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Abstract. We study locally definable abelian groups U in various set-
tings and examine conditions under which the quotient of U by a discrete
subgroup might be definable. This turns out to be related to the exis-
tence of the type-definable subgroup U00 and to the divisibility of U .

1. Introduction

This is the first of two papers (originally written as one) around groups
definable in o-minimal expansions of ordered groups. The ultimate goal of
this project is to reduce the analysis of such groups to semi-linear groups
and to groups definable in o-minimal expansions of real closed fields. This
reduction is carried out in the second paper ([8]). In the current paper, we
prove a crucial lemma in that perspective, Theorem 3.10 below. This the-
orem is proved by analyzing

∨
-definable abelian groups in various settings

and investigating when such groups have definable quotients of the same
dimension. The analysis follows closely known work on definably compact
groups. We make strong use of their minimal type-definable subgroups of
bounded index, and of the solution to so-called Pillay’s conjecture in various
settings.

In the rest of this introduction we recall the main definitions and state
the results of this paper.

Until Section 3, and unless stated otherwise, M denotes a sufficiently
saturated, not necessarily o-minimal, structure.

If M is κ-saturated, by bounded cardinality we mean cardinality smaller
than κ. Since “bounded” has a different meaning in the context of an ordered
structure we use “small” to refer to subsets of Mn of bounded cardinality.
Every small definable set is therefore finite.
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1.1.
∨

-definable and locally definable sets. A
∨

-definable group is a
group 〈U , ·〉 whose universe is a directed union U =

⋃
i∈I Xi of definable

subsets of Mn for some fixed n (where |I| is bounded) and for every i, j ∈ I,
the restriction of group multiplication to Xi×Xj is a definable function (by
saturation, its image is contained in some Xk). Following [6], we say that
〈U , ·〉 is locally definable if |I| is countable. We are mostly interested here in
definably generated groups, namely

∨
-definable groups which are generated

as a group by a definable subset. These groups are locally definable. An
important example of such groups is the universal cover of a definable group
(see [7]). In [12, Section 7] a more general notion is introduced, of an Ind-
definable group, where the Xi’s are not assumed to be subsets of the same
sort and there are definable maps which connect them to each other.

A map φ : U → H between
∨

-definable (locally definable) groups is called∨
-definable (locally definable) if for every definable X ⊆ U and Y ⊆ H,

graph(φ) ∩ (X × Y ) is a definable set. Equivalently, the restriction of φ to
any definable set is definable.

Remark 1.1. If in the above definition, instead of Mn we allow all Xi’s to be
subsets of a fixed sort S then the analogous definition of groups and maps
works in Meq. This will allow us to discuss locally definable maps from a
locally definable group U onto an interpretable group V.

1.2. Compatible subgroups.

Definition 1.2. (See [6]) For a
∨

-definable group U , we say that V ⊆ U
is a compatible subset of U if for every definable X ⊆ U , the intersection
X ∩ V is a definable set (note that in this case V itself is a bounded union
of definable sets).

Clearly, the only compatible
∨

-definable subsets of a definable group are
the definable ones. Note that if φ : U → V is a

∨
-definable homomor-

phism between
∨

-definable groups then ker(φ) is a compatible
∨

-definable
normal subgroup of U . Compatible subgroups are used in order to obtain∨

-definable quotients, but for that we need to restrict ourselves to locally
definable groups. Together with [6, Theorem 4.2], we have:

Fact 1.3. If U is a locally definable group and H ⊆ U a locally definable
normal subgroup then H is a compatible subgroup of U if and only if there
exists a locally definable surjective homomorphism of locally definable groups
φ : U → V whose kernel is H.

1.3. Connectedness. If M is an o-minimal structure and U ⊆ Mn is a∨
-definable group then, by [2, Theorem 4.8], it can be endowed with a

manifold-like topology τ , making it into a topological group. Namely, there
exists a bounded collection {Ui : i ∈ I} of definable subsets of U , whose union
equals U , such that each Ui is in definable bijection with an open subset
of Mk (k = dimU), and the transition maps are continuous. The group
operation and group inverse are continuous with respect to this induced
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topology. Moreover, the Ui’s are definable over the same parameters which
define U . The topology τ is determined by the ambient topology of Mn in
the sense that at every generic point of U the two topologies coincide. From
now on, whenever we refer to a topology on G, it is τ we are considering.

Definition 1.4. (See [1]) In an o-minimal structure, a
∨

-definable group U
is called connected if there exists no

∨
-definable compatible subset ∅ $ V $

U which is both closed and open with respect to the group topology.

1.4. Definable quotients.

Definition 1.5. Given a
∨

-definable group U and Λ0 ⊆ U a normal sub-
group, we say that U/Λ0 is definable if there exists a definable group K and
a surjective

∨
-definable homomorphism µ : U → K whose kernel is Λ0.

One can define the notion of an interpretable quotient by replacing “ K
definable” by “K interpretable” in the above definition. Note, however, that
in case M is an o-minimal structure and U is locally definable, such as in
Section 3 below, by [6, Corollary 8.1], the group U has strong definable choice
for definable families of subsets of U . Namely, for every definable family of
subsets of U , {Xt : t ∈ T}, there is a definable function f : T →

⋃
Xt such

that for every t ∈ T , f(t) ∈ Xt and if Xt1 = Xt2 then f(t1) = f(t2). In
particular, every interpretable quotient of U would be definably isomorphic
to a definable group.

1.5. Results. Our results concern the existence of the type-definable group
U00, for a

∨
-definable abelian group U . Recall ([12, Section 7]) that for

a definable, or
∨

-definable group U , we write U00 for the smallest, if such
exists, type-definable subgroup of U of bounded index. In particular we
require that U00 is contained in a definable subset of U . From now on we
use the expression “U00 exists” to mean that “there exists a smallest type-
definable subgroup of U of bounded index, which we denote by U00”. Note
that a type definable subgroup H of U has bounded index if and only if
there are no new cosets of H in U in elementary extensions of M.

