H$  is a metric on the collection of compact subsets of *M*.

#### Definition

Given a family  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  of relatively compact subsets of M, we say that a compact set  $Y \subseteq M$  is a Hausdorff limit at  $\infty$  of  $\mathcal{F}$  if there is an unbounded sequence  $t_n \in (0, \infty)$ , such that  $\lim_{n\to\infty} d_H(\operatorname{cl}(X_{t_n}), Y) = 0$ .

# An Example

### A family of ellipses

$$\mathcal{F}: X_t = \{(x, y): x^2 + (ty)^2 = 1\}, t \in [1, \infty).$$

The (unique) Hausdroff limit at  $\infty$  is the interval  $[-1,1] \times \{0\}$ .



### A question (A. Nevo)

Assume that  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  is a definable family of subsets of  $\mathbb{R}^n$ in an o-minimal structure, and  $\Lambda \subseteq \mathbb{R}^n$  a lattice, Describe the family of Hausdorff limits of  $\pi_{\Lambda}(\mathcal{F}) := \{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$  at  $\infty$  inside  $\mathbb{T}_{\Lambda}$ .

In particular, when is  $\mathbb{T}_{\Lambda}$  the unique Hausdorff limit at  $\infty$ , of  $\pi_{\Lambda}(\mathcal{F})$ ?

Notice that the closure problem is a special case of the above (for  $X \subseteq \mathbb{R}^N$ , consider the constant family  $X_t = X$ , for all  $t \in (0, \infty)$ .

As in the closure problem, we may study the problem inside the fundamental domain  $F_{\Lambda} \subseteq \mathbb{R}^{n}$ .

### A question (A. Nevo)

Assume that  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  is a definable family of subsets of  $\mathbb{R}^n$ in an o-minimal structure, and  $\Lambda \subseteq \mathbb{R}^n$  a lattice, Describe the family of Hausdorff limits of  $\pi_{\Lambda}(\mathcal{F}) := \{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$  at  $\infty$  inside  $\mathbb{T}_{\Lambda}$ .

In particular, when is  $\mathbb{T}_{\Lambda}$  the unique Hausdorff limit at  $\infty$ , of  $\pi_{\Lambda}(\mathcal{F})$ ?

Notice that the closure problem is a special case of the above (for  $X \subseteq \mathbb{R}^N$ , consider the constant family  $X_t = X$ , for all  $t \in (0, \infty)$ .

As in the closure problem, we may study the problem inside the fundamental domain  $F_{\Lambda} \subseteq \mathbb{R}^{n}$ .

### A question (A. Nevo)

Assume that  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  is a definable family of subsets of  $\mathbb{R}^n$ in an o-minimal structure, and  $\Lambda \subseteq \mathbb{R}^n$  a lattice, Describe the family of Hausdorff limits of  $\pi_{\Lambda}(\mathcal{F}) := \{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$  at  $\infty$  inside  $\mathbb{T}_{\Lambda}$ .

In particular, when is  $\mathbb{T}_{\Lambda}$  the unique Hausdorff limit at  $\infty$ , of  $\pi_{\Lambda}(\mathcal{F})$ ?

Notice that the closure problem is a special case of the above (for  $X \subseteq \mathbb{R}^N$ , consider the constant family  $X_t = X$ , for all  $t \in (0, \infty)$ .

As in the closure problem, we may study the problem inside the fundamental domain  $F_{\Lambda} \subseteq \mathbb{R}^{n}$ .

# Horizontal lines in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

Let  $\mathcal{F} : X_t = \mathbb{R} \times \{t\}, t \in (0, \infty)$ .

| -  |       | <br> | <br> |  |
|----|-------|------|------|--|
| _  | t=3.6 |      |      |  |
| _  | t=3.4 |      |      |  |
|    |       |      |      |  |
| 8  |       |      |      |  |
| Ţ. | t=2.8 |      |      |  |
| -  |       |      |      |  |
|    |       |      |      |  |
| _  | t=2.3 |      |      |  |
|    |       |      |      |  |
|    |       |      |      |  |
|    | t=1.7 |      |      |  |
| -  |       |      |      |  |
|    |       |      |      |  |
| _  | t=1.2 |      |      |  |
|    |       |      |      |  |
|    |       |      |      |  |
|    |       |      |      |  |
| _  | t=0.5 |      |      |  |
|    |       |      |      |  |
|    |       |      |      |  |
| -  |       |      |      |  |

