
INTRODUCTION TO LIE ALGEBRAS.

1. Algebras. Derivations. Definition of Lie algebra

1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a vector
space A endowed with a bilinear operation

a, b ∈ A 7→ a · b ∈ A.
Recall that bilinearity means that for each a ∈ A left and right multiplica-

tions by a are linear transformations of vector spaces (i.e. preserve sum and
multiplication by a scalar).

1.1.1. Some extra properties. An algebra A is called associative if a · (b · c) =
(a · b) · c).

An algebra A is commutative if a · b = b · a.
Usually commutative algebras are supposed to be associative as well. Often

(but not necessarily in this course) they are also supposed to have a unit 1, that
is an element satisfying the condition 1 · a = a · 1 = a.

1.1.2. Example. If V is a vector space, End(V ), the set of (linear) endomorphisms
of V is an associative algebra with respect to composition. If V = kn End(V ) is
just the algebra of n× n matrices over k.

1.1.3. Example. The ring of polynomials k[x] over k is a commutative k-algebra.
The same for k[x1, . . . , xn], the algebra of polynomials of n variables.

1.1.4. Example. If V is a vector space, define an operation by the formula

a · b = 0.

This is an algebra operation.

1.2. Subalgebras, ideals, quotient algebras. A linear map f : A → B of
k-algebras is called homomorphism if f(a · b) = f(a) · f(b) for each a, b ∈ A.

The image of a homomorphism is a subalgebra (please, give a correct definition).
Kernel of f defined as {a ∈ A|f(a) = 0} is an ideal in A. Here are the appropriate
definitions.

1.2.1. Definition. A vector subspace B ⊆ A is called a subalgebra if

a, b ∈ B =⇒ a · b ∈ B.

1.2.2. Definition. A vector subspace I ⊆ A is called an ideal if

a ∈ A&x ∈ I =⇒ a · x ∈ I&x · a ∈ I.
1
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1.2.3. Lemma. Let f : A→ B be a homomorphism of algebras. Then Ker(f) is
an ideal in A.

Proof. Exercise. �

An important property of ideals is that one can form a quotient algebra “mod-
ulo I”. Here is the construction.

Let A be an algebra and I an ideal in A. We define the quotient algebra A/I
as follows.

As a set this is the quotient of A modulo the equivalence relation

a ∼ b iff a− b ∈ I.

Thus, this is the set of equivalence classes having form a+ I, where a ∈ A.
Structure of vector space on A/I is given by the formulas

(a+ I) + (b+ I) = (a+ b) + I; λ(a+ I) = λa+ I.

Algebra structure on A/I is given by the formula

(a+ I) · (b+ I) = a · b+ I.

One has a canonical homomorphism

ρ : A→ A/I

defined by the formula ρ(a) = a+ I.
As usual, the following theorem (Theorem on homomorphism) is straighfor-

ward.

1.2.4. Theorem. Let f : A → B be a homomorphism of algebras and let I be
an ideal in A. Suppose that I ⊆ Ker(f). Then there exists a unique homomor-
phism f : A/I → B such that f = f ◦ ρ where ρ : A → A/I is the canonical
homomorphism.

Moreover, f is onto iff f is onto; f is one-to-one iff I = Ker(f).

Proof. Exercise. �

1.3. Derivations. A linear endomorphism d : A→ A is called derivation if the
following Leibniz rule holds.

d(a · b) = d(a) · b+ a · d(b).

The set of all derivations of A is denoted Der(A). This is clearly a vector
subspace of End(A).
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1.3.1. Composition. Let d, d′ ∈ Der(A) let us check that the composition dd′ is
not a derivation.

(1) dd′(a · b) = d(d′(a) · b+ a · d′(b)) = d(d′(a) · b) + d(a · d′(b)) =

dd′(a) · b+ d′(a) · d(b) + d(a) · d′(b) + a · dd′(b)
which is not exactly what we need.

1.3.2. Bracket. Thus, we suggest another operation. Given d, d′ ∈ Der(A), define
[d, d′] = dd′ − d′d.

1.3.3. Theorem. If d, d′ ∈ Der(A) then [d, d′] ∈ Der(A).

Proof. Direct calculation. �

1.3.4. Properties of this bracket. 1. [x, x] = 0.
2. (Jacobi identity) [[xy]z] + [[zx]y] + [[yz]x] = 0
Exercise: check this.

1.4. Definition of Lie algebra. First examples. A Lie algebra is an algebra
with an operation satisfying the properties 1.3.4.

The operation in a Lie algebra is usually denoted [, ] and called (Lie) bracket.

1.4.1. Anticommutativity. The first property of a Lie algebra saying [xx] = 0 is
called anticommutativity. In fact, it implies that [xy] = −[yx] for all x, y.

Proof: 0 = [x+ y, x+ y] = [xx] + [xy] + [yx] + [yy]. This implies [xy] = −[yx].
The converse is true if char k 6= 2. In fact, [xx] = −[xx] implies that 2[xx] = 0
and, if the charactersitic of k is not 2, this implies [xx] = 0.

1.4.2. Example. Let k = R, L = R. We are looking for possible Lie brackets on
L. Bilinearity and anticommutativity require

[a, b] = [a · 1, b · 1] = ab[1, 1] = 0.

Thus, there is only one Lie bracket on L = R.

1.4.3. Definition. A Lie algebra L having a zero bracket is called a commutative
Lie algebra.

1.4.4. Observation. Fix a field k of characteristic 6= 2 and let L = 〈e1, . . . , en〉 be
n-dimensional vector space over k. In order to define a bilinear operation, it is
enough to define it on ei:

[ei, ej] =
n∑
k=1

ckijek.

(this is true for any type of algebra). Elements ckij are called structure constants
of L.
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Since we want the bracket to be anti-commutative, one has to have

[ei, ej] = [ej, ei].

Bilinearity and this condition imply anti-commutativity of the bracket (check
this formally!).

Suppose now we have checked already anticommutativity. To check Jacobi
identity let us denote

J(x, y, z) = [[xy]z] + [[zx]y] + [[yz]x].

One observes that J is trilinear (linear on each one of its three arguments) and
antisymmetric (it changes sign if one interchanges any two arguments).

Thus, in order to check J(x, y, z) is identically zero, it is enough to check

J(ei, ej, ek) = 0 for 1 ≤ i < j < k ≤ n.