When U is a definable group in a NIP structure, then U00 exists (see She-
lah’s theorem in [18]). When U is a

∨
-definable group in a NIP structure

or even in an o-minimal one, then U00 may not always exist. However, if
we assume that some type-definable subgroup of bounded index exists, then
there is a smallest one (see [12, Proposition 7.4]). Recall that a definable
X ⊆ U is called left generic if boundedly many translates of X cover U . In
Section 2, we prove the following theorem for

∨
-definable groups:

Theorem 2.6. Let U be an abelian
∨

-definable group in a NIP structure.
If the definable non-generic sets in U form an ideal and U contains at least
one definable generic set, then U00 exists.

We also prove (Corollary 2.12) that when we work in o-minimal expan-
sions of ordered groups, for a

∨
-definable abelian group which contains a
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definable generic set and is generated by a definably compact set, the non-
generic definable subsets do form an ideal (this is a generalization of the
same result from [16] for definably compact group, which itself relies heavily
on work in [5]).

In Section 3, we use these results to establish the equivalence of the fol-
lowing conditions.

Theorem 3.9. Let U be a connected abelian
∨

-definable group in an o-
minimal expansion of an ordered group, with U definably generated. Then
there is k ∈ N such that the following are equivalent:
(i) U contains a definable generic set.
(ii) U00 exists.
(iii) U00 exists and U/U00 ' Rk×Tr, where T is the circle group and r ∈ N.
(iv) There is a definable group G, with dimG = dimU , and a

∨
-definable

surjective homomorphism φ : U → G.
If U is generated by a definably compact set, then (ii) is strengthened by

the condition that k + r = dimU .

We conjecture, in fact, that the conditions of Theorem 3.9 are always true.

Conjecture A. Let U be a connected abelian
∨

-definable group in an o-
minimal structure, which is definably generated. Then
(i) U contains a definable generic set.
(ii) U is divisible.

We do not know if Conjecture A is true, even when U is a subgroup
of a definable group. We do show that it is sufficient to prove (i) under
restricted conditions, in order to deduce the full conjecture. In a recent
paper (see [9]) we prove that Conjecture A holds for definably generated
subgroups of 〈Rn,+〉, in an o-minimal expansion of a real closed field R.

Finally, we derive the theorem that is used in [8].

Theorem 3.10. Let U be a connected abelian
∨

-definable group in an o-
minimal expansion of an ordered group, with U definably generated. Assume
that X ⊆ U is a definable set and Λ 6 U is a finitely generated subgroup
such that X + Λ = U .

Then there is a subgroup Λ′ ⊆ Λ such that U/Λ′ is a definable group.
If U is generated by a definably compact set, then U/Λ′ is moreover de-

finably compact.

1.6. Notation. Given a group 〈G, ·〉 and a set X ⊆ G, we denote, for every
n ∈ N,

X(n) =

n−times︷ ︸︸ ︷
XX−1 · · ·XX−1
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We assume familiarity with the notion of definable compactness. When-
ever we write that a set is definably compact, or definably connected, we
assume in particular that it is definable.

1.7. Acknowledgements. We wish to thank Elias Baro, Alessandro Berar-
ducci, David Blanc, Mario Edmundo and Marcello Mamino for discussions
which were helpful during our work. We thank the anonymous referee for a
careful reading of the original manuscript.

2.
∨
-definable groups and type-definable subgroups of

bounded index

In this section, unless stated otherwise, M denotes a sufficiently satu-
rated, not necessarily o-minimal, structure.

2.1. Definable quotients of
∨

-definable groups. We begin with a cri-
terion for definability (and more generally interpretability) of quotients.

Lemma 2.1. Let 〈U , ·〉 be a
∨

-definable group and Λ0 a small normal sub-
group of U . Then the following are equivalent:

(1) The quotient U/Λ0 is interpretable in M.
(2) There is a definable X ⊆ U such that (a) X · Λ0 = U and (b) for

every definable Y ⊆ U , Y ∩ Λ0 is finite.
(3) There is a definable X ⊆ U such that (a) X ·Λ0 = U and (b) X ∩Λ0

is finite.

Proof. (1 ⇒2). We assume that there is a
∨

-definable surjective µ : U → K
with kernel Λ0, and K interpretable. By saturation, there is a definable
subset X ⊆ U such that µ(X) = K and hence X · Λ0 = U . Given any
definable Y ⊆ U , the restriction of µ to Y is definable and thus the small
set ker(µ�Y ) = Y ∩ Λ0 is definable and, hence, finite.

(2 ⇒3). This is obvious.
(3 ⇒1) We claim first that for every definable Y ⊆ U , the set Y ∩ Λ0 is

finite. Indeed, since Y ⊆ X · Λ0 and Λ0 is small, by saturation there exists
a finite F ⊆ Λ0 such that Y ⊆ X · F . We assume that X ∩ Λ0 is finite, and
since F is a finite subset of Λ0 it follows that (X · F ) ∩ Λ0 is finite which
clearly implies Y ∩ Λ0 finite.

Fix a finite F1 = XX−1 ∩ Λ0 and F2 = XXX−1 ∩ Λ0.
We now define on X an equivalence relation x ∼ y if and only if xy−1 ∈ Λ0

if and only if xy−1 ∈ F1. This is a definable relation since F1 is finite. We
can also define a group operation on the equivalence classes: [x] · [y] = [z] if
and only if xyz−1 ∈ Λ0 if and only if xyz−1 ∈ F2. The interpretable group
we get, call it K, is clearly isomorphic to U/Λ0, and we have a

∨
-definable

homomorphism from U onto K, whose kernel is Λ0. �

We will return to definable quotients of
∨

-definable groups in Section 3.
We now focus on the existence of U00 for a

∨
-definable group U .
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2.2. Subgroups of bounded index of
∨

-definable groups. Let U be a∨
-definable group in an o-minimal structure. It is not always true that U

has some type-definable subgroup of bounded index. For example, consider
a sufficiently saturated ordered divisible abelian group 〈G,<,+〉 and in it
take an infinite increasing sequence of elements 0 < a1 < a2 < · · · such
that, for every n ∈ N, we have nai < ai+1. The subgroup

⋃
i(−ai, ai) of

G is a
∨

-definable group which does not have any type-definable subgroup
of bounded index. However, as is shown in [12] (see Proposition 6.1 and
Proposition 7.4), if U does have some type-definable subgroup of bounded
index then it has a smallest one; namely U00 exists.