# Horizontal lines in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

Let 
$$\mathcal{F} : X_t = \mathbb{R} \times \{t\}, t \in (0, \infty)$$
.

|   | •     |      |  |
|---|-------|------|--|
| - |       | <br> |  |
|   | t=3.6 |      |  |
|   | t=3.4 |      |  |
|   |       |      |  |
| 8 |       |      |  |
| + | t=2.8 |      |  |
|   |       |      |  |
|   | +-2.2 |      |  |
| - | 1-2.0 |      |  |
| _ |       |      |  |
|   | t-1.7 |      |  |
| - |       |      |  |
|   |       |      |  |
| _ | t=1.2 |      |  |
| _ |       |      |  |
|   |       |      |  |
|   | t=0.5 |      |  |
|   |       |      |  |
|   |       |      |  |
| _ |       |      |  |
|   | 1     |      |  |

Consider  $\pi_{\Lambda}(\mathcal{F}) = \{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}.$ 

# Horizontal lines in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

For  $L = \mathbb{R} \times \{0\}$ , the Hausdorff limits at  $\infty$  are exactly the cosets of  $\pi_{\Lambda}(L)$  in  $\mathbb{T}_{\Lambda}$ .



For each  $r \in \mathbb{R}$ , the sequence  $(\pi_{\Lambda}(X_{r+n}))_{n=0}^{\infty}$  is constant.

# Lines of increasing slope in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

Consider the family  $\mathcal{F} : X_t = \{(x, tx) : t \in (0, \infty)\}.$ 



The (unique) Hausdorff limit of  $\{\pi_{\Lambda}(X_t) : t \in (\infty)\}$  at  $\infty$  is  $\mathbb{T}_{\Lambda}$ . This remains true for every lattice.



The (unique) Hausdorff limit of  $\{\pi_{\Lambda}(X_t) : t \in (\infty)\}$  at  $\infty$  is  $\mathbb{T}_{\Lambda}$ . This remains true for every lattice.







# Circles of increasing radius in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

Consider the family  $X_t = \{(x, y) : x^2 + y^2 = t^2\}$ , for  $t \in (0, \infty)$ .



# Circles of increasing radius in $\mathbb{R}^2$ , $\Lambda = \mathbb{Z}^2$

The (unique) Hausdorff limit of  $\pi_{\Lambda}(X_t)$  at  $\infty$  is  $\mathbb{T}_{\Lambda}$ . This remains true for every lattice.



The (unique) Hausdorff limit of  $\pi_{\Lambda}(X_t)$  at  $\infty$  is  $\mathbb{T}_{\Lambda}$ . This remains true for every lattice.



The (unique) Hausdorff limit of  $\pi_{\Lambda}(X_t)$  at  $\infty$  is  $\mathbb{T}_{\Lambda}$ . This remains true for every lattice.



We let  $\mathcal{R} \succ \mathbb{R}_{full}$ ,  $\mathcal{O} \subseteq \mathcal{R}$  the ring of finite elements,  $\mu$  the ideal of infinitesimals in  $\mathcal{O}$  and  $\operatorname{st} : \mathcal{O} \to \mathbb{R}$  the standard part map. For  $S \subseteq \mathbb{R}^n$ , we let  $S^{\sharp} = S(\mathcal{R})$  and  $\operatorname{st}(S^{\sharp}) = \operatorname{st}(S^{\sharp} \cap \mathcal{O}^n)$ 

#### Fact (based on L. Narens, 1972)

Let  $\{X_t : t \in (0,\infty)\}$  be a family of subsets of  $\mathbb{R}^n$  and  $\Lambda \subseteq \mathbb{R}^n$  a lattice. For a compact  $Y \subseteq \mathbb{T}_\Lambda$ , the following are equivalent

1. *Y* is a Hausdorff limit at  $\infty$  of  $\{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$ .

2. There is  $\xi > \mathbb{R}$  such that

$$Y = \pi_{\Lambda}(\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})).$$

Note: different  $\xi > \mathbb{R}$  will usually give rise to different Haudorff limits.

