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The closure problem

The general question

Let T be an abelian variety or a compact torus.

For K =Ror K =C,letr: K" — T be the covering map.
Given a “tame” set X C K" (e.g. semialgebraic).
What is the closure of 7 (X) in T?
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Some history: Ax, Lindemann, Weierstrass

Theorem (Lindemann (1882)-Weierstrass (1885))
Letoy, ..., «a, € C be algebraic numbers. If oy, .. ., o, are Q-linearly

independent then ¢*1, . . ., e“m are algebraically independent over Q.

Theorem (Ax (1972))
Let X C C" be an irreducible complex algebraic variety and

ay,...,q, € C[X] regular functions on X. If oy, . .., o, are Q-linearly
independent modulo C then ¢, ... e“ are algebraically independent
over C.

Theorem (Ax-Lindemann for complex tori, geometric version )

LetT be a compact complex torus and =: C" — T be a covering map.
If X C C" is an irreducible algebraic variety then the complex analytic
Zariski closure of m(X) in T is a translate of a complex subtorus of T

v
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From Zariski closure to topological closure

Theorem (Ax-Lindemann for complex tori, geometric version )

LetT be a compact complex torus and =: C" — T be a covering map.
If X C C" is an irreducible algebraic variety then the complex analytic
Zariski closure of m(X) in T is a translate of a complex subtorus of T

v

Ullmo-Yafaev, 2015

What can be said about the topological closure of 7 (X) in T?

Does a version of Ax-Lindemann Theorem hold for it?

When X C C" is an algebraic curve, Ullmo and Yafaev described the
closure 7(X) in terms of cosets of real subtori of A.
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Placing the problem in R”

Even for X C C" algebraic, the closure of 7(X) brings-in real tori, hence
the problem fits better into the real (not complex) setting:
> Let A = P! | Zw; be a lattice in R”, i.e. A is a subgroup generated
by a basis (wi,...,w,) of R". Let T be the quotient group R"/A.

» The group T, is called an n-dimensional (real) torus, and admits
the structure of a compact Lie group.

> Let 7y : R” — T be the quotient map. It is a smooth group
homomorphism and ker(my) = A.

Reformulating the problem

Given a “tame” set X C R”, and a lattice A C R”, what can be said
about the topological closure of 74 (X) in Tp?
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Tameness and o-minimality

For the rest of the talks, we take “tame” to mean o-minimal.

Recall that the following structures are o-minimal:

(R; <, 4+, -) (Tarski)

The definable sets are semi-algebraic. E.g. solutions to p(x) > 0, for
p(x) € R[x].

Reyp = (R; <,+, -, e*) (Wilkie)

E.g. solutions to Jxp(e*, e, x,y,z) > 0, for p(x) € R[x].

Ranexp = (Rexp (F1]0, 1]")sex) (van den Dries - Miller)

The expansion of R, by all restricted real analytic functions. E.g.
solutions to Vz arctan(e®™* — y> + 3z) > 0, forx € [-1,1],y € R.
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O-minimality and closure

From now on, we fix an o-minimal structure R, = (R; <, +,-,--).

The o-minimal formulation

Given a definable set X € R" in R,,,, and a lattice A C R", what can we
say about the topological closure of 74 (X) in Ty ?

When the setting is clear we use = and T instead of 5 and Tj.

Observation
For any X C R" we have cl(7(X)) = 7(cl(X + A)).

So, from now one we work with cl(X + A) in R” (instead of cl(7(X))).
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Xvs X+ Avsm(x(X)

P + 72
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Examples

An important example: linear spaces

> Assume that L C R” is an R-subspace.
» Then cl(L + A) is a real Lie subgroup of R”

> Its connected component is an R-subspace, with a basis in A.
Denote it by L*. It is the smallest R-subspace of R”, containing L
with a basis in A and cl(L + A) = L* + A.

» (L") is a (closed) real subtorus of T.

L: y=01x
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Some Examples: Curves on Tori

. . 1
Let X be the semialgebraic curve y = P x> 0.
X

We translate it to the fundamental domain by elements of 7>

We have cl(X + 7Z?) = (X U (x-axis)) + Z2.
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Some Examples: Curves on Tori

Let X be the semialgebraic curve x = y?, y > 0.
We translate it to the fundamental domain by elements of 7.

/

after 100 translates

We have cl(X + 7?) = R”.
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A uniform closure theorem

Recall thal if L C R” is a linear subspace and A C R” is a lattice then
L" is the smallest linear subspace containing L with a basis in A.

(Theorem

Let X C R” be a closed definable set in R,,,. Then there are
R-subspaces L, ...,L; C R", and definable closed sets
Ci,...,Cr C R" such that for every lattice A C R”,

k
clge (X + A) = {X vt + C,-)} +A.

i=1

l.e.
k

elr, (ma (X)) = ma(X) U | J(T: + 7a(C)),

i=1

where 7; = 7(L}) are real subtori of T.
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A model theoretic approach

>

v

Let Ry, be the expansion of R by all subsets of R”, n € N.

And let R - Ry, be an |R|*-saturated elementary extension.
For X C IR", let X* denote its realization in .
Let O = {a € R: Jr € R |a| < r}, the ring of finite elements.

Let = {e € R :Vr € R |¢| < r}, the infinitesimals, a maximal ideal
in 0. We have O = R & p.

Let st : O — R denote the standard part map (also, the residue
map). Namely, st(«) = the unique r € R such that « € r + p.

We extend it coordinate-wise to st : O" — R”".

Fory C R, letst(Y) :=st(O"NY).
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Closure through the standard part map

A key observation
If Y C R" then cl(Y) = st(Y*).

Proof
» Assume a € cl(Y).
Then B(a,r)NY # & for every r ¢ R-Y.
By saturation, there is o € (1] B*(a,r) N Y*.
I”E]R>()
Obviously st(a) = a. Hence cl(Y) C st(Y?).
» Assume a = st(a), for a € Y%, Then |a — a| € 1, hence

Y* N B(a,r) # @ for every r € R-Y, Thus, the same is true in Ry,
Soa € cl(Y).

The non-standard formulation of the question

For X C R” definable in the o-minimal structure R, and for a lattice
A C R, what is st(X* + A%) C R"?
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Complete o-minimal types appear

We have X C R" definable in R,,.

Partition into types

Let Sx(R) be the collection of all complete R,,-types over R, on X (i.e.
containing the formula x € X).

For p(x) € Sx(R), we let p(R) be its set of realizations in R.
We have:

st X+ A = | st(p(R) + A
pESx(R)

The new question

For a complete type p € Sx(R), what is st(p(R) + A%)?
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