Tarski lectures 2024 UC Berkeley

Kobi Peterzil U. of Haifa Sergei Starchenko U. of Notre Dame

April 2024

Lecture I: Closures and flows in real tori: a model theoretic approach

Lecture II: The interplay of o-minimality and discrete groups

Lecture III: From closures to Hausdorff limits, in tori and nilmanifolds

Lecture I

Closures and flows in real tori: a model theoretic approach

Kobi Peterzil U. of Haifa Sergei Starchenko U. of Notre Dame

April 22, 2024

The general question

Let \mathbb{T} be an abelian variety or a compact torus.

For $K = \mathbb{R}$ or $K = \mathbb{C}$, let $\pi : K^n \to \mathbb{T}$ be the covering map.

Given a "tame" set $X \subseteq K^n$ (e.g. semialgebraic).

What is the closure of $\pi(X)$ in \mathbb{T} ?

Some history: Ax, Lindemann, Weierstrass

Theorem (Lindemann (1882)-Weierstrass (1885))

Let $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ be algebraic numbers. If $\alpha_1, \ldots, \alpha_m$ are \mathbb{Q} -linearly independent then $e^{\alpha_1}, \ldots, e^{\alpha_m}$ are algebraically independent over \mathbb{Q} .

Theorem (Ax (1972))

Let $X \subseteq \mathbb{C}^n$ be an irreducible complex algebraic variety and $\alpha_1, \ldots, \alpha_m \in \mathbb{C}[X]$ regular functions on *X*. If $\alpha_1, \ldots, \alpha_m$ are \mathbb{Q} -linearly independent modulo \mathbb{C} then $e^{\alpha_1}, \ldots, e^{\alpha_m}$ are algebraically independent over \mathbb{C} .

Theorem (Ax-Lindemann for complex tori, geometric version)

Let \mathbb{T} be a compact complex torus and $\pi : \mathbb{C}^n \to \mathbb{T}$ be a covering map. If $X \subseteq \mathbb{C}^n$ is an irreducible algebraic variety then the complex analytic Zariski closure of $\pi(X)$ in \mathbb{T} is a translate of a complex subtorus of \mathbb{T}

Theorem (Ax-Lindemann for complex tori, geometric version)

Let \mathbb{T} be a compact complex torus and $\pi : \mathbb{C}^n \to \mathbb{T}$ be a covering map. If $X \subseteq \mathbb{C}^n$ is an irreducible algebraic variety then the complex analytic Zariski closure of $\pi(X)$ in \mathbb{T} is a translate of a complex subtorus of \mathbb{T}

Ullmo-Yafaev, 2015

What can be said about the topological closure of $\pi(X)$ in \mathbb{T} ?

Does a version of Ax-Lindemann Theorem hold for it?

When $X \subseteq \mathbb{C}^n$ is an algebraic **curve**, Ullmo and Yafaev described the closure $\pi(X)$ in terms of cosets of real subtori of *A*.

Even for $X \subseteq \mathbb{C}^n$ algebraic, the closure of $\pi(X)$ brings-in real tori, hence the problem fits better into the real (not complex) setting:

- ► Let $\Lambda = \bigoplus_{i=1}^{n} \mathbb{Z}\omega_i$ be a lattice in \mathbb{R}^n , i.e. Λ is a subgroup generated by a basis $(\omega_1, \ldots, \omega_n)$ of \mathbb{R}^n . Let \mathbb{T}_{Λ} be the quotient group \mathbb{R}^n/Λ .
- ► The group T_Λ is called an *n*-dimensional (real) torus, and admits the structure of a compact Lie group.
- Let $\pi_{\Lambda} : \mathbb{R}^n \to \mathbb{T}$ be the quotient map. It is a smooth group homomorphism and $\ker(\pi_{\Lambda}) = \Lambda$.