We let  $\mathcal{R} \succ \mathbb{R}_{full}$ ,  $\mathcal{O} \subseteq \mathcal{R}$  the ring of finite elements,  $\mu$  the ideal of infinitesimals in  $\mathcal{O}$  and  $\operatorname{st} : \mathcal{O} \to \mathbb{R}$  the standard part map. For  $S \subseteq \mathbb{R}^n$ , we let  $S^{\sharp} = S(\mathcal{R})$  and  $\operatorname{st}(S^{\sharp}) = \operatorname{st}(S^{\sharp} \cap \mathcal{O}^n)$ 

### Fact (based on L. Narens, 1972)

Let  $\{X_t : t \in (0, \infty)\}$  be a family of subsets of  $\mathbb{R}^n$  and  $\Lambda \subseteq \mathbb{R}^n$  a lattice. For a compact  $Y \subseteq \mathbb{T}_{\Lambda}$ , the following are equivalent

- 1. *Y* is a Hausdorff limit at  $\infty$  of  $\{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$ .
- 2. There is  $\xi > \mathbb{R}$  such that

$$Y = \pi_{\Lambda}(\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})).$$

Note: different  $\xi > \mathbb{R}$  will usually give rise to different Haudorff limits.

We let  $\mathcal{R} \succ \mathbb{R}_{full}$ ,  $\mathcal{O} \subseteq \mathcal{R}$  the ring of finite elements,  $\mu$  the ideal of infinitesimals in  $\mathcal{O}$  and  $\operatorname{st} : \mathcal{O} \to \mathbb{R}$  the standard part map. For  $S \subseteq \mathbb{R}^n$ , we let  $S^{\sharp} = S(\mathcal{R})$  and  $\operatorname{st}(S^{\sharp}) = \operatorname{st}(S^{\sharp} \cap \mathcal{O}^n)$ 

#### Fact (based on L. Narens, 1972)

Let  $\{X_t : t \in (0, \infty)\}$  be a family of subsets of  $\mathbb{R}^n$  and  $\Lambda \subseteq \mathbb{R}^n$  a lattice. For a compact  $Y \subseteq \mathbb{T}_{\Lambda}$ , the following are equivalent

- 1. *Y* is a Hausdorff limit at  $\infty$  of  $\{\pi_{\Lambda}(X_t) : t \in (0, \infty)\}$ .
- 2. There is  $\xi > \mathbb{R}$  such that

$$Y = \pi_{\Lambda}(\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})).$$

Note: different  $\xi > \mathbb{R}$  will usually give rise to different Haudorff limits.

# The closure of X

We started with  $X \subseteq \mathbb{R}^n$  defined over  $\mathbb{R}$  and then  $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}).$ 

## The Hausdorff limits of $\{X_t:t\in(0,\infty)\}$

For each non-standard  $\xi > \mathbb{R}$ ,  $\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})$  is a Hausdorff limit at  $\infty$ .

Again, we may partition into types but now not over  $\mathbb{R}$ , but over  $\mathbb{R}\langle \xi \rangle$ , the o-minimal structure generated by  $\mathbb{R}$  and  $\xi$ . For simplicity, below let  $\mathcal{X} = X_{\varepsilon}^{\sharp}$ .

$$\operatorname{st}(\mathcal{X} + \Lambda^{\sharp}) = \bigcup_{p \in S_{\mathcal{X}}(\mathbb{R}\langle \xi \rangle)} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$$

## The closure of X

We started with  $X \subseteq \mathbb{R}^n$  defined over  $\mathbb{R}$  and then  $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}).$ 

# The Hausdorff limits of $\{X_t : t \in (0,\infty)\}$

For each non-standard  $\xi > \mathbb{R}$ ,  $\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})$  is a Hausdorff limit at  $\infty$ .

Again, we may partition into types but now not over  $\mathbb{R}$ , but over  $\mathbb{R}\langle \xi \rangle$ , the o-minimal structure generated by  $\mathbb{R}$  and  $\xi$ . For simplicity, below let  $\mathcal{X} = X^{\sharp}$ .

$$\operatorname{st}(\mathcal{X} + \Lambda^{\sharp}) = \bigcup_{p \in S_{\mathcal{X}}(\mathbb{R}\langle \xi \rangle)} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$$

## The closure of X

We started with  $X \subseteq \mathbb{R}^n$  defined over  $\mathbb{R}$  and then  $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}).$ 

# The Hausdorff limits of $\{X_t : t \in (0,\infty)\}$

For each non-standard  $\xi > \mathbb{R}$ ,  $\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})$  is a Hausdorff limit at  $\infty$ .