1.4.5. Example. Suppose dimL = 2. Suppose L is not commutative. Choose a
basis L = 〈e1, e2〉. One has

[e1, e1] = [e2, e2] = 0 and [e1, e2] = −[e2, e1].

Let [e1, e2] = y. Then y 6= 0 and any bracket in L is proportional to y (by
bilinearity).

Thus, it is convenient to take y as one of generators on L. Choose another one,
say x. We have L = 〈x, y〉 and [x, y] = λy. Since L is not commutative, λ 6= 0.
Thus change variables once more setting x := x/λ.

We finally get

(2) L = 〈x, y〉 and [x, y] = y.

We have therefore proven that there are only two two-dimensional Lie algebras
over k up to isomorphism: a commutative Lie algebra and the one described
in (2).

1.4.6. Example. The set of n × n matrices over k is an associative algebra with
respect to the matrix multiplication. It becomes a Lie algebra if we define a
bracket by the formula

[x, y] = xy − yx.
This Lie algebra is denoted gln(k) (sometimes we do not mention the field k). Its
dimension is, of course, n2.

The Lie algebra gln admits a remarkable Lie subalgebra.
Define sln = {a ∈ gln| tr(a) = 0}.
Here tr(a) =

∑
aii is the trace of a, the sum of the diagonal elements of a.

We claim this is a Lie subalgebra.



5

1.4.7. Proof. Recall that for each pair of matrices a, b one has

tr(ab) = tr(ba).

(Proof is just a direct calculation: both sides are equal to
∑

ij aijbji.)

Then tr([a, b]) = tr(ab) − tr(ba) = 0. This proves that sln is closed under the
bracket operation.

1.5. Classical Lie algebras. Here is a way to construct many interesting Lie
algebras. Let V be a finite dimensional vector space and let B : V × V → k be
a bilinear form. Define

gB = {f : V → V |B(f(v), w) +B(v, f(w)) = 0}
for any v, w ∈ V .

1.5.1. Proposition. gB is a Lie subalgebra in gl(V ).

Proof. Assume that

B(f(v), w) +B(v, f(w)) = 0

and

B(f(v), w) +B(v, f(w)) = 0.

We have

B([f, g](v), w) = B(f ◦g(v), w)−B(g◦f(v), w) = −B(g(v), f(w))+B(f(v), g(w))

and

B(v, [f, g](w)) = B(v, f◦g(w))−B(v, g◦f(w)) = −B(f(v), g(w))+B(g(v), f(w)).

Adding two last equalities, we get

B([f, g](v), w) +B(v, [f, g](w)) = 0

�

Choosing different bilinear forms, one can get a lot of important Lie algebras
usually called classical Lie algebras.

2. More examples. Ideals. Direct products.

2.1. More examples.

2.1.1. Let k = R, L = R3. Define [x, y] = x × y — the cross-product. Recall
that the latter is defined by the formulas

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.
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2.1.2. It is convenient to choose a basis of sl2 as follows.

(3) e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Than the bracket in sl2 is given by the formulas

[ef ] = h, [he] = 2e, [hf ] = −2f.

The Lie algebra gln has many interesting subalgebras. For instance,

2.1.3. bn = {a ∈ sln|aij = 0 for i > j} — upper-triangular matrices of trace
zero.

This algebra has dimension n(n+1)
2
− 1.

2.1.4. nn = {a ∈ gln|aij = 0 for i ≥ j} — strictly upper-triangular matrices.

This algebra has dimension n(n−1)
2

.

2.2. Direct product. Let L and M be two Lie algebras. Define their direct
product L × M as follows. As a set, this is the Cartesian product of L and
M . The operations (multiplication by a scalar, sum and bracket) are defined
componentwise. For instance,

[(x, y), (x′, y′)] = ([x, x′], [y, y′]).

2.2.1. Example. If L is commutative of dimension n and L′ is commutative of
dimension n′ then L× L′ is commutative of dimension n+ n′.

2.2.2. Example. The Lie algebra gln is isomorphic to the direct product sln × k
(k is the one-dimensional algebra). The map from the direct product to gln is
given by the formula (a, λ) 7→ a+ λI where I is the identity matrix.

2.3. Some calculations.

2.3.1. Ideals in n3. Quotients. Choose a basis for n3 as follows.

(4) x =

 0 1 0
0 0 0
0 0 0

 , y =

 0 0 0
0 0 1
0 0 0

 , z =

 0 0 1
0 0 0
0 0 0

 .

Multiplication is given by

[x, y] = z, [x, z] = [y, z] = 0.

Let us describe all ideals in n3. If I is a non-zero ideal, let t = ax+ by+ cz ∈ I
be non-zero. Then [x, t] = bz, [y, t] = az, [z, t] = 0. Thus, if a 6= 0 or b 6= 0 then
z ∈ I. If a = b = 0 then once more z ∈ I. Therefore, z belongs to any non-zero
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ideal. Thus, the only one-dimensional ideal is 〈z〉; any two-dimensional ideal has
form 〈z, ax+ by〉. It is easy to see that all these formulas do define ideals.

The quotient-allgebra n3/〈z〉 has a basis x, y with the bracket [x, y] = z = 0.
Thus, the quotient is a commutative two-dimensional algebra.

2.4. Adjoint action. Let L be a Lie algebra, x ∈ L. Define a linear transfor-
mation

adx : L→ L

by the formula adx(y) = [x, y].

2.4.1. Lemma. adx is a linear transformation.

In fact, this follows from the linearity of [, ] in the first argument.

2.4.2. Lemma. adx is a derivation.

In fact,

adx[y, z] = [adx(y), z] + [y, adx(z)]

— this follows from the Jacobi identity.
Assembling together adx for all x ∈ L we get therefore a map

ad : L→ Der(L).

2.4.3. Lemma. The map ad : L→ Der(L) is a homomorphism of Lie algebras.

One has to check that

ad[x,y] = adx ◦ ady − ady ◦ adx.

This also follows from the Jacobi identity.

2.4.4. Definition. Center of a Lie algebra L is defined by the formula

Z(L) = {x ∈ L|∀y ∈ L [x, y] = 0}.

By definition of ad, one has Z(L) = Ker(ad).
For example, Z(n3) = 〈z〉.

