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Lecture I

Closures and flows in real tori:
a model theoretic approach
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The closure problem

The general question
Let T be an abelian variety or a compact torus.

For K = R or K = C, let π : Kn → T be the covering map.

Given a “tame” set X ⊆ Kn (e.g. semialgebraic).

What is the closure of π(X) in T?

y=log(x)

π
======⇒
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Some history: Ax, Lindemann, Weierstrass

Theorem (Lindemann (1882)-Weierstrass (1885))
Let α1, . . . , αm ∈ C be algebraic numbers. If α1, . . . , αm are Q-linearly
independent then eα1 , . . . , eαm are algebraically independent over Q.

Theorem (Ax (1972))
Let X ⊆ Cn be an irreducible complex algebraic variety and
α1, . . . , αm ∈ C[X] regular functions on X. If α1, . . . , αm are Q-linearly
independent modulo C then eα1 , . . . , eαm are algebraically independent
over C.

Theorem (Ax-Lindemann for complex tori, geometric version )
Let T be a compact complex torus and π : Cn → T be a covering map.
If X ⊆ Cn is an irreducible algebraic variety then the complex analytic
Zariski closure of π(X) in T is a translate of a complex subtorus of T
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From Zariski closure to topological closure

Theorem (Ax-Lindemann for complex tori, geometric version )
Let T be a compact complex torus and π : Cn → T be a covering map.
If X ⊆ Cn is an irreducible algebraic variety then the complex analytic
Zariski closure of π(X) in T is a translate of a complex subtorus of T

Ullmo-Yafaev, 2015
What can be said about the topological closure of π(X) in T?

Does a version of Ax-Lindemann Theorem hold for it?

When X ⊆ Cn is an algebraic curve, Ullmo and Yafaev described the
closure π(X) in terms of cosets of real subtori of A.
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Placing the problem in Rn

Even for X ⊆ Cn algebraic, the closure of π(X) brings-in real tori, hence
the problem fits better into the real (not complex) setting:
I Let Λ =

⊕n
i=1 Zωi be a lattice in Rn, i.e. Λ is a subgroup generated

by a basis (ω1, . . . , ωn) of Rn. Let TΛ be the quotient group Rn/Λ.

I The group TΛ is called an n-dimensional (real) torus, and admits
the structure of a compact Lie group.

I Let πΛ : Rn → T be the quotient map. It is a smooth group
homomorphism and ker(πΛ) = Λ.

Reformulating the problem
Given a “tame” set X ⊆ Rn, and a lattice Λ ⊆ Rn, what can be said
about the topological closure of πΛ(X) in TΛ?
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Tameness and o-minimality

For the rest of the talks, we take “tame” to mean o-minimal.

Recall that the following structures are o-minimal:

〈R;<,+, ·〉 (Tarski)

The definable sets are semi-algebraic. E.g. solutions to p(x̄) > 0, for
p(x̄) ∈ R[x̄].

Rexp = 〈R;<,+, ·, ex〉 (Wilkie)

E.g. solutions to ∃x p(ex, eey
, x, y, z) > 0, for p(x̄) ∈ R[x̄].

Ran,exp = 〈Rexp, (f �[0, 1]n)f∈F〉 (van den Dries - Miller)
The expansion of Rexp by all restricted real analytic functions. E.g.
solutions to ∀z arctan(esin x − y2 + 3z) > 0, for x ∈ [−1, 1], y ∈ R.
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O-minimality and closure

From now on, we fix an o-minimal structure Rom = 〈R;<,+, ·, · · ·〉.

The o-minimal formulation
Given a definable set X ⊆ Rn in Rom, and a lattice Λ ⊆ Rn, what can we
say about the topological closure of πΛ(X) in TΛ?

When the setting is clear we use π and T instead of πΛ and TΛ.

Observation
For any X ⊆ Rn we have cl(π(X)) = π(cl(X + Λ)).