Again, we may partition into types but now not over  $\mathbb{R}$ , but over  $\mathbb{R}\langle \xi \rangle$ , the o-minimal structure generated by  $\mathbb{R}$  and  $\xi$ . For simplicity, below let  $\mathcal{X} = X_{\varepsilon}^{\sharp}$ .

$$\operatorname{st}(\mathcal{X} + \Lambda^{\sharp}) = \bigcup_{p \in S_{\mathcal{X}}(\mathbb{R}\langle \xi \rangle)} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$$

## The closure of X

We started with  $X \subseteq \mathbb{R}^n$  defined over  $\mathbb{R}$  and then  $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}).$ 

# The Hausdorff limits of $\{X_t : t \in (0, \infty)\}$

For each non-standard  $\xi > \mathbb{R}$ ,  $\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})$  is a Hausdorff limit at  $\infty$ .

Again, we may partition into types but now not over  $\mathbb{R}$ , but over  $\mathbb{R}\langle \xi \rangle$ , the o-minimal structure generated by  $\mathbb{R}$  and  $\xi$ . For simplicity, below let  $\mathcal{X} = X_{\varepsilon}^{\sharp}$ .

$$\operatorname{st}(\mathcal{X} + \Lambda^{\sharp}) = \bigcup_{p \in S_{\mathcal{X}}(\mathbb{R}\langle \xi \rangle)} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$$

## The closure of X

We started with  $X \subseteq \mathbb{R}^n$  defined over  $\mathbb{R}$  and then  $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}).$ 

# The Hausdorff limits of $\{X_t : t \in (0, \infty)\}$

For each non-standard  $\xi > \mathbb{R}$ ,  $\operatorname{st}(X_{\xi}^{\sharp} + \Lambda^{\sharp})$  is a Hausdorff limit at  $\infty$ .

Again, we may partition into types but now not over  $\mathbb{R}$ , but over  $\mathbb{R}\langle \xi \rangle$ , the o-minimal structure generated by  $\mathbb{R}$  and  $\xi$ . For simplicity, below let  $\mathcal{X} = X_{\varepsilon}^{\sharp}$ .

$$\operatorname{st}(\mathcal{X} + \Lambda^{\sharp}) = \bigcup_{p \in S_{\mathcal{X}}(\mathbb{R}\langle \xi \rangle)} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$$

For a type  $p \in S_n(\mathbb{R}\langle \xi \rangle)$ , there is a smallest linear subspace  $L_p \subseteq \mathbb{R}^n$ , and  $\alpha \in \mathbb{R}\langle \xi \rangle$ , such that  $p(\mathcal{R}) \subseteq \mu + \alpha + L_p^{\sharp}$ .

We call such translate  $\alpha + L_p$  a nearest coset of *p*.

#### Theorem ( $\Lambda$ -linearity of types)

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}$$

For a type  $p \in S_n(\mathbb{R}\langle \xi \rangle)$ , there is a smallest linear subspace  $L_p \subseteq \mathbb{R}^n$ , and  $\alpha \in \mathbb{R}\langle \xi \rangle$ , such that  $p(\mathcal{R}) \subseteq \mu + \alpha + L_p^{\sharp}$ .

We call such translate  $\alpha + L_p$  a nearest coset of *p*.

#### Theorem ( $\Lambda$ -linearity of types)

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}$$

For a type  $p \in S_n(\mathbb{R}\langle \xi \rangle)$ , there is a smallest linear subspace  $L_p \subseteq \mathbb{R}^n$ , and  $\alpha \in \mathbb{R}\langle \xi \rangle$ , such that  $p(\mathcal{R}) \subseteq \mu + \alpha + L_p^{\sharp}$ .

We call such translate  $\alpha + L_p$  a nearest coset of *p*.

### Theorem ( $\Lambda$ -linearity of types)

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}$$

For a type  $p \in S_n(\mathbb{R}\langle \xi \rangle)$ , there is a smallest linear subspace  $L_p \subseteq \mathbb{R}^n$ , and  $\alpha \in \mathbb{R}\langle \xi \rangle$ , such that  $p(\mathcal{R}) \subseteq \mu + \alpha + L_p^{\sharp}$ .

We call such translate  $\alpha + L_p$  a nearest coset of *p*.

### Theorem ( $\Lambda$ -linearity of types)

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}$$

Let  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  be an  $\mathbb{R}_{om}$ -definable family of subsets of  $\mathbb{R}^n$ .

