Topological groups and stabilizers of types (w. Sergei Starchenko)

Kobi Peterzil

Department of Mathematics University of Haifa

Logic Colloquium 2015, Helsinki

A topological group

A group *G* admitting a Hausdorff topology τ , with $(g, h) \mapsto g \cdot h$ and $g \mapsto g^{-1}$ continuous.

Within model theory

Given a structure \mathcal{M} ,

• A group *G* is **a definable in** \mathcal{M} if its domain, and group operation are definable in the structure \mathcal{M} .

• We say that *G* is a definable topological group in \mathcal{M} if in addition, there is a basis \mathcal{B} for τ (equivalently, for neighborhoods of *e*), such that every $U \in \mathcal{B}$ is definable in \mathcal{M} .

• *G* has a uniformly definable topology if \mathcal{B} is given as a uniformly definable family of sets: $\mathcal{B} = \{\phi(G, a) : a \in T\}.$

Examples of definable topological groups

• \mathcal{M} arbitrary, G a definable group, with discrete topology.

• $\mathcal{M} = (\mathbb{R}, <, +, \cdot, ...), \quad G = GL(n, \mathbb{R})$, or any real algebraic subgroup.

Take $\mathcal{B} = \{ U_{\epsilon} = \{ A : ||A - I|| < \epsilon \} : \epsilon > 0 \}$, uniformly definable.

• Start with G an arbitrary topological group.

Let $\mathcal{M} = \mathbb{G}^{\text{set}} = (G; \cdot, \mathcal{P}(G)).$

Clearly, G is a definable topological group in \mathcal{M} . Side Q: When is it also uniformly definable?

Complete G-types

Assume that *G* is a definable (topological) group in \mathcal{M} . **A** *G*-formula is a formula that defines a subset of *G*. A collection of *G*-formulas is called **a** *G*-type.

The space of complete *G*-types

Let $S_G(M)$ be the set of complete *G*-types over *M*.

The Stone topology on $S_G(M)$: For $\phi(x)$ a *G*-formula,

 $U_{\phi} = \{ p \in S_G(M) : \phi \in p \}$ is a basic open set.

- The space $S_G(M)$ is compact Hausdorff.
- *G* acts on $S_G(M)$ by homeomorphisms: $g \cdot p = \{\phi(g^{-1}x) : \phi \in p\}$.

• *G* embeds, as a *G*-set, onto a dense, discrete, subspace of $S_G(M)$, via $g \mapsto \{x = g\}$.

Drawback

The action of *G* is not continuous with respect to the product topology on $G \times S_G(M)$, unless *G* is discrete.

Topological dynamics is the study of dynamical systems, given by a continuous action of a topological group G on a (usually compact) space X.

In Model Theory, it was Ludomir Newelski who began investigating definable groups (viewed as discrete groups), via their action on the compact space $S_G(M)$. Notions from topological dynamics such as *minimal sub-flows*, *Ellis semi-group* were related to model theoretic counter-parts, one shedding light on the other.

Additional feature in the current approach

Bringing into play the topology of the group G

Let G be a definable topological group in \mathcal{M} .

 $\mu := \{\theta(x) \in \mathcal{L}_M : \theta \text{ defines an open neighborhood of } e\}.$

As a collection of formulas, μ is **a partial** *G*-type, defining a basis for the open neighborhoods of *e*.

Some properties of the partial type μ

• If $\mathcal{M} \prec \mathcal{N}$ then $\mu(\mathcal{N})$ is a group, called **the infinitesimal subgroup** of $G(\mathcal{N})$. It is normalized by all $g \in G(\mathcal{M})$.

• Consider the partial type $\Sigma(x, y) = \{\theta(x^{-1} \cdot y) : \theta \in \mu\}.$

Model theoretically, it is a type-definable equivalence relation on *G* (defining the μ -left-coset-relation on $G(\mathcal{N})$).

Set-wise, it is a collection of subsets of $G \times G$, which make up **a** uniformity on G.

The space of μ -types I

For two *G*-formulas θ , ϕ , let $(\theta \cdot \phi)(M) := \theta(M) \cdot \phi(M)$. For a complete type $p(x) \in S_G(M)$, let

 $\mu \cdot \boldsymbol{\rho} = \{(\theta \cdot \phi)(\boldsymbol{x}) : \theta \in \mu \ , \ \phi \in \boldsymbol{\rho}\}.$

• $\mu \cdot p$ is a **partial** *G*-type, which we call **a** μ -type. Clearly, $p \vdash \mu \cdot p$.

- For any complete *G*-types p, q, if $\mu \cdot q \cup \mu \cdot p$ is consistent then $\mu \cdot q = \mu \cdot p$.
- We obtain an equivalence relation on S_G(M): p ~_μ q ⇔ μ · p = μ · q.
 The ~_μ-classes are of the form [p]_μ = {q : q ⊢ μ · p}.