2.5. Simplicity of sl2.

2.5.1. Definition. A Lie algebra L is simple if it is not one-dimensional and if it
has no non-trivial ideals.

Our aim is to prove the following

2.5.2. Theorem. sl2 is simple.



8

2.5.3. Some linear algebra. Let V be a f.d. vector space and f ∈ End(V ).
Endomorphism f is called diagonalizable if V has a basis of eigenvectors.
If f is diagonalizable then V = ⊕λ∈SVλ where Vλ = {x ∈ V |f(x) = λx} is the

eigenspace corresponding to the eigenvalue λ and S is the set of eigenvalues of f
(spectrum of f).

2.5.4. Lemma. Let f ∈ End(V ) be diagonalizable and let W be a f -invariant
subspace of V (i.e., f(W ) ⊆ W ). Then

W = ⊕λ∈SWλ where Wλ = W ∩ Vλ.

Proof. We have to prove that if x ∈ W and if x =
∑
xλ with xλ ∈ Vλ then

xλ ∈ W .
In fact, W 3 fk(x) =

∑
fk(xλ) =

∑
λkxλ for each k.

Let T = {λ ∈ S|xλ 6= 0} and let t = |T |. This is the number of non-
zero summands in the decomposition of x. The vectors x, f(x), . . . , f t−1(x) can
be expressed as linear combinations of t linearly independent vectors xλ. The
transition matrix has form

1 1 . . . 1
λ1 λ2 . . . λt
. . . . . . . . . . . .
λt−1

1 λt−1
2 . . . λt−1

t

 .

This is Vandermonde matrix. Its determinant is∏
i<j

(λi − λj) 6= 0.

This proves that xλ can be expressed through fk(x) and therefore belong to
W . �

2.5.5. Proof of Theorem 2.5.2. Consider endomorphism adh of sl2. It is diago-
nalizable with eigenvalues −2, 0, 2. Any ideal I is invariant with respect to adh.
Therefore, I should be spanned by a subset of f, h, g. It is easy to check that
this is impossible for any nonempty proper subset of generators.

2.6. Problem assignment, 1.

1. Let A be an associative algebra. Define a new operation on A (bracket)
by the formula

[a, b] = ab− ba.
Verify that A is a Lie algebra with respect to this operation.

2. Verify that the set of antisymmetric matrices forms a Lie algebra with
respect to the bracket.
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3. Derivations.
(a) Let A = k[t] be the algebra of polynomials. Fix f ∈ A and define

d : A→ A by the formula

d(g) = fg′.

Prove d is a derivation.
(b) The same A, f , d : A→ A is given by the formula

d(g) = fg′ + g.

is this a derivation?
(c) Prove that any derivation of A is of form described in (a). Hint:

consider the value of d on 1, t ∈ A.
4. Find all ideals and all quotient algebras of the algebra

L = {a ∈ gl2|a21 = 0}.

Prove that L is isomorphic to the direct product of k (one-dimensional
algebra) and b2.

5. (bonus). Let L = R3 with cross-product as a bracket. Prove that LC is
isomorphic to sl2(C).

Here LC denotes the Lie algebra over C having the base e1, e2, e3 with
the bracket given by the formulas

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

2.7. Simplicity of (R3,×). The proof of the simplicity of this Lie algebra is
very geometric.

Let I be a non-zero ideal in it and let 0 6= v ∈ I. We can normalize v so that
||v|| = 1. There exists a pair of vectors v2, v3 so that the triple v, v2, v3 forms an
orthonormal base. Then v2 = v × v3 and v3 = v × v2 up to sign, therefore, all
three vectors belong to I. This proves the assertion.

3. Modules

The notion of module over a Lie algebra is of extreme importance.

3.1. Two definitions and their equivalence. Let L be a Lie algebra over a
field k.

3.1.1. Definition. An L-module is a k-vector space M together with a bilinear
map

r : L×M →M

satisfying the following property

r([x, y],m) = r(x, r(y,m))− r(y, r(x,m)).
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Usually one writes simply xm instead of r(x,m). Then our axiom reads

[x, y]m = xym− yxm.

To give another definition of L-module recall that for every vector space M
the collection of endomorphisms End(V ) admits an associative composition. The
operation

f, g ∈ End(M) 7→ [f, g] = fg − gf ∈ End(M)

defines a Lie algebra structure on End(M). The Lie algebra of endomorphisms
so obtained is denoted gl(M).

3.1.2. Definition. An L-module is a vector space M endowed with a Lie algebra
homomorphism

ρ : L→ gl(M).

The proof of the equivalence of the above definitions is fairly standard. Another
name for an L-module is representation of L. If M is finite dimensional, we are
talking about finite dimensional representations.

3.2. Examples.

3.2.1. L = k. If L is one-dimensional, say, L = ke, a module structure

ρ : L→ gl(M)

is given by an endomorphism of M (the image ρ(e)).

3.2.2. L is commutative. A representation of L is a Lie algebra homomorphism.
If L = 〈e1, . . . , en〉, a homomorphism r : L → gl(M) is given by the images
r(ei). Since r is a homomorphism, r(ei) commute. Vice versa, any collection of
n commuting endomorphisms of M define on M a structure of L-module.

3.2.3. An sl2-module is a vector space M with three endomorphisms E,F,H of
M satisfying the conditions

EF − FE = H; HE − EH = 2E; HF − FH = −2F.

This means that an sl2-module defines a representation of sl2 in matrices. This
is the explanation of the term representation.

3.2.4. Natural representation. By definition, Lie algebra gln admits an n-dimensional
representation. It is given by the identity map

id : gln → gl(kn).

It is called the natural representation. Similarly, if g ⊆ gln is a Lie subalgebra,
we have a natural n-dimensional representation of g.

Examples include g = sln, bn, nn and some other algebras.
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3.3. Category of L-modules. Fix a Lie algebra L.
A linear map f : M → N is an L-module homomorphism if

f(ax) = af(x)

for each a ∈ L, x ∈ M . Clearly, composition of homomorphisms is a homomor-
phism.

3.3.1. Lemma. Let f : M → N be a bijective homomorphism of L-modules.
Then f−1 : N →M is also a homomorphism.

Proof. Straighforward. �

The notion of submodule and quotient module are defined in a standard way.

3.3.2. Direct sum. Given two L-modules M and N , one defines an L-module
structure on M ⊕N by the formula

a(m,n) = (am, an).