Our goal here is to show, under various assumptions on U , that the ideal of
non-generic definable sets gives rise to type-definable subgroups of bounded
index.

As is shown in [16], using Dolich’s results in [5], ifG is a definably compact,
abelian group in an o-minimal expansion of a real closed field then the non-
generic definable sets form an ideal. Later, it was pointed out in [10] and
[14, Section 8] that the same proof works in expansions of groups. We start
by re-proving an analogue of the result for

∨
-definable groups (see Lemma

2.11 below). We first define the corresponding notion of genericity and prove
some basic facts about it.

Definition 2.2. Let U be a
∨

-definable group. A definable X ⊆ U is
called left-generic if there is a small subset A ⊆ U such that U =

⋃
g∈A gX.

We similarly define right-generic. The set X is called generic if it is both
left-generic and right-generic.

It is easy to see that a definable X ⊆ U is generic if and only if for every
definable Y ⊆ U , there are finitely many translates of X which cover Y .

Fact 2.3. (1) If U is a
∨

-definable group, then every
∨

-definable subgroup
of bounded index is a compatible subgroup. In particular, if X ⊆ U is a
definable left-generic set, then the subgroup generated by X is a compatible
subgroup.

(2) Assume that U is a
∨

-definable group in an o-minimal structure. If
U is connected and X ⊆ U is a left-generic set, then X generates U .

Proof. (1) Assume that V is a
∨

-definable subgroup of bounded index. We
need to see that for every definable Y ⊆ U , the set Y ∩V is definable. Since
V has bounded index in U its complement in U is also a bounded union of
definable sets, hence a

∨
-definable set. But then Y ∩ V and Y \ V are both∨

-definable sets, so by compactness Y ∩ V must be definable.
(2) Assume now that U is a

∨
-definable connected group in an o-minimal

structure and X ⊆ U is a left-generic set. By (1), the group V generated
by X is compatible, of bounded index. But then dimV = dimU , so by
[1, Proposition 1], V = U . �
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Fact 2.4. Let 〈U ,+〉 be an abelian, definably generated group. If X ⊆ U is a
definable set then X is generic if and only if there exists a finitely generated
(in particular countable) group Γ 6 U such that U = X + Γ.

Proof. Clearly, if Γ exists then X is generic. For the converse, assume that
U is generated by the definable set Y ⊆ U , with 0 ∈ Y . Because X is generic
in U , there is a finite set F ⊆ U such that the sets −Y , Y and X + X are
all contained in X + F .

Let Y (n) be as in the notation from Section 1.6. If we now let Γ be the
group generated by F , then U =

⋃
n Y (n) = X + Γ. �

We next show that under some suitable conditions we can guarantee the
existence of U00. We do it first in the general context of NIP theories. We
recall a definition [16]:

Definition 2.5. Given a
∨

-definable group U and a definable set X ⊆ U ,

Stabng(X) = {g ∈ U : gX∆X is non-generic in U}.

Theorem 2.6. Let U be an abelian
∨

-definable group in a NIP structure
M. Assume that the non-generic definable subsets of U form an ideal and
that U contains some definable generic set. Then for any definable generic
set X, the set Stabng(X) is a type-definable group and has bounded index in
U . In particular, by [12, Proposition 7.4], U00 exists.

Proof. The fact the definable non-generic sets form an ideal implies that for
every definable set X, the set Stabng(X) is a subgroup. Note however that if
X is a non-generic set then Stabng(X) = U and therefore will not in general
be type-definable (unless U itself was definable).

We assume now that X ⊆ U is a definable generic set and show that
Stabng(X) is type-definable. First note that for every g ∈ U , if gX∆X is
non-generic, then in particular gX ∩ X 6= ∅ and therefore g ∈ XX−1. It
follows that Stabng(X) is contained in XX−1.

Next, note that a subset of U is generic if and only if finitely many trans-
lates of it cover X (since X itself is generic). Now, for every n, we con-
sider the statement in g: “n many translates of gX∆X do not cover X”.
Here again we note that for h(gX∆X) ∩X to be non-empty we must have
h ∈ XX−1∪X(gX)−1. Hence, it is sufficient to write the first-order formula
saying that for every h1, . . . , hn ∈ XX−1∪X(gX)−1, X *

⋃n
i=1 hi(gX∆X).

The union of all these formulas for every n, together with the formula for
XX−1 is the type which defines Stabng(X).

It remains to see that Stabng(X) has bounded index in U . This is a
similar argument to the proof of [12, Corollary 3.4] but in that paper the
amenability of definable groups and, as a result, the fact that every generic
set has positive measure, played an important role. Since a generic subset
of a

∨
-definable group may require infinitely many translates to cover the

group, we cannot a-priori conclude that it has positive measure, even if the
group is amenable. Assume then towards contradiction that Stabng(X) had
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unbounded index and fix a small elementary substructure M0 over which
all data is definable. Then we can find a sequence g1, . . . , gn, . . . ∈ U of
indiscernibles over M0, which are all in different cosets of Stabng(X). In
particular, it means that giX∆gjX is generic, for i 6= j.

Consider now the sequence Xi = g2iX∆g2i+1X, i ∈ N. By NIP, there is
a k, such that the sequence {Xi : i ∈ N} is k-inconsistent.

