Tarski Lecture II

The interplay of o-minimality and discrete subgroups

Kobi Peterzil U. of Haifa Sergei Starchenko U. of Notre Dame

April 24, 2024

Recalling the problem

Fix \mathbb{R}_{om} an o-minimal expansion of the real field.

The closure problem

Given a definable set $X \subseteq \mathbb{R}^n$ in \mathbb{R}_{om} , and a lattice $\Lambda \subseteq \mathbb{R}^n$, what is the topological closure of $\pi(X)$ in $\mathbb{T} = \mathbb{R}^n / \Lambda$?

Equivalently, what is the closure of $X + \Lambda$ in \mathbb{R}^n ?

We fixed $\mathcal{R} \succ \mathbb{R}_{full}$ which is $|\mathbb{R}|^+$ -saturated. For $S \subseteq \mathbb{R}^n$ let $S^{\sharp} = S(\mathcal{R})$.

Let $\mathcal{O} = \{ \alpha \in \mathcal{R} : \exists r \in \mathbb{R} |\alpha| < r \}$, the ring of finite elements, and $\mu = \{ \epsilon \in \mathcal{R} : \forall r \in \mathbb{R} |\epsilon| < r \}$, the ideal of infinitesimals.

We have $\mathcal{O} = \mathbb{R} \oplus \mu$ and denote by $st : \mathcal{O} \to \mathbb{R}$ the "standard part map".

Fact. For $S \subseteq \mathbb{R}^n$ we have $cl(S) = st(S^{\sharp}) := st(S^{\sharp} \cap \mathcal{O}^n)$.

The non-standard formulation

What is $\operatorname{st}(X^{\sharp} + \Lambda^{\sharp}) \subseteq \mathbb{R}^{n}$?

Reducing the problem

We also have,
$$\operatorname{st}(X^{\sharp} + \Lambda^{\sharp}) = \bigcup_{p \in S_X(\mathbb{R})} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp}).$$

Localizing the problem

For a complete o-minimal type $p \in S_n(\mathbb{R})$ and a lattice $\Lambda \subseteq \mathbb{R}^n$ describe the set $\operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$.

Remark

For any set $Y \subseteq \mathcal{R}^n$ we have $\operatorname{st}(Y) = \operatorname{st}(\mu + Y)$.

Theorem (Λ -linearity of types)

For any complete o-minimal type $p \in S_n(\mathbb{R})$ there are $a_p \in \mathbb{R}^n$ and a linear subspace $L_p \subseteq \mathbb{R}^n$ such that for any lattice $\Lambda \subseteq \mathbb{R}^n$ we have

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}.$$

Recall

A structure on \mathbb{R} is o-minimal if every definable subset of \mathbb{R} is a finite union of intervals with end points in $\mathbb{R} \cup \{\pm \infty\}$.

In particular, every definable discrete subset of \mathbb{R}^n is finite.

Thus, a lattice $\Lambda \subseteq \mathbb{R}^n$, and $\pi : \mathbb{R}^n \to \mathbb{T} = \mathbb{R}^n / \Lambda$ are **not** definable in any o-minimal structure.

So, in general, the set $X + \Lambda$ is not definable in any o-minimal structure.

How can we use o-minimality?

"Linearize" $\mu + p(\mathcal{R})$ independently of Λ .

 μ -stabilizers of o-minimal types play major role.

For simplicity, we mostly consider one-dimensional types, i.e. types on o-minimal curves at ∞ .

Let $\gamma: (0,\infty) \to \mathbb{R}^n$ be an \mathbb{R}_{om} -definable curve.

For any \mathbb{R}_{om} -definable set $X \subseteq \mathbb{R}^n$ exactly one of the sets $\{t \in (0, \infty) : \gamma(t) \in X\}$ for $\{t \in (0, \infty) : \gamma(t) \in \neg X\}$ is unbounded.

Thus there is a unique complete \mathbb{R}_{om} -type over \mathbb{R} , containing all sets $\{\gamma(t): t > r\}$, for $r \in \mathbb{R}$.

For $p \in S_n(\mathbb{R})$, we let

 $\mathrm{Stab}_{\mu}(p) = \{g \in \mathbb{R}^n : g + \mu + p(\mathcal{R}) = \mu + p(\mathcal{R})\},\$

and call it the μ -stabilizer of p.