3.3.3. Kernel, image. Many notions of linear algebra easily generalize to modules.
Given a homomorphism f : V → W of L-modules, its kernel and image are

defined as usual:
Ker(f) = {v ∈ V |f(v) = 0}.

Im(f) = f(V ) = {w ∈ W |∃v ∈ V,w = f(v)}.
An important (and easy!) fact is that Ker(f) is a submodule of V and Im(f)

is a submodule of W .

3.4. Representation theory. Representation theory of Lie algebras studies the
category of modules over a Lie algebra. Here are the typical questions and the
typical notions studied.

3.4.1. Classification. Description of all isomorphism classes of L-modules. Some-
times only modules satisfying special properties are considered (e.g., finite dimen-
sional modules).

Today we will see that in the case L is one-dimensional we already know the
answer from Linear Algebra.

3.4.2. Simple modules. A module is called simple if it does not admit non-trivial
submodules. (A synonym: irreducible representation).

3.4.3. Semisimple modules. A module is called semisimple if it is isomorphic to a
direct sum of simple modules (there are other equivalent definitions). Synonym:
a completely reducible representation.

We will study soon the following result.

3.4.4. Theorem. All finite dimensional representations of sl2 are completely re-
ducible.
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3.5. Representations of a one-dimensional Lie algebra. .

3.5.1. Isomorphism classes. We are looking for isomorphism classes of n-dimensional
representations. A map f : M → N is a homomorphism of representations if
fαM = αNf . Since M = N = kn as vector spaces, we deduce that endomor-
phisms α1 and α2 define isomorphic representations iff there exists an automor-
phism f such that α2 = fα1f

−1.
Thus the problem of classifications of n-dimensional representations is equiva-

lent to that of classification of square matrices up to conjugation.
Theory of Jordan normal form answers this question in the case k is alge-

braically closed.
Let us recall the most important steps in this theory.

3.5.2. Recollections from Linear Algebra. Let f : V → V be an endomorphism
of a finite dimensional vector space over an algebraically closed field k. Recall
that λ ∈ k is an eigenvalue of f if f − λI is not invertible. The collection of
eigenvalues of f is therefore the set of roots of the characteristic polynomial of f
defined as

Pf (t) = det(f − tI).

In what follows S(f) will denote the set of eigenvalues of f .
Let λ ∈ S(f). A vector v ∈ V is called an eigenvector corresponding to λ if

f(v) = λv. Each eigenvalue admits a non-zero eigenvector. Furthermore, v ∈ V
is called generalized eigenvector if there exists n ∈ N such that (f − λI)nv = 0.

Fix λ ∈ S(f). Let V λ denote the set of eigenvectors and Vλ the set of general-
ized eigenvectors corresponding to λ. These are vector subspaces of V and

Vλ ⊇ V λ 6= 0.

The following are the main results of this study.

• V =
⊕

λ∈S(f) Vλ.
• dimVλ equals the multiplicity of λ in the characteristic polynomial of f .
• Each Vλ is isomorphic to a direct sum of Jordan blocks having eigenvalue
λ (definition of J. b. see below).

Jordan block having eigenvalue λ is the matrix A = (aij) defined by the for-
mulas

aij =

 λ if i = j,
1 if i = j − 1,
0 otherwise.

3.5.3. Simple modules. Direct consequence of the above: Any simple module has
dimension 1; it is defined up to isomorphism by its (only) eigenvalue λ.

This module will be sometimes denoted by kλ.
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3.5.4. Semisimple modules. Semisimple module is a direct sum of simple mod-
ules. Thus (for k algebraically closed) (V, f) is semisimple iff f is diagonalizable.

3.5.5. Example of non-semisimple modules. It is given by the matrix(
0 1
0 0

)
.

3.6. Examples of representations.

3.6.1. Adjoint representation. Let L be any Lie algebra. the map ad : L→ gl(L)
defines a repersentation of L called adjoint representation.

Note that submodules of the adjoint representation are the ideals. Therefore,
L is simple iff the adjoint representation is irreducible.

3.6.2. ... and its restrictions. If M ⊆ L is a Lie subalgebra, one can consider L
as a M -module restricting the adjoint representation of L on M .

Consider, for example, L = sl2 and M = 〈h〉. Algebra M is one-dimensional
and L is an M -module. It is semisimple with eigenvalues −2, 0, 2.

If we take another M , say, 〈e〉, the picture will change. All eigenvalues are
zero and the M -module L is not semisimple.

3.7. One-dimensional representations. Let L be a Lie algebra and let ρ :
L → gl(V ) is a one-dimensional representation. The algebra gl(V ) is one-
dimensional and therefore commutative in this case. Thus,

ρ[x, y] = [ρ(x), ρ(y)] = 0.

In particular, for L = sl2 one gets ρ = 0. This proves sl2 does not admit non-
trivial one-dimensional representations.
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3.8. Problem assignment, 2.

0. Let L be a Lie algebra and V a vector space. Let f : L × V → V be a
bilinear map. Define an antisymmetric bilinear operation on L ⊕ V by
the following properties.

1. Its restriction to L is the bracket.
2. Its restriction to V is zero.
3. Its value on a pair (x, v) with x ∈ L, v ∈ V , is f(x, v). Prove that
L⊕ V is a Lie algebra with respect to the operation defined above if
and only if f describes on V a structure of L-module.

1. Let h ⊆ gln be the set of diagonal matrices. Check that h is a commutative
Lie subalgebra. Check that gln as the h-module (with respect to adjoint
action) is a sum of one-dimensional representations.

2. Prove that the adjoint representation of gl2 is isomorphic to a direct sum
of a three-dimensional and one-dimensional representations.

3. Prove that the adjoint representation of sl2 is not isomorphic to the sum
of the natural representation with the trivial representation.

4. Schur Lemma. Representations of sl2.

4.1. Schur’s lemma. Let M,N be two L-modules. The collection of homomor-
phism of modules is denoted HomL(M,N). It forms a vector space over k.

Thus,

HomL(M,N) : = {φ ∈ Homk(M,N)| ∀v ∈M,∀x ∈ L φ(xv) = xφ(v)}
= {φ ∈ Homk(M,N)| ∀x ∈ L φρ(x) = ρ(x)φ}.

4.1.1. Theorem. Suppose the base field k is algebraically closed. If V is a simple
finite dimensional module over a Lie algebra L then HomL(V, V ) = k · id.

