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Topological groups within model theory

A topological group
A group G admitting a Hausdorff topology τ , with (g,h) 7→ g · h and
g 7→ g−1 continuous.

Within model theory
Given a structureM,
• A group G is a definable inM if its domain, and group operation are
definable in the structureM.

•We say that G is a definable topological group inM if in addition,
there is a basis B for τ (equivalently, for neighborhoods of e), such that
every U ∈ B is definable inM.

• G has a uniformly definable topology if B is given as a uniformly
definable family of sets: B = {φ(G,a) : a ∈ T}.
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Examples of definable topological groups

• M arbitrary, G a definable group, with discrete topology.

• M = (R, <,+, ·, ....), G = GL(n,R), or any real algebraic subgroup.

Take B = {Uε = {A : ||A− I|| < ε} : ε > 0}, uniformly definable.

• Start with G an arbitrary topological group.

Let M = Gset = (G; ·,P(G)).

Clearly, G is a definable topological group inM.
Side Q: When is it also uniformly definable?
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Complete G-types

Assume that G is a definable (topological) group inM.
A G-formula is a formula that defines a subset of G. A collection of
G-formulas is called a G-type.

The space of complete G-types
Let SG(M) be the set of complete G-types over M.
The Stone topology on SG(M): For φ(x) a G-formula,
Uφ = {p ∈ SG(M) : φ ∈ p} is a basic open set.
• The space SG(M) is compact Hausdorff.
• G acts on SG(M) by homeomorphisms: g · p = {φ(g−1x) : φ ∈ p}.
• G embeds, as a G-set, onto a dense, discrete, subspace of SG(M),
via g 7→ {x = g}.

Drawback
The action of G is not continuous with respect to the product topology
on G × SG(M), unless G is discrete.
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Topological dynamics and model theory

Topological dynamics is the study of dynamical systems, given by a
continuous action of a topological group G on a (usually compact)
space X .

In Model Theory, it was Ludomir Newelski who began investigating
definable groups (viewed as discrete groups), via their action on the
compact space SG(M). Notions from topological dynamics such as
minimal sub-flows, Ellis semi-group were related to model theoretic
counter-parts, one shedding light on the other.

Additional feature in the current approach
Bringing into play the topology of the group G
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The infinitesimal subgroup µ

Let G be a definable topological group inM.

µ := {θ(x) ∈ LM : θ defines an open neighborhood of e}.

As a collection of formulas, µ is a partial G-type, defining a basis for
the open neighborhoods of e.

Some properties of the partial type µ

• IfM≺ N then µ(N ) is a group, called the infinitesimal subgroup
of G(N ). It is normalized by all g ∈ G(M).

• Consider the partial type Σ(x , y) = {θ(x−1 · y) : θ ∈ µ}.

Model theoretically, it is a type-definable equivalence relation on G
(defining the µ-left-coset-relation on G(N )).

Set-wise, it is a collection of subsets of G ×G, which make up a
uniformity on G.
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The space of µ-types I

For two G-formulas θ, φ, let (θ · φ)(M) := θ(M) · φ(M).

For a complete type p(x) ∈ SG(M), let

µ · p = {(θ · φ)(x) : θ ∈ µ , φ ∈ p}.

• µ · p is a partial G-type, which we call a µ-type. Clearly, p ` µ · p.

• For any complete G-types p,q, if µ · q ∪ µ · p is consistent then
µ · q = µ · p.

•We obtain an equivalence relation on SG(M): p ∼µ q ⇔ µ · p = µ · q.

The ∼µ-classes are of the form [p]µ = {q : q ` µ · p}.
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Example

Consider G = (R2,+) definable inM = (R, <,+, ·).
We consider three G-types:
1. Let p(x , y) := {y = 0} ∪ {x > r : r ∈ R}. It is the (one dimensional)
type at +∞ of the curve γ(t) = (t ,0).