Consider now the type tp(gi/M0) and find some M0-definable set W con-
taining gi. Because of indiscernibility, all gi’s are in W . It follows that all
the giX, and therefore also all Xi, are contained in WX. Because each Xi is
generic, finitely many translates of Xi cover WX. By indiscernibility, there
is some ` such that for every i there are `-many translates of Xi which cover
WX.

We then have countably many sets Xi ⊆ WX, such that on one hand
the intersection of every k of them is empty and on the other hand there is
some ` such that for each i, `-many translates of Xi cover WX. To obtain
a contradiction it is sufficient to prove the following lemma (it is here that
we need to find an alternative argument to the measure theoretic one):

Lemma 2.7. Let G be an arbitrary abelian group, A ⊆ G an arbitrary
subset. For every k and ` there is a fixed number N = N(k, `) such that
there are at most N subsets of A with the property that each covers A with
`-many translates and every k of them have empty intersection.

Proof. We are going to use the following fact about abelian groups, taken
from [13] (see problems 7 and 16 on p. 82):

Fact 2.8. For every abelian group G, and for every set A ⊆ G and m, it
is not possible to find A1, . . . Am+1 ⊆ A pairwise disjoint such that each Ai
covers A by m-many translates.

Returning to the proof of the lemma, we are going to show that N = k`
works. Assume for contradiction that there are k`+1 subsets X1, . . . , Xkl+1

of A, each covering A by `-many translates, with an empty intersection
of every k of them. We work with the group G′ = G × Ck, where Ck =
{0, . . . , k − 1} is the cyclic group. For i = 1, . . . , k` + 1, we define Yi ⊆ G′

as follows: For x ∈ G and n ∈ N, we have (x, n) ∈ Yi if and only if x ∈ Xi

and n is the maximum number such that for some distinct i1, . . . , in < i, we
have x ∈ Xi1 ∩ · · · ∩ Xin ∩ Xi. Notice that even though i might be larger
than k, because of our assumption that every k sets among the Xi’s intersect
trivially, the maximum n we pick is indeed at most k − 1. Note also that
the projection of each Yi on the first coordinate is Xi.

We claim that the Yi’s are pairwise disjoint. Indeed, if x ∈ Xi ∩Xj and
i < j then by the definition of the sets, if (x, n) ∈ Yi and (x, n′) ∈ Yj then
n < n′, so Yi ∩ Yj = ∅.



DEFINABLE QUOTIENTS 9

Now, let A′ = A × Ck. We claim that each Yi covers A′ by k`-many

translates. Indeed, if A ⊆
⋃`
j=1 gij ·Xi then

A′ ⊆
⋃
p∈Ck

⋃̀
j=1

(gij , p) · Yi.

We therefore found N + 1 pairwise disjoint subsets of A′, each covering
A′ in N translates, contradicting Fact 2.8. �

Thus, as pointed out above we reached a contradiction, so stabng(X) does
have bounded index in U . This ends the proof of Theorem 2.6. �

Remark 2.9. The last theorem implies that for a
∨

-definable abelian group
〈U ,+〉 in a NIP structure, if the non-generic definable sets form an ideal,
then U00 exists if and only if U contains a definable generic set (we have
just proved the right-to-left direction. The converse is immediate since every
definable set containing U00 is generic).

We are now ready to show (Corollary 2.12 below) that when we work in o-
minimal expansions of ordered groups, for a

∨
-definable abelian group which

contains a definable generic set and is generated by a definably compact set,
the assumptions of Theorem 2.6 are satisfied. We begin by proving that we
can obtain Dolich’s result in this setting.

Fact 2.10. Let M be an o-minimal expansion of an ordered group and let
M0 4M be a small elementary submodel. If U is a

∨
-definable group over

M0 and Xt ⊆ U is a t-definable, definably compact set such that Xt ∩M0 =
∅, then there are t1, . . . , tk, all of the same type as t over M0 such that
Xt1 ∩ · · · ∩Xtk = ∅.

Proof. We need to translate the problem from the group topology to the
Mn-topology. As we already noted it is shown in [2] that U can be covered
by a fixed collection of M0-definable open sets

⋃
i Vi such that each Vi is

definably homeomorphic to an open subset of Mn. By logical compactness,
Xt is contained in finitely many Vi’s, say V1, · · · , Vm. Now, by definable
compactness, we can replace each of the Vi’s by an open set Wi such that
Cl(Wi) ⊆ Vi and Xt is still contained in W1, . . . ,Wm. Each X(i) = Xt ∩
Cl(Wi) is definably compact and we finish the proof as in [10, Lemma 3.10].

�

For a
∨

-definable group U , we call a definable X ⊆ U relatively definably
compact if the closure of X in U is definably compact. Clearly, X is relatively
definably compact if and only if it is contained in some definably compact
subset of U .

Lemma 2.11. Let M be an o-minimal expansion of an ordered group. As-
sume that U is a

∨
-definable abelian group, and X,Y ⊆ U are definable, with

X relatively definably compact. If X and Y are non-generic, then X ∪ Y is
still non-generic.
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Proof. This is just a small variation on the work in [16]. Because commu-
tativity plays only a minor role we use multiplicative notation for possible
future use.

We may assume that U contains a definable generic set (otherwise, the
conclusion is trivial).

We need to prove that if X ⊆ U is definable, relatively definably compact
and non-generic, and if Z ⊇ X is definable and generic then Z \X is generic.

FixM0 over which all sets are definable. Without loss of generality, X is
definably compact (since the closure of a non-generic set is non-generic).

We first prove the result for Z of the form W ·W , when W is generic.
Since X is not generic, no finitely many translates of X cover W (because W
is generic). It follows from logical compactness that there is g ∈W such that
g /∈

⋃
h∈M0

hX. Changing roles, there is g ∈ W such that Xg−1 ∩M0 = ∅.
We now apply Fact 2.10 to the definably compact set Xg−1. It follows that
there are g1, . . . , gr, all realizing the same type as g overM0, so in particular
all are in W , such that Xg−11 ∩ · · · ∩ Xg−1r = ∅. This in turn implies that⋃r
i=1(W \Xg

−1
i ) = W . For each i = 1, . . . , r we have

W \Xg−1i = (Wgi \X)g−1i ⊆ (WW \X)g−1i .