Proof. Take φ ∈ HomL(V, V ). For any c ∈ k the linear operator (φ − c · id)
is a L-homomorphism and so it is either an isomorphism or zero. Let c be an
eigenvalue of φ; then the operator (φ − c · id) has a non-zero kernel and so it is
not an isomorphism. Hence φ− c · id = 0 as required. �

4.2. Application to sl2(C). Take k := C. Fix the standard basis h, e, f of sl2.
Recall that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let ρ : sl(2)→ gl(V ) be a representation. Denote

E = ρ(e), F = ρ(f), H = ρ(h).

Then the above relations imply

(5)
HE − EH = 2E,
HF − FH = −2F,
EF − FE = H.
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Consider the endomorphism

Q := H2 + 2FE + 2EF.

This is a linear endomorphism of V . We will check now that Q is an sl2-
endomorphism. To check this, it is enough to prove

QE = EQ, QF = FQ, QH = HQ.

The following easy lemma is useful in calculations.

4.2.1. Lemma. Let f, g, h ∈ End(V ). Then

[f, gh] = [f, g]h+ g[f, h].

Here, as usual, the bracket is defined by the formula [f, g] = fg − gf .

Proof.

[f, g]h+ g[f, h] = fgh− gfh+ gfh− ghf = fgh− ghf = [f, gh].

�

Now one can easily get

4.2.2. Lemma. The operator Q commutes with E,F,H.

Proof. Recall that all calculations are done in End(V ).
One has

[E,Q] = [E,H2 + 2EF + 2FE] = [E,H]H +H[E,H]+

2E[E,F ] + 2[E,F ]E = −2EH − 2HE + 2EH + 2HE = 0.

Similarly,

[F,Q] = [F,H2 + 2EF + 2FE] = [F,H]H +H[F,H]+

2[F,E]F + 2F [F,E] = 2FH + 2HF − 2HF − 2FH = 0

and

[H,Q] = [H,H2 + 2EF + 2FE] = 2[H,E]F + 2E[H,F ]+

2[H,F ]E + 2F [H,E] = 4EF − 4EF − 4FE + 4FE = 0.

�

4.2.3. Corollary. Let V be finite dimensional and simple sl2-module. Then Q =
c · id for some c ∈ C.

4.3. Finite dimensional representations of sl2(C). Our next goal is to de-
scribe all finite dimensional representations of sl2(C).

As a first step, we will describe a collection of irreducible representations which
will turn out to be the collection of all irreducible representations.

We denote by N the set of non-negative integers.
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4.3.1. Recall that sl2 ⊆ gl2 = 〈E11, E12, E21, E22〉 where Eij denotes the matrix
whose only non-zero entry is 1 in the (ij) position.

Note that in this notation E = E12, F = E21, H = E11 − E22.
Consider the polynomial algebra C[x, y] and define the action of gl2 on it by

the formulas

(6) E11(p) = xp′x, E22(p) = yp′y, E12(p) = xp′y, E21(p) = yp′x.

4.3.2. Lemma. The formulas (6) define a gl2-module structure on C[x, y].

Proof. One can check this claim directly.
Here is another way which allows to avoid most of the calculations. Note

that the formulas (6) assign to Eij derivations of C[x, y] (compare to Problem
assignment,1, # 1).

Any derivation of C[x, y] is uniquely defined by its value on the degree one
polynomials x and y: if d(x) = p, d(y) = q then d(f) = pf ′x + qf ′y (once more,
compare to Problem assignment, 1).

Then, in order to prove the formulas (6) are compatible with the brackets it is
enough to check them on x and on y. One can see that the formulas (6) restricted
on 〈x, y〉 give just the natural representation of gl2. �

The set of homogeneous polynomials of a degree n is, obviously, a gl2-submodule
and an sl2-submodule. Denote this sl2-submodule by V (n). Let us show that
V (n) is a simple sl2-module.

4.3.3. Module V(n). Fix n. Consider the following basis of V (n):

v0 := xn, v1 := nxn−1y, v2 := n(n− 1)xn−2y2, . . . ,

vk := n!/(n− k)!xn−kyk, . . . , vn := n!yn.

One has

Fvk = E2,1vk = vk+1, Evk = E1,2vk = k(n+ 1− k)vk−1,(7)

Hvk = (E1,1 − E2,2)vk = (n− 2k)vk.

We see that H acts diagonally on the basis and all eigenvalues are distinct.
By a lemma proven in Lecture 2, any submodule W ⊆ V (n) is spanned by the
elements of our basis belonging to W . In particular, any non-zero submodule
contains vk for some k; the relations (7) imply that such a submodule contains
all basis elements. Hence V (n) is simple.

4.4. We have got all of them... Now we will prove there are no finite dimen-
sional irreducible representations of sl2 except for the V (n) described above.

4.4.1. Definitions. A vector v of sl2-module is called a weight vector if Hv ∈ Cv.
A vector v of sl2-module is called of weight c (c ∈ C) if Hv = cv.
A vector v of sl2-module is called primitive if Ev = 0.
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4.4.2. The set of vectors of weight λ in V is denoted V λ.
Let v ∈ V λ. We claim that Ev ∈ V λ+2 and Fv ∈ V λ−2. In fact,

HEv = EHv + [H,E]v = λEv + 2Ev = (λ+ 2)Ev

and similarly for Fv.

4.4.3. Let V be a finite dimensional sl2-module. We claim that V has a primitive
weight vector.

In fact, H : V → V is an endomorphism of a finite dimensional vector space.
Therefore, H admits an eigenvector v ∈ V . Let v ∈ V λ. Then Ekv ∈ V λ+2k.
Since V is finite dimensional, this proves that Ekv = 0 for k big enough. Thus,
if n = max{k|Ekv 6= 0}, the element Env is a primitive weight vector.

4.4.4. Let V be a finite dimensional sl2-module and let v0 be a primitive vector
of weight λ.

Put vn = F nv0. One has Fvn = vn+1 and Hvn = (λ−2n)vn. It turns out there
is an very nice formula for Evn.

In Lemma 4.4.5 below we will prove the following identity.

(8) EF k = F kE + kF k−1(H − (k − 1)).

The formula (8) implies that

Evn = EF nv0 = F nEv0 + nF n−1(H − n+ 1)v0 = n(λ− n+ 1)vn−1.