2. Let q(x , y) be the (one dimensional) type at +∞ of the curve
σ(t) = (t ,1/t).

3. Let r(x , y) be the (two-dimensional) type of (α,1/β) with
R < α << β.

We have p ∼µ q ∼µ r .
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The space of µ-types II

Let Sµ
G(M) := SG(M)/ ∼µ, with the quotient topology, identified with

the set of partial types {µ · p : p ∈ SG(M)}.

Proposition
• The quotient space Sµ

G(M) is compact Hausdorff.
• The action of G on Sµ

G(M), given by g · µp = µ · gp is continuous.
• The map g 7→ µ · tp(g/M) is a topological G-equivariant embedding
of G(M) onto a dense subset of Sµ

G(M).

Connection to the Samuel compactification
Thus, Sµ

G(M) is a compactification of the group G, as a G-space. It is
basically the “Samuel compactification” of G with respect to the
uniformity given by µ.
In the case of Gset, the two objects are identical.
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Some Examples

Example
1. If G is anM-definable discrete topological group then

Sµ
G(M) = SG(M).

In particular, if G is a discrete group, viewed as a Gset-definable
group then Sµ

G(M) = βG, the Stone-Čhech comapctification of G.

2. If G = (R,+) viewed as a topological group definable in the field of
real numbers, then the space Sµ

G(R) is homeomorphic to
R ∪ {±∞} with the obvious action of G.

3. If G is a compact topological group, definable in someM then
Sµ

G(M) = G.
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Stabilizers of types

An important tool in model theory of groups is the stabilizer subgroup
of p ∈ SG(M). Namely, the group Stab(p) of all g ∈ G such that
g · p = p.

Roughly speaking, the group Stab(p) measures how close p is to
being “the type” of a left-coset of some sub-group.

• InM = (C,+, ·), every connected algebraic group G has a (unique)
type p ∈ SG(M), such that Stab(p) = G.

• InM = (R, <,+, ·) the situation is very different. E.g. in
G = SL(2,R), the stabilizer of every type p ∈ SG(M) is contained in a
conjugate of the upper triangular group (so the stabilizer is solvable).
But “most” G-types have trivial stabilizer.

In general, Stab(p) is not a definable group. But if we restrict to
definable types, we improve the situation:
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Definable types

Definition
A (possibly partial) type p is definable if for every formula φ(x , ȳ), the
set {ā ∈ Mn : p ` φ(x , ā)} is definable inM.

• In stable theories every complete type is definable.

• In ordered (e.g. o-minimal structures), not every complete type is
definable.

Example
• InM = (R, <,+, ·), the type x >> R is definable, since the set
{a ∈ R : p ` x > a} = R.
• InM = (Q, <,+) the cut of π in Q is not a definable type inM.
• In Gset every type is (trivially) definable, because every subset is
definable.
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Stabilizers of definable types

Fact
If p is a definable (partial) G-type over M, then Stab(p) can be written
as the intersection of (infinitely many) definable subgroups of G.

Proof For ϕ(x) ∈ LM a G-formula, let Gϕ(p) = {g ∈ G : p ` ϕ(g−1x)}.
Since p is a definable type this is a definable set. Let

Stabϕ(p) = {h ∈ G : h ·Gϕ(p) = Gϕ(p).}.

This is clearly a definable subgroup of G.

We have Stab(q) =
⋂
ϕ∈LM

Stabϕ(q).

Corollary- back to topological groups

If G has a uniformly definable topology and p ∈ SG(M) is a definable
type then Stab(µ · p) is the intersection of definable subgroups.

Proof The partial type µ ·p is definable and hence the above holds.
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Groups in o-minimal structures I

Recall
• M = (M, <,+, ·, · · · ) is an o-minimal structure if every definable
subset of M is a finite union of intervals with endpoints in M.

• Main examples are real closed fields and their expansions (over the
reals) by the real exponential, restricted analytic functions, and many
more.