Therefore, it follows that W is contained in the finite union
⋃r
i=1(WW \

X)g−1i and since W is generic it follows that WW \X is generic, as needed
(it is here that commutativity is used, since left generic sets and right generic
sets are the same).

We now consider an arbitrary definable generic set Z ⊆ U , with X ⊆ Z
non-generic. Because Z is generic, finitely many translates of Z cover Z ·Z.
Namely, Z ·Z ⊆

⋃t
i=1 hiZ. If X ′ =

⋃t
i=1 hiX then X ′ is still non-generic (and

relatively definably compact), so by the case we have just proved, ZZ \X ′
is generic. However this set difference is contained in

t⋃
i=1

hiZ \
t⋃
i=1

hiX ⊆
t⋃
i=1

hi(Z \X),

hence this right-most union is generic. It follows that Z \X is generic. �

Corollary 2.12. Let M be an o-minimal expansion of an ordered group.
Assume that U is a

∨
-definable abelian group which contains a definable

generic set and is generated by a definably compact set. Then the definable
non-generic subsets of U form an ideal.

Proof. Every definable subset of U must be relatively definably compact,
because it is contained in some definably compact set. Then apply Lemma
2.11. �

3. Divisibility, genericity and definable quotients

In this section, M is a sufficiently saturated o-minimal expansion of an
ordered group.
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Proposition 3.1. If U is an infinite
∨

-definable group of positive dimen-
sion, then it has unbounded exponent. In particular, for every n, the sub-
group of n torsion points, U [n], is small.

Proof. By the Trichotomy Theorem ([15]), there exists a neighborhood of
the identity which is in definable bijection with an open subset of Rn for
some real closed field R, or of V n for some ordered vector space V (we use
here the definability of a group operation near the identity of U).

In the linear case, the group operation of U is locally isomorphic near eU
to + near 0 ∈ Mn (see [10, Proposition 4.1 and Corollary 4.4] for a similar
argument). Clearly then the map x 7→ kx is non-constant.

Assume then that we are in the field case. Namely, we assume that
some definable neighborhood W of e is definably homeomorphic to an open
subset of Rn, with e identified with 0 ∈ Rn, and that a real closed field
whose universe is a subset of W is definable in M. The following argument
was suggested by S. Starchenko. If M(x, y) = xy is the group product of
elements near e, then it is R-differentiable and its differential at (e, e) is
x + y. It follows that the differential of the map x 7→ xn is nx. Therefore,
for every n, the map x 7→ xn is not the constant map.

As for the last clause, note first that U [n] is a compatible
∨

-definable
subgroup of U because its restriction to every definable set is obviously
definable (by the formula nx = 0). Because U [n] has exponent at most n, it
follows from what we have just proved that its dimension must be zero, so
its intersection with every definable set is finite. �

Remark 3.2. Although we did not write down the details, we believe that
the above result is actually true without any assumptions on the ambient
o-minimal M. This can be seen by expressing a neighborhood of eU as
a direct product of neighborhoods, in cartesian powers of orthogonal real
closed fields and ordered vector spaces.

Assume that U =
⋃
i∈I Xi and that U00 exists. Given the projection

π : U → U/U00, we define the logic topology on U/U00 by: F ⊆ U/U00 is
closed if and only if for every i ∈ I, π−1(F ) ∩Xi is type-definable. We first
prove a general lemma.

Lemma 3.3. Let U be a locally definable group for which U00 exists and let
π : U → U/U00 be the projection map. If K0 ⊆ U/U00 is a compact set, then
π−1(K0) is contained in a definable subset of U .

Proof. We write U =
⋃
n∈NXn, and we assume that the union is increasing.

If the result fails then there is a sequence kn →∞ and xn ∈ Xkn\Xkn−1 such
that π(xn) ∈ K0. Since K0 is compact we may assume that the sequence
π(xn) converges to some a ∈ K0. The set π−1(a) is a coset of U00 and there-
fore contained in some definable set Z ⊆ U . Since a can be realized as the
intersection of countably many open sets, there is, by logical compactness,
some open neighborhood V 3 a in U/U00 such that π−1(V ) ⊆ Z. But then,
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the whole tail of the sequence {π(xn)} belongs to V and therefore the tail of
{xn} is contained in Z, contradicting our assumption on the sequence. �

Claim 3.4. Let U be an abelian locally definable group. Then there exists
a definable torsion-free subgroup H ⊆ U such that every definable subset of
U/H is relatively definably compact. If, in addition, U is definably generated,
then U/H can be generated by a definably compact set.

Proof. As can easily be verified, for a definably generated
∨

-definable group
V, the following are equivalent: (a) every definable subset of V is rela-
tively definably compact, (b) every definable path in V has limit points
in V. A

∨
-definable group with property (b) was called in [6] “definably

compact”. In Theorem 5.2 of the same reference, it was shown that if V
is a

∨
-definable group which is not definably compact, then V contains

a 1-dimensional torsion-free definable subgroup H1. Now, if U is abelian,
then by Fact 1.3, U/H1 is definably isomorphic to a locally definable defin-
able group. Using induction on dim(U), we see that U contains a definable
torsion-free subgroup H such that U/H is definably compact in the above
sense.

If in addition, U is definably generated then U/H is also definably gener-
ated by some set X. By replacing X with Cl(X) we conclude that U/H is
generated by a definably compact set. �

Proposition 3.5. Let U be a connected abelian
∨

-definable group, which is
definably generated. If U00 exists, then

(1) The group U/U00, equipped with the logic topology, is isomorphic to
Rk ×K, for some compact group K. (Later we will see that K ' Tr
where T is the circle group and r ∈ N).

(2) U and U00 are divisible.
(3) U00 is torsion-free.