Let us rewrite once more these formulas

(9) Fvn = vn+1, Hvn = (λ− 2n)vn, Evn = n(λ− n+ 1)vn−1.

4.4.5. Lemma. The identity (8) is valid for any n ≥ 1 for any representation of
sl2.

Proof. Induction on k. For k = 1 it says that EF = FE + H which is obvious.
Suppose it has already been proven for k = n and let k = n+ 1. We have

EF n+1 = EF nF = (F nE+nF n−1(H−n+1))F = F nEF+nF n−1(H−n+1)F =

F n(FE+H)+nF n−1F (H−n+1)−nF n−1(2F ) = F n+1E+(n+1)F n(H−n).

�

4.4.6. We have made a substantial progress. In fact, we already know that
any finite dimensional sl2 module V contains a primitive weight vector v0; The
collection of vn = F nv0 is a submodule. This implies that only finite number of
vi is nonzero.

This has very unexpected consequences. In fact, suppose n = max{i|vi 6= 0}.
Then

0 = Evn+1 = (n+ 1)(λ− n)vn
and this implies that λ = n.
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We have (easily!) proven the following

4.4.7. Theorem. Let V be a finite dimensional representation and let v0 be a
weight primitive vector of weight λ. Then λ ∈ N. The submodule of V generated
by v0 is 〈v0, v1, . . . , vλ〉. It has dimension λ+ 1 and its module structure is given
by the formulas (9).

4.4.8. We have proven that any simple finite dimensional sl2-module V is iso-
morphic to V (n) (where n := dimV − 1). In fact, we have already proven that,
if a representation V has a primitive vector v0 of weight n then v0 generates a
submodule spanned by vk, k = 0, . . . , n, with the action of sl2 defined by the
formulas

Fvk = vk+1, Hvk = (n− 2k)vk, Evk = k(n− k + 1)vk−1.

Since the irreducible representation V (n) we constructed above has the primitive
weight n vector xn, it is of the form described above.

4.4.9. Definition. A Verma moduleM(λ) of the highest weight λ is an sl2-module
with a linear basis v0, v1, . . . and the action given by

Fvk = vk+1, Ev0 = 0, Hvk = (λ− 2k)vk, Evk+1 = (k + 1)(λ− k)vk.

An easy exersice is to show that the action is compatible with the relations on
E,F,H.

Note that the action of H on a Verma module is semisimple and the action of
E is locally nilpotent in the sense of the following definition.

4.4.10. Definition. An operator f : V → V is locally nilpotent if for any v ∈ V
there exists n such that fn(v) = 0.

Of course, a locally nilpotent operator on a finite dimensional vector space is
nilpotent. However, E is not nilpotent on the Verma module M(λ).

4.4.11. Let N be a sl2-module and v ∈ N be a primitive vector of weight c.
Define a linear map φ : M(c)→ N by setting φ(vk) = F kv. By the formulas (8)
φ is a homomorphism of sl2-modules. Since the simple module V (n) is generated
by its primitive vector v0 of weight n, we see that a simple finite dimensional
module is a homomorphic image of a certain Verma module.

4.4.12. Lemma. A Verma module M(λ) is simple if λ 6∈ N.
For any k ∈ N, a Verma module M(k) has a unique non-trivial submodule

M ′ which is isomorphic to M(−k − 2). The quotient module M/M ′ is a simple
module of the dimension k + 1.

Proof. Let v0, v1, . . . be the basis of M(λ) described in Definition 4.4.9. The
element H acts diagonally on the basis and all eigenvalues are distinct. By
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a proposition proved in Lecture 2, any submodule of M(λ) is spanned by the
elements of our basis belonging to this submodule. If a submodule N contains
vk then it contains vk+1 = Fvk and, if k 6= λ + 1 it contains also vk−1 which is
proportional to Evk. This implies that M(λ) is simple if λ 6∈ N and that a unique
non-trivial submodule M ′ of M(λ) has a basis vλ+1, vλ+2, . . . if λ ∈ N.

Fix λ ∈ N. Let v0, v1, . . . be the basis of M(λ) described in Definition 4.4.9
and v′0, v

′
1, . . . be the similar basis for M(−λ − 2). It is easy to check that the

linear map sending v′i to vλ+1+i is an injective homomorphism. Hence the unique
non-trivial submodule M ′ of M(λ) is isomorphic to M(−λ − 2). The quotient
module M/M ′ has a basis consisting of the images of vectors v0, v1, . . . , vλ. Thus
dimM/M ′ = λ+ 1. �

4.4.13. In the sequel we need another fact. Let N be a finite dimensional sl2-
module and v ∈ N be a primitive non-zero vector of weight c. A homomorphism
φ : M(c) → N defined by φ(vk) = F kv has non-zero kernel since dimN < ∞.
Hence c ∈ N and kerφ = M(−c−2). Thus φ induces an injective homomorphism
V (c)→ N .

4.5. Complete reducibility of finite dimensional sl2-modules. In this sub-
section we prove the following

4.5.1. Theorem. Any finite dimensional representation of sl2(C) is completely
reducible.

The proof will take a while.

4.5.2. The Casimir operator. Let V be a finite dimensional representation. The
operator Q = H2 + 2EF + 2FE is a sl2-module endomorphism of V . It is called
Casimir operator. Recall that Q : V → V gives rise to a decomposition

(10) V =
⊕

Vθ

where Vθ is the generalized eigenspace corresponding to the eigenvalue θ of Q.
By definition Vθ = {v ∈ V |∃n : (Q−θ·id)nv = 0}. Thus Vθ = ∪nKer(Q−θ·id)n.

Since Q is sl2-invariant, Vθ is an sl2-submodule of V . Thus, (10) is a direct
decomposition of modules.

Thus, we reduced the claim of our theorem to the case Q has only one eigen-
value θ.

4.5.3. Let now V be any finite dimensional representation and let P (V ) = {v ∈
V |Ev = 0} denote the set of primitive elements of V . We claim that P (V ) is an
H-invariant vector subspace of V .

In fact, if Ev = 0 then EHv = HEv − 2Ev = 0.

4.5.4. Proposition. The operator H is semisimple on P (V )
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Proof. First of all, recall that (H + 2)F = FH, so (H − λ + 2)F = F (H − λ).
Therefore,

(H − λ)kv = 0 =⇒ (H − λ+ 2)kFv = 0.