Example

Consider $G = (\mathbb{R}^2, +)$ definable in $\mathcal{M} = (\mathbb{R}, <, +, \cdot)$. We consider three *G*-types:

1. Let $p(x, y) := \{y = 0\} \cup \{x > r : r \in \mathbb{R}\}$. It is the (one dimensional) type at $+\infty$ of the curve $\gamma(t) = (t, 0)$.

2. Let q(x, y) be the (one dimensional) type at $+\infty$ of the curve $\sigma(t) = (t, 1/t)$.

3. Let r(x, y) be the (two-dimensional) type of $(\alpha, 1/\beta)$ with $\mathbb{R} < \alpha << \beta$.

We have $p \sim_{\mu} q \sim_{\mu} r$.

The space of μ -types II

Let $S_G^{\mu}(M) := S_G(M) / \sim_{\mu}$, with the quotient topology, identified with the set of partial types { $\mu \cdot p : p \in S_G(M)$ }.

Proposition

- The quotient space $S^{\mu}_{G}(M)$ is compact Hausdorff.
- The action of *G* on $S^{\mu}_{G}(M)$, given by $g \cdot \mu p = \mu \cdot gp$ is continuous.
- The map $g \mapsto \mu \cdot tp(g/M)$ is a topological *G*-equivariant embedding of G(M) onto a dense subset of $S^{\mu}_{G}(M)$.

Connection to the Samuel compactification

Thus, $S_G^{\mu}(M)$ is a compactification of the group *G*, as a *G*-space. It is basically the "Samuel compactification" of *G* with respect to the uniformity given by μ .

In the case of G^{set}, the two objects are identical.

Example

- If *G* is an *M*-definable discrete topological group then *S*^μ_G(*M*) = *S*_G(*M*). In particular, if *G* is a discrete group, viewed as a G^{set}-definable group then *S*^μ_G(*M*) = β*G*, the Stone-Čhech comapctification of *G*.
- If G = (ℝ, +) viewed as a topological group definable in the field of real numbers, then the space S^µ_G(ℝ) is homeomorphic to ℝ ∪ {±∞} with the obvious action of G.
- 3. If *G* is a compact topological group, definable in some \mathcal{M} then $S^{\mu}_{G}(\mathcal{M}) = G$.

Stabilizers of types

An important tool in model theory of groups is the stabilizer subgroup of $p \in S_G(M)$. Namely, the group Stab(p) of all $g \in G$ such that $g \cdot p = p$.

Roughly speaking, the group Stab(p) measures how close p is to being "the type" of a left-coset of some sub-group.

• In $\mathcal{M} = (\mathbb{C}, +, \cdot)$, every connected algebraic group *G* has a (unique) type $p \in S_G(M)$, such that Stab(p) = G.

• In $\mathcal{M} = (\mathbb{R}, <, +, \cdot)$ the situation is very different. E.g. in $G = SL(2, \mathbb{R})$, the stabilizer of every type $p \in S_G(M)$ is contained in a conjugate of the upper triangular group (so the stabilizer is solvable). But "most" *G*-types have trivial stabilizer.

In general, Stab(p) is not a definable group. But if we restrict to definable types, we improve the situation:

Definition

A (possibly partial) type *p* is **definable** if for every formula $\phi(x, \bar{y})$, the set $\{\bar{a} \in M^n : p \vdash \phi(x, \bar{a})\}$ is definable in \mathcal{M} .

- In stable theories every complete type is definable.
- In ordered (e.g. o-minimal structures), not every complete type is definable.

Example

• In $\mathcal{M} = (\mathbb{R}, <, +, \cdot)$, the type $x >> \mathbb{R}$ is definable, since the set $\{a \in \mathbb{R} : p \vdash x > a\} = \mathbb{R}$.

• In $\mathcal{M} = (\mathbb{Q}, <, +)$ the cut of π in \mathbb{Q} is not a definable type in \mathcal{M} .

• In G^{set} every type is (trivially) definable, because every subset is definable.

Fact

If p is a definable (partial) G-type over M, then Stab(p) can be written as the intersection of (infinitely many) definable subgroups of G.

Proof For $\varphi(x) \in \mathcal{L}_M$ a *G*-formula, let $G_{\varphi}(p) = \{g \in G : p \vdash \varphi(g^{-1}x)\}$. Since *p* is a definable type this is a definable set. Let

 $Stab_{\varphi}(p) = \{h \in G : h \cdot G_{\varphi}(p) = G_{\varphi}(p).\}.$

This is clearly a definable subgroup of G.

We have $Stab(q) = \bigcap_{\varphi \in \mathcal{L}_M} Stab_{\varphi}(q)$.

Corollary- back to topological groups

If *G* has a uniformly definable topology and $p \in S_G(M)$ is a definable type then $Stab(\mu \cdot p)$ is the intersection of definable subgroups.

Proof The partial type $\mu \cdot p$ is definable and hence the above holds.

Recall

• $\mathcal{M} = (M, <, +, \cdot, \cdots)$ is an o-minimal structure if every definable subset of *M* is a finite union of intervals with endpoints in *M*.