Proof. (1) Let us denote the group U/U00 by L. By [4, Lemma 2.6] (applied
to U instead of G there), the image of every definable, definably connected
subset of U under π is a connected subset of L. As in the proof of Theorem
2.9 in [4], the group L is locally connected, and since U is connected, the
group L must actually be connected.

Since U is generated by a definable set, say X ⊆ U , its image π(U) = L
is generated by π(X) which is a compact set (π(X) is a quotient of X by a
type-definable equivalence relation with bounded quotient, see [17]). Hence,
the group L is so-called compactly generated. By [11, Theorem 7.57], the
group L is then isomorphic, as a topological group, to a direct product
Rk ×K, for some compact abelian group K. This proves (2).

In what follows, we use + for the group operation of U and write U as an
increasing countable union

⋃∞
k=1X(k) (with X(k) as in the notation from

Section 1.6).
(2) Let us see that U is divisible. Given n ∈ N, consider the map z 7→

nz : U → U . For a subset Z of U , let nZ denote the image of Z under this
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map. The kernel of this map is U [n]. By Proposition 3.1, U [n] must have
dimension 0, and therefore by connectedness dim(nU) = dim(U).

Since U is connected, by [1, Proposition 1] it is sufficient to show that for
every n, the group nU is a compatible subgroup of U , namely that for every
definable Y ⊆ U , the set Y ∩ nU is definable.

We claim that Y ∩nU is contained in nX(j) for some j. Assume towards
a contradiction that this fails. Then for every j there exists xj ∈ U such
that nxj ∈ Y \ nX(j). Hence, xj /∈ X(j) and therefore there is a sequence
kj → ∞ such that xj ∈ X(kj) \ X(kj − 1) and nxj ∈ Y . Consider the
projection π(Y ) and π(xj) in L. Because Y is definable the set π(Y ) is
compact.

By Lemma 3.3, because the sequence {xj} is not contained in any defin-
able subset of U , its image {π(xj)} is not contained in any compact subset of
L. At the same time, nπ(xj) is contained in the compact set π(Y ). However,

since L is isomorphic to Rk×K, for a compact group K, the map x 7→ nx is
a proper map on L and hence this is impossible. We therefore showed that

Y ∩ nU ⊆ nX(j) ⊆ nU ,

and so Y ∩ nU = Y ∩ nX(j) which is a definable set. We can conclude that
the group nU is a compatible subgroup of U , of the same dimension and
therefore nU = U . It follows that U is divisible.

Let us see that U00 is also divisible. Indeed, consider the map x 7→ nx
from U onto U . It sends U00 onto the group nU00 and therefore [U : U00] ≤
[U : nU00]. Since U00 is the smallest type-definable subgroup of bounded
index we must have nU00 = U00, so U00 is divisible.

(3) This is a repetition of an argument from [16]. Because U00 exists
there is a definable generic set X ⊆ U which we now fix. By Theorem 2.6,
the group Stabng(X) contains U00, so it is sufficient to prove that for every
n, there is a definable Y ⊆ U such that Stabng(Y ) ∩ U [n] = {0}. We do
that as follows. Because U is divisible, the

∨
-definable map h 7→ nh is

surjective. By compactness, there exists a definable Y1 ⊆ U which maps
onto X. However, since U [n] is compatible and has dimension zero, every
element of X has only finitely many pre-images in Y1. By definable choice,
we can find a definable Y ⊆ Y1 such that the map h 7→ nh induces a bijection
from Y onto X. The set Y is generic in U as well (since its image is generic
and the kernel of the map has dimension zero) and for every g ∈ U [n] we
have (g + Y ) ∩ Y = ∅. Hence, the only element of U [n] which belongs to
Stabng(Y ) is 0. It follows that U00 is torsion-free. �

As a corollary, we can formulate the following criterion for recognizing
U00, generalizing results from [4] and [12]:

Proposition 3.6. Let U be a connected abelian
∨

-definable group which is
definably generated. Assume that H 6 U is type-definable of bounded index.
Then H = U00 if and only if H is torsion-free.
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In particular, if U is torsion-free then U00, if it exists, is the only type-
definable subgroup of bounded index.

Proof. Since H is type-definable of bounded index, by [12, Proposition 7.4]
U00 exists.

If H = U00, then by Proposition 3.5 it is torsion-free.
For the converse, assume that H 6 U is torsion-free. We let L = U/U00,

equipped with the logic topology. Because U00 6 H, the map π : U →
L sends the type-definable group H onto a compact subgroup of L. If
π(H) is non-trivial (namely, H 6= U00) then π(H) has torsion. However,
ker(π) = U00 is divisible (see Proposition 3.5) and therefore H has torsion.
Contradiction. �

Lemma 3.7. Let U be a connected abelian
∨

-definable group, which is de-
finably generated. Then the following are equivalent.

(1) U contains a definable generic set.
(2) U00 exists.
(3) U00 exists and U/U00 ' Rk × K, for some k ∈ N and a compact

group K.
(4) There exists a definable group G and a

∨
-definable surjective homo-

morphism φ : U → G with ker(φ) ' Zk′, for some k′ ∈ N.
(5) There exists a definable group G and a

∨
-definable surjective homo-

morphism φ : U → G.

Assume now that the above hold. If k is as in (3) and φ : U → G and k′ are
as in (4), then k = k′.

Proof. (1) ⇒ (2). Note first that by Claim 3.4, the group U has a defin-
able torsion-free subgroup H with U/H definably generated by a definably
compact set. Because U contains a definable generic set so does U/H. By
Corollary 2.11, the definable non-generic sets in U/H form an ideal, so by
Theorem 2.6, (U/H)00 exists. Its pre-image in U is a type definable sub-
group of bounded index which is also torsion-free (since H and (U/H)00 are
both torsion-free). By Proposition 3.6 this pre-image equals U00.