Theorem (2015)

1. Stab_{μ}(*p*) is a definable subgroup (linear subspace) of \mathbb{R}^n .

2. If *p* is unbounded then $\dim(\operatorname{Stab}_{\mu}(p)) > 0$.

An analogue holds for **any** definable group in \mathbb{R}_{om} .

The intuition

Unbounded o-minimal types are almost "flat".

Example

Example

Below *p* is the type on a curve γ at ∞

- When $\lim_{t\to\infty} \gamma(t) = a$, for $a \in \mathbb{R}^2$, then $\operatorname{Stab}_{\mu}(p) = \{0\}$.
- When $\gamma(t) = (t, 1/(t+1))$, then $\operatorname{Stab}_{\mu}(p) = \mathbb{R} \times \{0\}$.
- When $\gamma(t) = (t, t^2)$, then $\operatorname{Stab}_{\mu}(p) = \{0\} \times \mathbb{R}$.

Linearizing $\mu + p(\mathcal{R})$: The nearest coset

For a type $p \in S_n(\mathbb{R})$, consider all affine subspaces, $A = a + L \subseteq \mathbb{R}^n$ (*L* a linear subspace) defined over \mathbb{R} , such that $p(\mathcal{R}) \subseteq \mu + A^{\sharp}$.

Definition+Fact

The intersection A_p of all the above affine spaces is itself an affine space defined over \mathbb{R} , and $p(\mathcal{R}) \subseteq \mu + A_p^{\sharp}$. We call it the nearest coset to p and denote by A_p .

Note

For a type $p \in S_n(\mathbb{R})$, A_p is invariant under $\operatorname{Stab}_{\mu}(p)$.

▶ Indeed, if $g \in \operatorname{Stab}_{\mu}(p)$, $g + \mu + p(\mathcal{R}) = \mu + p(\mathcal{R})$.

Since $p(\mathcal{R}) \subseteq \mu + A_p^{\sharp}$, we have

 $\mu + p(\mathcal{R}) = g + \mu + p(\mathcal{R}) \subseteq g + \mu + A_p^{\sharp} = \mu + (g + A_p)^{\sharp}.$

From the minimality of A_p , we conclude $g + A_p = A_p$.

Example:

Below p is the type on a curve γ at ∞ When $\lim_{t\to\infty} \gamma(t) = a$, for $a \in \mathbb{R}^2$, then $A_p = \{0\}$. When $\gamma(t) = (t, 1/(t+1))$, then $A_p = \mathbb{R} \times \{a\}$. When $\gamma(t) = (t, t^2)$, then $A_p = \mathbb{R}^2$. $y > \mathbb{R}$ p(t)R R $x > \mathbb{R}$ Notice: for $\alpha \models p$ we have $\alpha + \operatorname{Stab}_{\mu}(p) \subseteq \mu + p(\mathcal{R}) \subseteq \mu + A_p^{\sharp}$.

Theorem (Λ -linearity of types)

Let $p \in S_n(\mathbb{R})$, with $A_p = a_p + L_p$. Then for every lattice $\Lambda \subseteq \mathbb{R}^n$,

$$\mu + p(\mathcal{R}) + \Lambda^{\sharp} = \mu + a_p + L_p^{\sharp} + \Lambda^{\sharp}.$$

Proof.

- ▶ If $p(\mathcal{R})$ is bounded, i.e. $p(\mathcal{R}) \subseteq a + \mu$ for some $a \in \mathbb{R}^n$, then $A_p = \{a\}$ and the theorem follows.
- ► Asume p(R) is unbounded. Then Stab_µ(p) is infinite, and both sides are invariant under Stab_µ(p).
- Use factorization by $\operatorname{Stab}_{\mu}(p)^{\Lambda}$ to reduce dimension.