• Main examples are real closed fields and their expansions (over the reals) by the real exponential, restricted analytic functions, and many more.

• A non-example is $(\mathbb{R}, <, +, \cdot, \sin x)$

• The order topology in M, and box-topology in M^n yield a uniformly definable topology.

• Definable subsets of *Mⁿ* have a finite decomposition into manifold-like sets called **cells**, resulting in a good theory of dimension.

• Rich theory of definable groups (examples are complex algebraic, real algebraic groups, compact Lie groups and more):

Groups in o-minimal structures II

For simplicity by an o-minimal structure we mean an o-minimal expansion of a real closed field. Let G be a group definable in \mathcal{M} .

Fact (Pillay)

1. There is a definable injection $f: G \hookrightarrow M^n$ such that f(G) is a closed subset of M^n and the group operations are continuous on f(G) (with respect to the topology induced from M^n). So G has a uniformly definable topology.

2. (DCC) If $G \supseteq G_1 \supseteq G_2 \supseteq \cdots G_n \supseteq \cdots$ is a descending chain of definable groups then there exists N such that $G_n = G_N$ for all $n \ge N$.

Corollary

If $p \in S_G(M)$ is a definable type then Stab(p) and $Stab(\mu \cdot p)$ are **definable** groups.

What are the μ -stabilizer subgroups?

For $p \in S_G(M)$, we call $Stab(\mu \cdot p)$ the μ -stabilizer of p. Notice that $Stab(p) \subseteq Stab(\mu \cdot p)$.

Example

Let $G = (\mathbb{R}^2, +)$, definable in \mathcal{M} the field of reals and $\sigma(t) = (t, t^2)$. Let p be the type of σ at $+\infty$. Then the μ -stabilizer of p is:

 $Stab(\mu \cdot p) = \{0\} \times \mathbb{R}.$

• More generally, given an unbounded definable curve $\sigma(t) \subseteq \mathbb{R}^2$, the μ -stabilizer of its type at $+\infty$ is a one-dimensional subspace of \mathbb{R}^2 whose slope is the limit tangent of σ at $+\infty$.

• Consider the two-dimensional type $p(x, y) = \{x >> \mathbb{R}, y >> \mathbb{R}(x)\}$. Its μ -stabilizer (as well as its stabilizer) is the whole of \mathbb{R}^2 .

Theorem

Let $G \subseteq M^n$ be a definable group in an o-minimal structure, $p \in S_G(M)$ a definable type. Let

 $d = \min\{\dim(q) : q \sim_{\mu} p\}.$

Then

1. $Stab(\mu \cdot p)$ is a definable subgroup of *G* (we already saw).

- 2. It is solvable, torsion-free.
- 3. It has dimension *d*.

In particular, if *p* is unbounded in M^n then $dim(Stab(\mu \cdot p)) > 0$.

In dimension one the above result (in a different formulation) was proved by Pe-Steinhorn in 1999.

The standard part map (Marker-Steinhorn's work)

Assume that $p(x) \in S(M)$ is a definable type. Let α be a realization of p(x) and $\mathcal{N} = \mathcal{M}\langle \alpha \rangle$ a prime model over $M \cup \{\alpha\}$. Let $\mathcal{O}_{\mathcal{N}} \subset N$ be the convex hull of M in N.

Fact

There is "a standard part map" st: $\mathcal{O}_{\mathcal{N}} \to M$ defined as: st(*n*) is the unique $m \in M$ such that for every open *M*-definable *V* containing *m*, we have $n \in V$

We extend it to st: $\mathcal{O}_{\mathcal{N}}^k \to M^k$, coordinate-wise, and instead of $\operatorname{st}(X \cap \mathcal{O}_{\mathcal{N}}^k)$ we will just write $\operatorname{st}(X)$.

Fact

In the above setting st(X) is definable in \mathcal{M} for any \mathcal{N} -definable set X.

On the proof of the theorem- a different definition of $Stab(\mu \cdot p)$

Let $G \subseteq M^k$ be a group definable in o-minimal \mathcal{M} and $p \in S_G(M)$ a definable type.

Let *q* be a definable type of minimal dimension *d* in the \sim_{μ} -class of *p* (exists!).

Let $\alpha \models q$ and $\mathcal{N} = \mathcal{M}(\alpha)$.

Theorem

There exists an *M*-definable set $X \ni \alpha$ such that (1) $Stab(\mu \cdot p) == Stab(\mu \cdot q) = st(X\alpha^{-1})$ (2) $dim(st(X\alpha^{-1})) = d$

The idea: X is "almost linear", so it is infinitesimally close to a coset of a definable group. Translating on the right by α^{-1} and taking standard part we get the desired μ -stabilizer group.

• Fact: Much of the above can be carried out in the setting of definable *G*-actions.

• **Goal:** Understand (hermitian) symmetric spaces in the above setting.

• Ambitious goal: Understand certain compactifications of symmetric spaces via the space of μ -types.

• Very ambitious goal: Understand (compactification of) locally symmetric spaces via the space of μ -types.