(2) ⇒ (3). By Proposition 3.5.
(3)⇒ (4). Let L = Rk×K and πU : U → L be the projection map (whose

kernel is U00).
We now fix generators z1, . . . , zk ∈ Rk for Zk, and find u1, . . . , uk ∈ U with

πU (ui) = (zi, 0). If we let Γ 6 U be the subgroup generated by u1, . . . , uk
then πU (Γ) = Zk. Note that since z1, . . . , zk are Z-independent, the restric-
tion of πU to Γ is injective, namely Γ ∩ U00 = {0}.

By Lemma 3.3, there is a definable X ⊆ U such that π−1U (K) ⊆ X.
It follows from [4, Lemma 1.7] that the set πU (X) contains not only K
but also an open neighborhood of K. But then, there is an m such that
mπU (X) + Zk = L. This implies that πU (mX + Γ) = L and hence mX +
U00 + Γ ⊆ mX +X + Γ = U . We let Y = mX +X and then Y + Γ = U .
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We claim that Y ∩Γ is finite. Indeed, if Y ∩Γ were infinite then, since πU is
injective on Γ, the set πU (Y )∩Zk is infinite, contradicting the compactness of
πU (Y ). We can now apply Lemma 2.1 and conclude that there is a definable
group G and a

∨
-definable surjective homomorphism φ : U → G whose

kernel is Γ.
(4) ⇒ (5) is clear.
(5) ⇒ (1). By logical compactness, there is a definable X ⊆ U such that

φ(X) = G. But then X + ker(φ) = U , and since ker(φ) = Zk′ is small, X is
generic in U .

Assume now that the conditions hold, k is as in (3), and φ : U → G and k′

are as in (4). We will prove that k = k′. Consider the map πU : U → Rk×K
and let Γ be the image of ker(φ) under πU .

We first claim that k ≤ k′. Let X ⊆ U be so that φ(X) = G. Then
X + ker(φ) = U . Thus, πU (X) + Γ = Rk × K. Let Y and Γ′ be the
projections of πU (X) and Γ, respectively, into Rk. We have Y + Γ′ = Rk.
The set πU (X) is compact and so Y is also compact.

We let λ1, . . . , λk′ be the generators of ker(φ) and let v1, . . . , vk′ ∈ Rk be
their images in Γ′. If H ⊆ Rk is the real subspace generated by v1, . . . , vk′
then Y +H = Rk, and therefore, since Y is compact, we must have H = Rk.
This implies that k ≤ k′.

Now let us prove that k′ ≤ k. Note first that ker(φ)∩U00 = {0}. Indeed,
take any definable set X ⊆ U containing U00. Then, since φ � X is definable,
we must have ker(φ)∩U00 ⊆ ker(φ)∩X finite. However, by Proposition 3.5,
the group U00 is torsion-free, hence ker(φ) ∩ U00 = {0}.

It follows that Γ = πU (kerφ) is of rank k′. It is also discrete. Indeed,
using X as above we can find another definable set X ′ whose image πU (X ′)
contains an open neighborhood of 0 and no other elements of Γ.

Now, since K is compact, no element of Γ can be in K and therefore the
projection of Γ onto Γ′ ⊆ Rk is an isomorphism. Furthermore, Γ′ is also
discrete, which implies that k′ ≤ k. �

At the end of this section, we conjecture that the above conditions always
hold.

The result below is proved in [3, Theorem 8.2] for U the universal covering
of an arbitrary definably compact group G in o-minimal expansions of real
closed fields.

Proposition 3.8. Let U be a connected abelian
∨

-definable group, which is
definably generated. Let G be a definable group and φ : U → G a surjective∨

-definable homomorphism with ker(φ) ' Zk.
Then U00 exists, ker(φ) ∩ U00 = {0} and φ(U00) = G00. Furthermore

there is a topological covering map φ′ : U/U00 → G/G00, with respect to the
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logic topologies, such that the following diagram commutes.

(1)

U G

U/U00 G/G00
?

πU

-φ

?

πG

-φ
′

The group U/U00, equipped with the logic topology, is isomorphic to Rk ×
Tr, for T the circle group and r ∈ N. If U is generated by a definably
compact set, then k + r = dim(U). If, moreover, U is torsion-free, then
U/U00 ' RdimU .

Proof. By Lemma 3.7, U00 exists. Let Γ = ker(φ). We first claim that
Γ∩U00 = {0}. Indeed, take any definable set X ⊆ U containing U00. Then,
since φ � X is definable, we must have Γ ∩ U00 ⊆ Γ ∩X finite. However, by
Proposition 3.5, the group U00 is torsion-free, hence Γ ∩ U00 = {0}.

We claim that φ(U00) = G00. First note that since U00 has bounded index
in U and φ is surjective, the group φ(U00) has bounded index in G. Because
Γ ∩ U00 = {0} the restriction of φ to U00 is injective and hence φ(U00) is
torsion-free. By [4], we must have φ(U00) = G00.

By [17], we have

G/G00 ' Tl,

for some l ∈ N. We now consider πG : G→ G/G00 and define φ′ : U/U00 →
G/G00 as follows: For u ∈ U , let φ′(πU (u)) = πG(φ(u)). Since φ(U00) = G00

this map is a well-defined homomorphism which makes the above diagram
commute. It is left to see that φ′ is a covering map.

It follows from what we established thus far that ker(φ′) = πU (Γ) = Zk.
Let us see that this is a discrete subgroup of U/U00. Indeed, as we already
saw, for every compact neighborhood W ⊆ U/U00 of 0, there is a definable
set Z ⊆ U such that π−1U (W ) ⊆ Z. But we already saw that Z ∩ Γ is finite
and hence W ∩ ker(φ′) must be finite. It follows that ker(φ′) is discrete.

By Lemma 3.7, U/U00, equipped with the Logic topology, is locally com-
pact. Since φ′ : U/U00 → G/G00 is a surjective homomorphism with discrete
kernel it is sufficient to check that it is continuous as a map between topo-
logical groups. If W ⊆ G/G00 is open then V = π−1G (W ) is a

∨
-definable

subset of G and hence φ−1(V ) is a
∨

-definable subset of U (because kerφ
is a small group). By commutation, this last set equals π−1U (φ′−1(W )) and
therefore φ′−1(W ) is open in U/U00.