This implies that the operator F is nilpotent on any finite dimensional sl2-module.
Let v ∈ P (V ) and let k > 0 be a natural number. Let us check that

(11) EkF kv = k!H(H − 1) · · · (H − (k − 1))v.

In fact, the claim is obvious for k = 1 since v is primitive. Suppose we have
already checked it for a given k ∈ N. Then

Ek+1F k+1v = Ek(EF k+1)v = EkF k+1Ev + (k + 1)EkF k(H − k)v =

(k + 1)!H(H − 1) · · · (H − k)v.

Now, since V is finite dimensional, there exists k ∈ N big enough, so that
F kv = 0 for each v ∈ V .

This implies that the restriction HP of the operator H on P (V ) satisfies the
identity

HP (HP − 1) · · · (HP − k + 1) = 0.

This means semisimplicity.
�

4.5.5. Suppose now that V = Vθ. If v ∈ P (V ) is a weight primitive vector of
weight n, V admits a simple submodule isomorphic to V (n). By Schur lemma Q
acts on V (n) as a multiplication by a number. This number is obviously equal
to θ.

On the other hand, one has

4.5.6. Lemma. The Casimir operator Q acts on V (n) as multiplication by n(n+
2).

Proof. The highest weight vector v0 of V (n) has weight n. Thus, Qv0 = H2(v0)+
2FE + 2EF = (n2 + 2n)v0. The rest follows from Schur Lemma. �

As an immediate corollary we deduce that all weight vectors of P (V ) have the
same weight: this is the natural number n such that θ = n2 + 2n. This implies
that all primitive vectors of V are weight vectors.

4.5.7. Proof of Theorem 4.5.1. Choose a basis {v1, . . . , vk} of P (V ). Each vector
vi is a primitive weight vector. It, therefore, defines a simple submodule V i =
〈vi, Fvi, . . . F nvi〉. We claim that V = ⊕V i. Here is the proof.

Consider the natural map f : V (n)k → V sending the i-th component of V (n)
to V i. The map f is an isomorphism in the weight n part by the choice of vi.
If Ker(f) 6= 0, this is a non-trivial submodule on which Q acts by multiplication
by θ = n2 + 2n. Therefore, its primitive vectors have weight n which contradicts
bijectivity of f in weight n.
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Similarly, if f is not surjective, the quotient V/ Im(f) would have primitive vec-
tor v̄ of weight n. Let us show this is impossible. Choose a representative v ∈ V
for v̄. Let v =

∑
vλ be the (unique) decomposition into sum of generalized eigen-

vectors for H with eigenvalues λ. The surjective homomorphism V → V/ Im(f)
preserves the generalized weight decomposition, so we can assume from the very
beginning that v is annihilated by a power of H − n. Then E(v) is annihilated
by a power of H − n − 2 which implies that Ev = 0. Therefore, v is primitive
and does not belong to Im(f). Contradiction.

Theorem is proven.

4.5.8. Corollary. A finite dimensional representation V of sl2 decomposes as

V =
⊕
n

V (n)dn

where dn = dimP (V )n is the dimension of the space of primitive vectors of V of
weight n.

4.6. Semisimplicity: generalities. All modules in this subsection are sup-
posed to be modules over a fixed Lie algebra (or over a fixed associative algebra).

Recall that a module is called simple if it is nonzero and it has no nontrivial
submodules.

4.6.1. Theorem. The following conditions on a module V are equivalent.

CR1 V is a sum of its simple submodules.
CR2 V is a sum of a certain family of its simple submodules.
CR3 Any submodule V ′ of V is a direct summand, that is, there exists a sub-

module V ′′ such that V = V ′ ⊕ V ′′.

A module V saisfying the above properties, is called semisimple or completely
reducible.

We will first prove two lemmas.

4.6.2. Lemma. Let V satisfy the property (CR3). Then any submodule of V
satisfies the same property.

Proof. Let V ⊃ W ⊃ W ′. We will prove that W ′ is a direct summand of W . By
the assumption, V = W ′ ⊕ V ′′ for sume V ′′. Let us define W ′′ = W ∩ V ′′. We
will prove that W = W ′ ⊕W ′′. In fact, W ′ ∩W ′′ ⊂ W ′ ∩ V ′′ = 0. Let us prove
that W = W ′ + W ′′. Let w ∈ W . we can present w = w′ + v′′ where w′ ∈ W ′

and v′′ ∈ V ′′. Now v′ = w − w′ ∈ W so v′′ ∈ V ′′ ∩W = W ′′. �

4.6.3. Lemma. Let V 6= 0 satisfy (CR3). Then V has a simple submodule.

Proof. Choose v ∈ V , v 6= 0. We claim there is a maximal submodule W of V
that does not contain v. This directly follows from Zorn lemma. Bt (CR3), one
has V = W ⊕W ′. Let us prove W ′ is simple. If it has a submodule W1, one
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has W ′ = W1 ⊕ W2. Then V = W ⊕ W1 ⊕ W2 and so v = w + w1 + w2 for
some w ∈ W , w1 ∈ W1, w2 ∈ W2. At least one of w1, w2 is nonzero. If w2 6= 0,
v ∈ W ⊕W1, contradiction. �

Proof of the theorem. The implication (CR2)⇒(CR1) is clear. Let us prove the
opposite direction. Let V =

∑
i∈I Vi, a sum of simple submodules. Define J as a

maximal subset of I such that the sum
∑

i∈J Vi is direct. Such J exists by Zorn
lemma. If

∑
i∈J Vi is not the whole V , there exists j ∈ I such that Vj is not in∑

i∈J Vi. The intersection iz a submodule of Vj so it is zero. Contradiction.
(CR1)⇒(CR3). Similar: if V ⊃ V ′, let J be maximal among subsets of I such

that the sum
∑

i∈J Vj +V ′ is direct. AS above, we deduce that it is the whole V .
(CR3)⇒(CR1). Let V ′ be the sum of all simple submodules of V . It is

nonempty and one has V = V ′ ⊕ V ′′ for some V ′′. Then V ′′ has also a sim-
ple submodule. Contradiction.