• A non-example is (R, <,+, ·, sin x)

• The order topology in M, and box-topology in Mn yield a uniformly
definable topology.

• Definable subsets of Mn have a finite decomposition into
manifold-like sets called cells, resulting in a good theory of dimension.

• Rich theory of definable groups (examples are complex algebraic,
real algebraic groups, compact Lie groups and more):
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Groups in o-minimal structures II

For simplicity by an o-minimal structure we mean an o-minimal
expansion of a real closed field. Let G be a group definable inM.

Fact (Pillay)
1. There is a definable injection f : G ↪→ Mn such that f (G) is a closed
subset of Mn and the group operations are continuous on f (G) (with
respect to the topology induced from Mn). So G has a uniformly
definable topology.

2. (DCC)If G ⊇ G1 ⊇ G2 ⊇ · · ·Gn ⊇ · · · is a descending chain of
definable groups then there exists N such that Gn = GN for all n > N.

Corollary
If p ∈ SG(M) is a definable type then Stab(p) and Stab(µ · p) are
definable groups.
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What are the µ-stabilizer subgroups?

For p ∈ SG(M), we call Stab(µ · p) the µ-stabilizer of p. Notice that
Stab(p) ⊆ Stab(µ · p).

Example

Let G = (R2,+), definable inM the field of reals and σ(t) = (t , t2). Let
p be the type of σ at +∞. Then the µ-stabilizer of p is:

Stab(µ · p) = {0} × R.

• More generally, given an unbounded definable curve σ(t) ⊆ R2, the
µ-stabilizer of its type at +∞ is a one-dimensional subspace of R2

whose slope is the limit tangent of σ at +∞.

• Consider the two-dimensional type p(x , y) = {x >> R , y >> R(x)}.
Its µ-stabilizer (as well as its stabilizer) is the whole of R2.
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The main theorem

Theorem
Let G ⊆ Mn be a definable group in an o-minimal structure, p ∈ SG(M)
a definable type. Let

d = min{dim(q) : q ∼µ p}.

Then
1. Stab(µ · p) is a definable subgroup of G (we already saw).
2. It is solvable, torsion-free.
3. It has dimension d .

In particular, if p is unbounded in Mn then dim(Stab(µ · p)) > 0.

In dimension one the above result (in a different formulation) was
proved by Pe-Steinhorn in 1999.
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The standard part map ( Marker-Steinhorn’s work)

Assume that p(x) ∈ S(M) is a definable type.
Let α be a realization of p(x) and N =M〈α〉 a prime model over
M ∪ {α}.
Let ON ⊆ N be the convex hull of M in N.

Fact
There is “a standard part map” st : ON → M defined as:
st(n) is the unique m ∈ M such that for every open M-definable V
containing m, we have n ∈ V

We extend it to st : Ok
N → Mk , coordinate-wise, and instead of

st(X ∩ Ok
N ) we will just write st(X ).

Fact
In the above setting st(X ) is definable inM for any N -definable set X .
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On the proof of the theorem- a different definition of
Stab(µ · p)
Let G ⊆ Mk be a group definable in o-minimalM and p ∈ SG(M) a
definable type.

Let q be a definable type of minimal dimension d in the ∼µ-class of p
(exists!).

Let α |= q and N =M(α).

Theorem
There exists an M-definable set X 3 α such that
(1) Stab(µ · p) == Stab(µ · q) = st(Xα−1)
(2) dim(st(Xα−1)) = d

The idea: X is “almost linear”, so it is infinitesimally close to a coset of
a definable group. Translating on the right by α−1 and taking standard
part we get the desired µ-stabilizer group.
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Generalizations and future goals

• Fact: Much of the above can be carried out in the setting of
definable G-actions.

• Goal: Understand (hermitian) symmetric spaces in the above
setting.

• Ambitious goal: Understand certain compactifications of
symmetric spaces via the space of µ-types.

• Very ambitious goal: Understand (compactification of) locally
symmetric spaces via the space of µ-types.
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