By Lemma 3.7, U/U00 ' Rk ×K, for a compact group K. We now have
a covering map φ′ : Rk ×K → G/G00 = Tk+r, with ker(φ′) = Zk ⊆ Rk. It
follows that K ' Tr.
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If U is generated by a definably compact set, G will be definably compact.
In this case, by the work in [10], [12] and [14],

G/G00 ' Tdim(G)

and, hence, k + r = dim(G) = dim(U).
If, moreover, U is torsion-free, we have r = 0. �

We summarize the above results in the following theorem.

Theorem 3.9. Let U be a connected abelian
∨

-definable group which is de-
finably generated. Then there is k ∈ N such that the following are equivalent:
(i) U contains a definable generic set.
(ii) U00 exists.
(iii) U00 exists and U/U00 ' Rk × Tr, for some r ∈ N.
(iv) There is a definable group G, with dimG = dimU , and a

∨
-definable

surjective homomorphism φ : U → G.
If in addition U is generated by a definably compact set, then (ii) is

strengthened by the condition that k + r = dimU .

Proof. By Lemma 3.7 and Proposition 3.8. �

Theorem 3.10. Let U be a connected abelian
∨

-definable group which is
definably generated. Assume that X ⊆ U is a definable set and Λ 6 U is a
finitely generated subgroup such that X + Λ = U .

Then there is a subgroup Λ′ ⊆ Λ such that U/Λ′ is a definable group.
If U generated by a definably compact set, then U/Λ′ is moreover definably

compact.

Proof. Since X+Λ = U , X is generic. By Theorem 3.9, U/U00 ' Rk×Tr, for
some k, r ∈ N. We now consider ∆ = πU (Λ) ⊆ Rk × Tr and let ∆′ ⊆ Rk be
the projection of ∆ into Rk. Since X+Λ = U , we have πU (X)+∆ = Rk×Tr.
Hence, if Y is the projection of πU (X) into Rk then we have Y + ∆′ = Rk.
The set πU (X) is compact and so Y is also compact.

We let λ1, . . . , λm be generators of Λ and let v1, . . . , vm ∈ Rk be their
images in ∆′. If H ⊆ Rk is the real subspace generated by v1, . . . , vm then
Y + H = Rk, and therefore, since Y is compact, we must have H = Rk.
This implies that among v1, . . . , vm there are elements vi1 , . . . , vik which are
R-independent. It follows that λi1 , . . . , λik ∈ ∆ are Z-independent. If we let
Λ′ be the group generated by λi1 , . . . , λik then we immediately see that the
restriction of πU to Λ′ is injective. We claim that U/Λ′ is definable.

First, let us see that for every definable Z ⊆ U , the set Z ∩ Λ′ is finite.
Indeed, πU (Z) is a compact subset of Rk × Tr and hence πU (Z) ∩ (Zvi1 +
· · ·+ Zvik) is finite. Because πU |Λ′ is injective it follows that Z ∩ Λ′ is also
finite.

We can now take a compact set K ⊆ Rk×Tr such that K+Zk = Rk×Tr.
It follows that π−1U (K) + Λ′ = U . By Lemma 3.3, there is a definable set

Z ⊆ U such that π−1U (K) ⊆ Z. We now have Z + Λ′ = U and Z ∩ Λ′ finite.
By Lemma 2.1, U/Λ′ is definable.
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For the last clause, let f : U → U/Λ′ be the quotient map, and X ′ a
definable subset of U such that f(X ′) = U/Λ′. Since U is generated by a
definably compact set, the closure of X ′ in U must be a subset of a definably
compact set and, hence, itself definably compact. But then it is easy to verify
that U/Λ′ = f(X ′) is definably compact. �

We end this section with a conjecture.

Conjecture A. Let U be a connected abelian
∨

-definable group which is
definably generated. Then
(i) U contains a definable generic set.
(ii) U is divisible.

Although we cannot prove the above conjecture, we can reduce it to prov-
ing (i) under additional assumptions.

Conjecture B. Let U be a connected abelian
∨

-definable group, generated
by a definably compact set. Then U contains a definable generic set.

Claim 3.11. Conjecture B implies Conjecture A.

Proof. We assume that Conjecture B is true.
Let U be a connected abelian

∨
-definable group which is definably gen-

erated. Let V be the universal cover of U (see [7]). Because U is the homo-
morphic image of V under a

∨
-definable homomorphism whose kernel is a

set of dimension 0, it is sufficient to prove that V contains a generic set and
that V is divisible.

The group V is connected, torsion-free and generated by a definable set
X ⊆ V. We work by induction on dim(V).

Let Y be the closure of X with respect to the group topology of V.

Case 1 The set Y is definably compact.

Since V is generated by Y , then by our standing assumption we may con-
clude that V contains a definable generic set. By Theorem 3.9 and Proposi-
tion 3.5, V is divisible.

Case 2 The set Y is not definably compact.

In this case, we can apply [6, Theorem 5.2] and obtain a definable 1-
dimensional, definably connected, divisible, torsion-free subgroup of V, call
it H. Clearly, H is a compatible subgroup of V, hence the group V/H is

∨
-

definable, connected ([6, Corollary 4.8]), torsion-free and definably generated
(by the image of X under the projection map). We have dim(V/H) < dimV,
so by induction, the conjecture holds for V/H, hence it is divisible and
contains a definable generic set Z. Because H is divisible as well, it follows
that V is divisible. It is easy to see that the pre-image of Z in V is a definable
generic subset of V. �
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Finally, although we know that U needs to be definably generated in order
to guarantee (i) (by Fact 2.3(2)), we do not know if the same is true for (ii).

Conjecture C. Let U be a connected abelian
∨

-definable group. Then U is
divisible.

References
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