Reformulating the problem

Given a "tame" set $X \subseteq \mathbb{R}^n$, and a lattice $\Lambda \subseteq \mathbb{R}^n$, what can be said about the topological closure of $\pi_{\Lambda}(X)$ in \mathbb{T}_{Λ} ?

Tameness and o-minimality

For the rest of the talks, we take "tame" to mean o-minimal.

Recall that the following structures are o-minimal:

 $\langle \mathbb{R}; <, +, \cdot \rangle$ (Tarski)

The definable sets are semi-algebraic. E.g. solutions to $p(\bar{x}) > 0$, for $p(\bar{x}) \in \mathbb{R}[\bar{x}]$.

$\mathbb{R}_{\exp} = \langle \mathbb{R}; <, +, \cdot, e^x \rangle$ (Wilkie)

E.g. solutions to $\exists x p(e^x, e^{e^y}, x, y, z) > 0$, for $p(\bar{x}) \in \mathbb{R}[\bar{x}]$.

$\mathbb{R}_{an,exp} = \langle \mathbb{R}_{exp}, (f \upharpoonright [0,1]^n)_{f \in \mathcal{F}} \rangle$ (van den Dries - Miller)

The expansion of \mathbb{R}_{exp} by all restricted real analytic functions. E.g. solutions to $\forall z \arctan(e^{\sin x} - y^2 + 3z) > 0$, for $x \in [-1, 1], y \in \mathbb{R}$.

From now on, we fix an o-minimal structure $\mathbb{R}_{om} = \langle \mathbb{R}; <, +, \cdot, \cdots \rangle$.

The o-minimal formulation

Given a definable set $X \subseteq \mathbb{R}^n$ in \mathbb{R}_{om} , and a lattice $\Lambda \subseteq \mathbb{R}^n$, what can we say about the topological closure of $\pi_{\Lambda}(X)$ in \mathbb{T}_{Λ} ?

When the setting is clear we use π and \mathbb{T} instead of π_{Λ} and \mathbb{T}_{Λ} .

Observation

For any $X \subseteq \mathbb{R}^n$ we have $cl(\pi(X)) = \pi(cl(X + \Lambda))$.

So, from now one we work with $cl(X + \Lambda)$ in \mathbb{R}^n (instead of $cl(\pi(X))$).

X vs $\overline{X+\Lambda}$ vs $\overline{\pi}(\Lambda(X))$

Examples

An important example: linear spaces

- Assume that $L \subseteq \mathbb{R}^n$ is an \mathbb{R} -subspace.
- Then $cl(L + \Lambda)$ is a real Lie subgroup of \mathbb{R}^n
- Its connected component is an ℝ-subspace, with a basis in Λ. Denote it by L^Λ. It is the smallest ℝ-subspace of ℝⁿ, containing L with a basis in Λ and cl(L + Λ) = L^Λ + Λ.
- $\pi(L^{\Lambda})$ is a (closed) real subtorus of \mathbb{T} .

Some Examples: Curves on Tori

Let *X* be the semialgebraic curve $y = \frac{1}{x+1}$, $x \ge 0$. We translate it to the fundamental domain by elements of \mathbb{Z}^2

We have
$$\operatorname{cl}(X + \mathbb{Z}^2) = (X \cup (x\text{-axis})) + \mathbb{Z}^2$$
.

Let *X* be the semialgebraic curve $x = y^2$, $y \ge 0$. We translate it to the fundamental domain by elements of \mathbb{Z}^2 .

We have $cl(X + \mathbb{Z}^2) = \mathbb{R}^2$.

A uniform closure theorem

Recall that if $L \subseteq \mathbb{R}^n$ is a linear subspace and $\Lambda \subseteq \mathbb{R}^n$ is a lattice then L^{Λ} is the smallest linear subspace containing *L* with a basis in Λ .