- If L<sub>j</sub><sup>Λ</sup> = ℝ<sup>n</sup> for some j = 1,...,s then T<sub>Λ</sub> is the only Hausdroff limit at ∞ of π<sub>Λ</sub>(F) := {π<sub>Λ</sub>(X<sub>t</sub>) : t ∈ (0,∞)}. This remains true if Λ is replaced by a finite index subgroup. Call it F is strongly Λ-dense in T<sub>Λ</sub>.
- 2. If  $L_j^{\Lambda} \neq \mathbb{R}^n$  for all j = 1, ..., s, then exists  $K \in \mathbb{N}$  such that for every subgroup  $\Lambda_0 \subseteq K \cdot \Lambda$ , no Hausdorff limit at  $\infty$  of  $\pi_{\Lambda_0}(\mathcal{F})$  is equal to  $\mathbb{T}_{\Lambda_0}$ .

Let  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  be an  $\mathbb{R}_{om}$ -definable family of subsets of  $\mathbb{R}^n$ .

- If L<sup>Λ</sup><sub>j</sub> = ℝ<sup>n</sup> for some j = 1,...,s then T<sub>Λ</sub> is the only Hausdroff limit at ∞ of π<sub>Λ</sub>(F) := {π<sub>Λ</sub>(X<sub>t</sub>) : t ∈ (0,∞)}. This remains true if Λ is replaced by a finite index subgroup. Call it F is strongly Λ-dense in T<sub>Λ</sub>.
- 2. If  $L_j^{\Lambda} \neq \mathbb{R}^n$  for all j = 1, ..., s, then exists  $K \in \mathbb{N}$  such that for every subgroup  $\Lambda_0 \subseteq K \cdot \Lambda$ , no Hausdorff limit at  $\infty$  of  $\pi_{\Lambda_0}(\mathcal{F})$  is equal to  $\mathbb{T}_{\Lambda_0}$ .

Let  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  be an  $\mathbb{R}_{om}$ -definable family of subsets of  $\mathbb{R}^n$ .

- If L<sup>Λ</sup><sub>j</sub> = ℝ<sup>n</sup> for some j = 1,...,s then T<sub>Λ</sub> is the only Hausdroff limit at ∞ of π<sub>Λ</sub>(F) := {π<sub>Λ</sub>(X<sub>t</sub>) : t ∈ (0,∞)}. This remains true if Λ is replaced by a finite index subgroup. Call it F is strongly Λ-dense in T<sub>Λ</sub>.
- 2. If  $L_j^{\Lambda} \neq \mathbb{R}^n$  for all j = 1, ..., s, then exists  $K \in \mathbb{N}$  such that for every subgroup  $\Lambda_0 \subseteq K \cdot \Lambda$ , no Hausdorff limit at  $\infty$  of  $\pi_{\Lambda_0}(\mathcal{F})$  is equal to  $\mathbb{T}_{\Lambda_0}$ .

Let  $\mathcal{F} = \{X_t : t \in (0, \infty)\}$  be an  $\mathbb{R}_{om}$ -definable family of subsets of  $\mathbb{R}^n$ .

- If L<sup>Λ</sup><sub>j</sub> = ℝ<sup>n</sup> for some j = 1,...,s then T<sub>Λ</sub> is the only Hausdroff limit at ∞ of π<sub>Λ</sub>(F) := {π<sub>Λ</sub>(X<sub>t</sub>) : t ∈ (0,∞)}. This remains true if Λ is replaced by a finite index subgroup. Call it F is strongly Λ-dense in T<sub>Λ</sub>.
- 2. If  $L_j^{\Lambda} \neq \mathbb{R}^n$  for all j = 1, ..., s, then exists  $K \in \mathbb{N}$  such that for every subgroup  $\Lambda_0 \subseteq K \cdot \Lambda$ , no Hausdorff limit at  $\infty$  of  $\pi_{\Lambda_0}(\mathcal{F})$  is equal to  $\mathbb{T}_{\Lambda_0}$ .

# $\mathcal{F}: X_t = t + [0,2] \subseteq \mathbb{R}, t \in (0,\infty).$

Since all  $X_t$  are bounded, the only associated nearest coset is  $L = \{0\}$ , so  $L^{\mathbb{Z}} = \{0\} \neq \mathbb{R}$ .

Still, for  $\Lambda = \mathbb{Z}_i$  or  $\Lambda = 2\mathbb{Z}$ , for all t,  $\pi_{\Lambda}(X_t) = \mathbb{T}_{\Lambda}$  (so all Hausdroff limits equal  $\mathbb{T}_{\Lambda}$ ).