Back to the closure theorem

Corollary (First Main Step)

If $X \subseteq \mathbb{R}^n$ is definable then for any lattice $\Lambda \subseteq \mathbb{R}^n$, $\operatorname{cl}(X + \Lambda) = \operatorname{st}(X^{\sharp} + \Lambda^{\sharp}) = \bigcup_{p \in S_X(\mathbb{R})} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp}) =$ $\bigcup_{p \in S_X(\mathbb{R})} \operatorname{st}(p(a_p + L_p^{\sharp} + \Lambda^{\sharp}) = \bigcup_{p \in S_X(\mathbb{R})} \operatorname{cl}(a_p + L_p + \Lambda) =$ $\bigcup_{p \in S_X(\mathbb{R})} (a_p + L_p^{\Lambda} + \Lambda).$

Next step:

Simplify

$$\bigcup_{\in S_X(\mathbb{R})} (a_p + L_p^{\Lambda} + \Lambda).$$

p

The definability of the collection of nearest cosets

Let $X \subseteq \mathbb{R}^n$ be definable in \mathbb{R}_{om} . Applying the theory of Tame Pairs (v.d. Dries), we obtain

Theorem

The family of nearest cosets $\{A_p : p \in S_X(\mathbb{R})\}$ is definable in \mathbb{R}_{om} .

Corollary (Definability)

There is a definable family of affine subspaces of \mathbb{R}^n , $\{a_t + L_t : t \in T\}$ (depending only on *X*) such that for any lattice $\Lambda \subseteq \mathbb{R}^n$,

$$\operatorname{cl}(X + \Lambda) = \bigcup_{t \in T} (a_t + L_t^{\Lambda} + \Lambda).$$

The closure theorem

Using Baire Category Theorem and o-minimal cell decomposition, we conclude:

Theorem

Let $X \subseteq \mathbb{R}^n$ be closed, definable in \mathbb{R}_{om} . Then there are infinite \mathbb{R} -subspaces $L_1, \ldots, L_r \subseteq \mathbb{R}^n$, and definable closed sets $C_1, \ldots, C_r \subseteq \mathbb{R}^n$ such that for every lattice $\Lambda \subseteq \mathbb{R}^n$

$$\operatorname{cl}_{\mathbb{R}^n}(X+\Lambda) = \left[X \cup \bigcup_{i=1}^r (L_i^\Lambda + C_i)\right] + \Lambda.$$

Hence for $\pi : \mathbb{R}^n \to \mathbb{T} = \mathbb{R}^n / \Lambda$ we have $\operatorname{cl}_{\mathbb{T}}(\pi(X)) = \pi(X) \cup \bigcup_{i=1}^r (T_i + \pi(C_i)),$

where $T_i = \pi(L_i^{\Lambda})$ are real subtori of \mathbb{T} .

Corollary

Given $X \subseteq \mathbb{R}^n$ definable in \mathbb{R}_{om} , and a lattice $\Lambda \subseteq \mathbb{R}^n$, there is an \mathbb{R}_{om} -definable set $Y_{\Lambda} \subseteq \mathbb{R}^n$, such that

 $\operatorname{cl}(\pi(X)) = \pi(Y_{\Lambda}).$

Addendum: on equidistribution

Let $\mathbb{T} = \mathbb{R}^n / \mathbb{Z}^n$ be a torus and $\pi \colon \mathbb{R}^n \to \mathbb{T}$ the projection map.

Let $\gamma(t) \colon \mathbb{R}^{\geq 0} \to \mathbb{R}^n$ be a definable curve in \mathbb{R}_{om} , and for $R \geq 0$ let $\gamma_R = \gamma \cap B(0, R)$.

For $X \subseteq \mathbb{T}$ let $\mu_{\gamma,R}(X) = \frac{\text{length of } (\gamma_R \cap \pi^{-1}(X))}{\text{length of } \gamma_R}$.

Each $\mu_{\gamma,R}$ is a probability measure on \mathbb{T} .

Theorem (P-S, Ulmo-Yafaev for semialgebraic curves)

Assume \mathbb{R}_{om} is polynomially bounded. Then $\operatorname{cl}_{\mathbb{T}}(\pi(\gamma)) = \mathbb{T}$ if and only if

 $\lim_{R\to\infty}\mu_{\gamma,R}=\mu_{\mathbb{T}},$

where $\mu_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Namely, $\pi(\gamma)$ is dense in \mathbb{T} iff it is "equidistributed" in \mathbb{T} .

Equidistribution fails in general o-minimal structures.

Example

Let $\gamma(t) : \mathbb{R}^{\geq 0} \to \mathbb{R}^2$ be given by x = t, $y = e^t$. Then $\pi(\gamma)$ is dense in $\mathbb{T} = \mathbb{R}^2/\mathbb{Z}^2$.

But, the family of measures $\mu_{\gamma,R}$ does not converge (as *R* goes to infinity).