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Recalling the problem

Fix Rom an o-minimal expansion of the real field.

The closure problem
Given a definable set X ⊆ Rn in Rom, and a lattice Λ ⊆ Rn, what is the
topological closure of π(X) in T = Rn/Λ?

Equivalently, what is the closure of X + Λ in Rn?

We fixed R � Rfull which is |R|+-saturated. For S ⊆ Rn let S] = S(R).

Let O = {α ∈ R : ∃r ∈ R |α| < r}, the ring of finite elements,
and µ = {ε ∈ R : ∀r ∈ R |ε| < r}, the ideal of infinitesimals.

We have O = R⊕ µ and denote by st : O → R the “standard part map”.

Fact. For S ⊆ Rn we have cl(S) = st(S]) := st(S] ∩ On).

The non-standard formulation
What is st(X] + Λ]) ⊆ Rn?
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Reducing the problem

We also have, st(X] + Λ]) =
⋃

p∈SX(R)

st(p(R) + Λ]).

Localizing the problem
For a complete o-minimal type p ∈ Sn(R) and a lattice Λ ⊆ Rn describe
the set st(p(R) + Λ]).

Remark
For any set Y ⊆ Rn we have st(Y) = st(µ+ Y).

Theorem (Λ-linearity of types )
For any complete o-minimal type p ∈ Sn(R) there are ap ∈ Rn and a
linear subspace Lp ⊆ Rn such that for any lattice Λ ⊆ Rn we have

µ+ p(R) + Λ] = µ+ ap + L]p + Λ].
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O-minimality vs. discrete subgroups

Recall
A structure on R is o-minimal if every definable subset of R is a finite
union of intervals with end points in R ∪ {±∞}.

In particular, every definable discrete subset of Rn is finite.

Thus, a lattice Λ ⊆ Rn, and π : Rn → T = Rn/Λ are not definable in
any o-minimal structure.

So, in general, the set X + Λ is not definable in any o-minimal structure.

How can we use o-minimality?
“Linearize” µ+ p(R) independently of Λ.

µ-stabilizers of o-minimal types play major role.

For simplicity, we mostly consider one-dimensional types, i.e. types on
o-minimal curves at∞.

K. Peterzil and S. Starchenko O-minimality and discrete subgroups 4



O-minimal detour I: one dimensional types

Let γ : (0,∞)→ Rn be an Rom-definable curve.

For any Rom-definable set X ⊆ Rn exactly one of the sets
{t ∈ (0,∞) : γ(t) ∈ X} for {t ∈ (0,∞) : γ(t) ∈ ¬X} is unbounded.

Thus there is a unique complete Rom-type over R, containing all sets
{γ(t) : t > r}, for r ∈ R.
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Linearizing µ + p(R): first step

For p ∈ Sn(R), we let

Stabµ(p) = {g ∈ Rn : g + µ+ p(R) = µ+ p(R)},

and call it the µ-stabilizer of p.

Theorem (2015)
1. Stabµ(p) is a definable subgroup (linear subspace) of Rn.
2. If p is unbounded then dim(Stabµ(p)) > 0.

An analogue holds for any definable group in Rom.

The intuition
Unbounded o-minimal types are almost “flat”.
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Example

Example
Below p is the type on a curve γ at∞
I When limt→∞ γ(t) = a, for a ∈ R2, then Stabµ(p) = {0}.
I When γ(t) = (t, 1/(t + 1)), then Stabµ(p) = R× {0}.
I When γ(t) = (t, t2), then Stabµ(p) = {0} × R.

aγ(t)

γ(t) = (t, 1/(1 + t))

γ
(t
)
=
(t
, t

2 )

R x > R

R

y
>
R
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Linearizing µ + p(R): The nearest coset

For a type p ∈ Sn(R), consider all affine subspaces, A = a + L ⊆ Rn (L
a linear subspace) defined over R, such that p(R) ⊆ µ+ A].

Definition+Fact
The intersection Ap of all the above affine spaces is itself an affine
space defined over R, and p(R) ⊆ µ+ A]p. We call it the nearest coset
to p and denote by Ap.

Note
For a type p ∈ Sn(R), Ap is invariant under Stabµ(p).

I Indeed, if g ∈ Stabµ(p), g + µ+ p(R) = µ+ p(R).
I Since p(R) ⊆ µ+ A]p, we have

µ+ p(R) = g + µ+ p(R) ⊆ g + µ+ A]p = µ+ (g + Ap)].