So, from now one we work with cl(X + Λ) in Rn (instead of cl(π(X))).
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X vs X + Λ vs π(Λ(X)

P

π
===⇒

⇐= ⇐⇒

P

P + Z2

=⇒
F
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Examples

An important example: linear spaces
I Assume that L ⊆ Rn is an R-subspace.
I Then cl(L + Λ) is a real Lie subgroup of Rn

I Its connected component is an R-subspace, with a basis in Λ.
Denote it by LΛ. It is the smallest R-subspace of Rn, containing L
with a basis in Λ and cl(L + Λ) = LΛ + Λ.

I π(LΛ) is a (closed) real subtorus of T.

L : y = 0.1x

L+ Z2

L+ Z2

=⇒
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Some Examples: Curves on Tori

Let X be the semialgebraic curve y =
1

x + 1
, x > 0.

We translate it to the fundamental domain by elements of Z2

y = 1
x+1

We have cl(X + Z2) =
(

X ∪ (x-axis)
)

+ Z2.

K. Peterzil and S. Starchenko Closure and flows 12



Some Examples: Curves on Tori

Let X be the semialgebraic curve x = y2, y > 0.
We translate it to the fundamental domain by elements of Z2.

x = y2

after 100 translates

We have cl(X + Z2) = R2.
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A uniform closure theorem

Recall thal if L ⊆ Rn is a linear subspace and Λ ⊆ Rn is a lattice then
LΛ is the smallest linear subspace containing L with a basis in Λ.

Theorem
Let X ⊆ Rn be a closed definable set in Rom. Then there are
R-subspaces L1, . . . ,Lk ⊆ Rn, and definable closed sets
C1, . . . ,Ck ⊆ Rn such that for every lattice Λ ⊆ Rn,

clRn(X + Λ) =
[
X ∪

k⋃
i=1

(LΛ
i + Ci)

]
+ Λ.

I.e.

clTΛ
(πΛ(X)) = πΛ(X) ∪

k⋃
i=1

(Ti + πΛ(Ci)),

where Ti = π(LΛ
i ) are real subtori of TΛ.
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A model theoretic approach

I Let Rfull be the expansion of R by all subsets of Rn, n ∈ N.

And let R � Rfull be an |R|+-saturated elementary extension.
I For X ⊆ Rn, let X] denote its realization in R.
I Let O = {α ∈ R : ∃r ∈ R |α| < r}, the ring of finite elements.
I Let µ = {ε ∈ R : ∀r ∈ R |ε| < r}, the infinitesimals, a maximal ideal

in O. We have O = R⊕ µ.
I Let st : O → R denote the standard part map (also, the residue

map). Namely, st(α) = the unique r ∈ R such that α ∈ r + µ.

We extend it coordinate-wise to st : On → Rn.

I For Y ⊆ Rn, let st(Y) : = st(On ∩ Y).
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Closure through the standard part map

A key observation

If Y ⊆ Rn then cl(Y) = st(Y]).

Proof
I Assume a ∈ cl(Y).

Then B(a, r) ∩ Y 6= ∅ for every r ∈ R>0.
By saturation, there is α ∈

⋂
r∈R>0

B](a, r) ∩ Y].

Obviously st(α) = a. Hence cl(Y) ⊆ st(Y]).
I Assume a = st(α), for α ∈ Y]. Then |a− α| ∈ µ, hence

Y] ∩ B(a, r) 6= ∅ for every r ∈ R>0. Thus, the same is true in Rfull,
so a ∈ cl(Y).

The non-standard formulation of the question
For X ⊆ Rn definable in the o-minimal structure Rom and for a lattice
Λ ⊆ Rn, what is st(X] + Λ]) ⊆ Rn?
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Complete o-minimal types appear

We have X ⊆ Rn definable in Rom.

Partition into types
Let SX(R) be the collection of all complete Rom-types over R, on X (i.e.
containing the formula x ∈ X).

For p(x) ∈ SX(R), we let p(R) be its set of realizations in R.

We have:

st(X] + Λ]) =
⋃

p∈SX(R)

st(p(R) + Λ]).

The new question
For a complete type p ∈ SX(R), what is st(p(R) + Λ])?
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