However, if  $[\mathbb{Z} : \Lambda] \ge 3$  then all the Haudforff limits are partial arcs on the circle  $\mathbb{T}_{\Lambda}$ . So,  $\mathcal{F}$  is not strongly  $\mathbb{Z}$ -dense.

# $\mathcal{F}: X_t = t + [0,2] \subseteq \mathbb{R}, t \in (0,\infty).$

Since all  $X_t$  are bounded, the only associated nearest coset is  $L = \{0\}$ , so  $L^{\mathbb{Z}} = \{0\} \neq \mathbb{R}$ .

Still, for  $\Lambda = \mathbb{Z}_i$  or  $\Lambda = 2\mathbb{Z}$ , for all t,  $\pi_{\Lambda}(X_t) = \mathbb{T}_{\Lambda}$  (so all Hausdroff limits equal  $\mathbb{T}_{\Lambda}$ ).

However, if  $[\mathbb{Z} : \Lambda] \ge 3$  then all the Haudforff limits are partial arcs on the circle  $\mathbb{T}_{\Lambda}$ . So,  $\mathcal{F}$  is not strongly  $\mathbb{Z}$ -dense.

# We denote by $U_n(\mathbb{R})$ the group of real upper-triangular $n \times n$ matrices with 1's on the main diagonal.

By a unipotent group we mean a real algebraic subgroup  $G \subseteq U_n(\mathbb{R})$ . It is a nilpotent group and when abelian  $G \cong (\mathbb{R}^k, +)$ , for some *k*.

A lattice in *G* is a discrete subgroup  $\Lambda \subset G$  such that the quotient space  $G/\Lambda$  is compact.

The quotient  $M = G/\Lambda$  is called a nilmanifold (it not not a group!).

- We denote by  $U_n(\mathbb{R})$  the group of real upper-triangular  $n \times n$  matrices with 1's on the main diagonal.
- By a unipotent group we mean a real algebraic subgroup  $G \subseteq U_n(\mathbb{R})$ . It is a nilpotent group and when abelian  $G \cong (\mathbb{R}^k, +)$ , for some *k*.
- A lattice in *G* is a discrete subgroup  $\Lambda \subset G$  such that the quotient space  $G/\Lambda$  is compact.
- The quotient  $M = G/\Lambda$  is called a nilmanifold (it not not a group!).

We denote by  $U_n(\mathbb{R})$  the group of real upper-triangular  $n \times n$  matrices with 1's on the main diagonal.

By a unipotent group we mean a real algebraic subgroup  $G \subseteq U_n(\mathbb{R})$ . It is a nilpotent group and when abelian  $G \cong (\mathbb{R}^k, +)$ , for some *k*.

A lattice in *G* is a discrete subgroup  $\Lambda \subset G$  such that the quotient space  $G/\Lambda$  is compact.

The quotient  $M = G/\Lambda$  is called a nilmanifold (it not not a group!).

•  $\pi_{ab}: G \to G_{ab}$  is the quotient map. For a lattice  $\Lambda \subseteq G$ , let  $\Lambda_{ab} := \pi_{ab}(\Lambda)$  is a lattice in  $G_{ab}$ .

#### Theorem

•  $\pi_{ab}: G \to G_{ab}$  is the quotient map. For a lattice  $\Lambda \subseteq G$ , let  $\Lambda_{ab} := \pi_{ab}(\Lambda)$  is a lattice in  $G_{ab}$ .

#### Theorem

•  $\pi_{ab}: G \to G_{ab}$  is the quotient map. For a lattice  $\Lambda \subseteq G$ , let  $\Lambda_{ab} := \pi_{ab}(\Lambda)$  is a lattice in  $G_{ab}$ .

#### Theorem

•  $\pi_{ab}: G \to G_{ab}$  is the quotient map. For a lattice  $\Lambda \subseteq G$ , let  $\Lambda_{ab} := \pi_{ab}(\Lambda)$  is a lattice in  $G_{ab}$ .

#### Theorem

- Uniformity of the closure problem, in parameters.
- Equidistribution for  $X \subseteq \mathbb{R}^n$  with  $\dim X > 1$ .
- Describe explicitly all the family of Hausdorff limits of a definable family *F* (we only knew then the family is strongly Λ-dense in T<sub>Λ</sub>).
- ► Replace unipotent groups by reductive groups: E.g. the closure problem for definable subsets of SL(n, ℝ) and quotients by lattices.