I From the minimality of Ap, we conclude g + Ap = Ap.
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Example:

Below p is the type on a curve γ at∞

When limt→∞ γ(t) = a, for a ∈ R2, then Ap = {0}.

When γ(t) = (t, 1/(t + 1)), then Ap = R× {a}.

When γ(t) = (t, t2), then Ap = R2.

aγ(t)

γ(t) = (t, 1/(1 + t)) p(t)

γ
(t
)
=
(t
, t

2 )

p(t)

R x > R

R

y
>
R

Notice: for α |= p we have α+ Stabµ(p) ⊆ µ+ p(R) ⊆ µ+ A]p.
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O-minimal types are linear mod lattices

Theorem (Λ-linearity of types)
Let p ∈ Sn(R), with Ap = ap + Lp. Then for every lattice Λ ⊆ Rn,

µ+ p(R) + Λ] = µ+ ap + L]p + Λ].

Proof.
I If p(R) is bounded, i.e. p(R) ⊆ a + µ for some a ∈ Rn, then

Ap = {a} and the theorem follows.
I Asume p(R) is unbounded. Then Stabµ(p) is infinite, and both

sides are invariant under Stabµ(p).
I Use factorization by Stabµ(p)Λ to reduce dimension.
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Back to the closure theorem

Corollary (First Main Step)
If X ⊆ Rn is definable then for any lattice Λ ⊆ Rn,

cl(X + Λ) = st(X] + Λ]) =
⋃

p∈SX(R)

st(p(R) + Λ]) =

⋃
p∈SX(R)

st(p(ap + L]p + Λ]) =
⋃

p∈SX(R)

cl(ap + Lp + Λ) =

⋃
p∈SX(R)

(ap + LΛ
p + Λ).

Next step:
Simplify ⋃

p∈SX(R)

(ap + LΛ
p + Λ).
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The definability of the collection of nearest cosets

Let X ⊆ Rn be definable in Rom. Applying the theory of Tame Pairs (v.d.
Dries), we obtain

Theorem
The family of nearest cosets {Ap : p ∈ SX(R)} is definable in Rom.

Corollary (Definability)
There is a definable family of affine subspaces of Rn, {at + Lt : t ∈ T}
(depending only on X) such that for any lattice Λ ⊆ Rn,

cl(X + Λ) =
⋃
t∈T

(at + LΛ
t + Λ).
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The closure theorem

Using Baire Category Theorem and o-minimal cell decomposition, we
conclude:

Theorem
Let X ⊆ Rn be closed, definable in Rom.
Then there are infinite R-subspaces L1, . . . ,Lr ⊆ Rn, and definable
closed sets C1, . . . ,Cr ⊆ Rn such that for every lattice Λ ⊆ Rn

clRn(X + Λ) =
[
X ∪

r⋃
i=1

(LΛ
i + Ci)

]
+ Λ.

Hence for π : Rn → T = Rn/Λ we have

clT(π(X)) = π(X) ∪
r⋃

i=1

(Ti + π(Ci)),

where Ti = π(LΛ
i ) are real subtori of T.
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A curious corollary

Corollary
Given X ⊆ Rn definable in Rom, and a lattice Λ ⊆ Rn, there is an
Rom-definable set YΛ ⊆ Rn, such that

cl(π(X)) = π(YΛ).
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Addendum: on equidistribution

Let T = Rn/Zn be a torus and π : Rn → T the projection map.

Let γ(t) : R>0 → Rn be a definable curve in Rom, and for R > 0 let
γR = γ ∩ B(0,R).

For X ⊆ T let µγ,R(X) =
length of (γR ∩ π−1(X))

length of γR
.

Each µγ,R is a probability measure on T.

Theorem (P-S, Ulmo-Yafaev for semialgebraic curves)
Assume Rom is polynomially bounded.
Then clT(π(γ)) = T if and only if

lim
R→∞

µγ,R = µT,

where µT is the Haar measure on T.

Namely, π(γ) is dense in T iff it is “equidistributed” in T.
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On Equidistribution

Equidistribution fails in general o-minimal structures.

Example
Let γ(t) : R>0 → R2 be given by x = t, y = et.
Then π(γ) is dense in T = R2/Z2.

But, the family of measures µγ,R does not converge (as R goes to
infinity).
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