Theorem

Let $X \subseteq \mathbb{R}^n$ be a closed definable set in \mathbb{R}_{om} . Then there are \mathbb{R} -subspaces $L_1, \ldots, L_k \subseteq \mathbb{R}^n$, and definable closed sets $C_1, \ldots, C_k \subseteq \mathbb{R}^n$ such that for every lattice $\Lambda \subseteq \mathbb{R}^n$,

$$\operatorname{cl}_{\mathbb{R}^n}(X+\Lambda) = \left[X \cup \bigcup_{i=1}^k (L_i^\Lambda + C_i)\right] + \Lambda.$$

I.e.

$$\operatorname{cl}_{\mathbb{T}_{\Lambda}}(\pi_{\Lambda}(X)) = \pi_{\Lambda}(X) \cup \bigcup_{i=1}^{k} (T_i + \pi_{\Lambda}(C_i)),$$

where $T_i = \pi(L_i^{\Lambda})$ are real subtori of \mathbb{T}_{Λ} .

- Let ℝ_{full} be the expansion of ℝ by all subsets of ℝⁿ, n ∈ N.
 And let R ≻ ℝ_{full} be an |ℝ|⁺-saturated elementary extension.
- For $X \subseteq \mathbb{R}^n$, let X^{\sharp} denote its realization in \mathcal{R} .
- Let $\mathcal{O} = \{ \alpha \in \mathcal{R} : \exists r \in \mathbb{R} |\alpha| < r \}$, the ring of finite elements.
- Let µ = {ϵ ∈ R : ∀r ∈ ℝ |ϵ| < r}, the infinitesimals, a maximal ideal in O. We have O = ℝ ⊕ µ.</p>
- Let st : O → ℝ denote the standard part map (also, the residue map). Namely, st(α) = the unique r ∈ ℝ such that α ∈ r + μ.
 We extend it coordinate-wise to st : Oⁿ → ℝⁿ.
- ▶ For $Y \subseteq \mathcal{R}^n$, let $st(Y) := st(\mathcal{O}^n \cap Y)$.

Closure through the standard part map

A key observation

If $Y \subseteq \mathbb{R}^n$ then $\operatorname{cl}(Y) = \operatorname{st}(Y^{\sharp})$.

Proof

Assume a ∈ cl(Y). Then B(a,r) ∩ Y ≠ Ø for every r ∈ ℝ^{>0}. By saturation, there is α ∈ ⋂_{r∈ℝ^{>0}} B[#](a,r) ∩ Y[#]. Obviously st(α) = a. Hence cl(Y) ⊆ st(Y[#]).
Assume a = st(α), for α ∈ Y[#]. Then |a − α| ∈ μ, hence Y[#] ∩ B(a,r) ≠ Ø for every r ∈ ℝ^{>0}. Thus, the same is true in ℝ_{full}, so a ∈ cl(Y).

The non-standard formulation of the question

For $X \subseteq \mathbb{R}^n$ definable in the o-minimal structure \mathbb{R}_{om} and for a lattice $\Lambda \subseteq \mathbb{R}^n$, what is $\operatorname{st}(X^{\sharp} + \Lambda^{\sharp}) \subseteq \mathbb{R}^n$?

Complete o-minimal types appear

We have $X \subseteq \mathbb{R}^n$ definable in \mathbb{R}_{om} .

Partition into types

Let $S_X(\mathbb{R})$ be the collection of all complete \mathbb{R}_{om} -types over \mathbb{R} , on X (i.e. containing the formula $x \in X$).

For $p(x) \in S_X(\mathbb{R})$, we let $p(\mathcal{R})$ be its set of realizations in \mathcal{R} .

We have:

$$\operatorname{st}(X^{\sharp} + \Lambda^{\sharp}) = \bigcup_{p \in S_X(\mathbb{R})} \operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp}).$$

The new question

For a complete type $p \in S_X(\mathbb{R})$, what is $\operatorname{st}(p(\mathcal{R}) + \Lambda^{\sharp})$?