�
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Problem assignment, 3

1. Let M, N be two non-isomorphic irreducible representations of a Lie
algebra L. Prove that HomL(M,N) = 0.

2. Let L be a Lie algebra over an algebraically closed field k. Let M1, . . .Mn

be non-isomorphic irreducible L-modules and let

M =
n⊕
i=1

Mdi
i .

Calculate dim HomL(M,M).
3. Let V (n) be the standard n+ 1-dimensional representation of sl2. Write

down the matrices of the action of E, F,H in the standard basis v0, . . . , vn
of V (n).

4. Let V be a finite dimensional sl2-module and let Vk be the subspace of
weight k vectors. Let P (V )k be the space of primitive weight k vectors.
Prove that for k ≥ 0

dimP (V )k = dimVk − dimVk+2.

5. Let V be the natural n-dimensional representation of the Lie algebra sln.
Consider the map of Lie algebras

f : sl2 → sln

sending each matrix M ∈ sl2 to the matrix f(M) defined by the formula

f(M)ij =

{
Mij if i, j ∈ {1, 2}
0 otherwise

This defines an action ρ of sl2 on V : ρ(x)(v) = f(x)v. For which n the
resulting representation is irreducible? Write down the matrices of the
operators E, F,H acting on V .

6. Define i : sl2 → gln by the formulas

i(e) =
∑n−1

i=1 Ei,i+1

i(h) =
∑n

i=1 aiEi,i
i(f) =

∑n−1
i=1 biEi+1,i

Find ai and bi so that i is a Lie algebra homomorphism. Consider gln as
a sl2-module with respect to the restriction of the adjoint action along i.
Using Problem 2, find the multiplicity of each irreducible module E(k) in
gln.

Note. Whoever prefers working in a more concrete setting is allowed
to put n = 3.

7. We say that a module M satisfies condition (CR4) if for any surjective
homomorphism f : M → N there exists g : N →M such that fg = idN .

Prove that condition (CR4) is equivalent to (CR3).
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5. Killing form. Nilpotent Lie algebras

5.1. Killing form.

5.1.1. Let L be a Lie algebra over a field k and let ρ : L → gl(V ) be a finite
dimensional L-module. Define a map

Bρ : L× L→ k

by the formula
Bρ(x, y) = tr(ρ(x) ◦ ρ(y)),

where tr denotes the trace of endomorphism.

5.1.2. Lemma. The map Bρ is bilinear and symmetric.

Proof. Bilinearity is obvious. Symmetricity follows from the well-known property
of trace we have already used:

tr(fg) = tr(gf).

�

The map Bρ satisfies another property called invariance.

5.1.3. Definition. Let V,W,K be three L-modules. A map

f : V ×W → K

is called L-invariant if for all x ∈ L, v ∈ V, w ∈ W one has

xf(v, w) = f(xv, w) + f(v, xw).

5.1.4. Lemma. Let ρ : L → gl(V ) be a finite dimensional representation. The
bilinear form Bρ : V × V → k is invariant (k is the trivial representation). This
means that Bρ([x, y], z) +Bρ(y, [x, z]) = 0.

Proof. Let X = ρ(x), and similarly Y and Z. One has

Bρ([x, y], z) = tr([X, Y ]Z) = tr(XY Z − Y XZ) = tr(XY Z)− tr(Y XZ).

Similarly,
Bρ(y, [x, z]) = tr(Y [X,Z]) = tr(Y XZ)− tr(Y ZX).

Finally, tr(X(Y Z)) = tr((Y Z)X) and the lemma is proven. �

5.1.5. Definition. Killing form on a Lie algebra L is the bilinear form

B : L× L→ k

defined by the adjoint representation.

5.1.6. Example. Let L be commutative. Then the Killing form on L is zero.

5.1.7. Example. Let L = sl2. Then the Killing form is non-degenerate, i.e. for
any nonzero x ∈ L there exists y ∈ L such that B(x, y) 6= 0. (see Problem
assignment, 1).
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5.1.8. Let B : V × V → k be a symmetric bilinear form. The kernel of B is
defined by the formula

Ker(B) = {x ∈ V |∀y ∈ V B(x, y) = 0}.
The form is non-degenerate if its kernel is zero. In this case the linear transfor-
mation

B′ : V → V ∗

from V to the dual vector space V ∗ given by the formula

B′(x)(y) = B(x, y),

is injective. If dimV <∞ this implies that B′ is an isomorphism.

5.1.9. Proposition. Let ρ : L → gl(V ) be a finite dimensional representation.
Then the kernel of Bρ is an ideal in L.

Proof. Suppose x ∈ KerBρ. This means that tr(ρ(x)ρ(y)) = 0 for all y. Then for
all z ∈ L

Bρ([z, x], y) = −Bρ(x, [z, y]) = 0

by the invariantness of Bρ. �

Today we will study a large class of algebras having vanishing Killing form.

5.2. Nilpotent Lie algebras. Let V,W ⊆ L be two vector subspaces of a Lie
algebra L. We define [V,W ] as the vector subspace of L spanned by the brackets
[v, w], v ∈ V, w ∈ W .

Jacobi identity implies that if V,W are ideals in L then [V,W ] is also an ideal
in L. Define a sequence of ideals Ck(L) by the formulas

C1(L) = L; Cn+1(L) = [L,Cn(L)].

5.2.1. Lemma. One has [Cr(L), Cs(L)] ⊆ Cr+s(L).

Proof. Induction in r. �

5.2.2. Example. Recall that

nn = {A = (aij) ∈ gln|aij = 0 for j < i+ 1}.
If L = nn then

Ck(L) = {A = (aij) ∈ gln|aij = 0 for j < i+ k}.
Check this!

5.2.3. Definition. A Lie algebra L is called nilpotent if Cn(L) = 0 for n ∈ N big
enough.

Thus, commutative Lie algebras as well as the algebras nn are nilpotent.
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5.3. Engel theorem.

5.3.1. Lemma. Let L,R ∈ End(V ) be two commuting nilpotent operators. Then
L+R is also nilpotent.

Proof. Since L and R commute, one has a usual Newton binomial formula for
(L+R)n. This implies that if Ln = Rn = 0 then (L+R)2n = 0. �

5.3.2. Theorem. Let L ⊆ gl(V ) be a Lie subalgebra, dim(V ) <∞. Suppose that
all x ∈ L considered as the operators on V , are nilpotent. Then there exists a
non-zero vector v ∈ V such that xv = 0 for all x ∈ L.

Proof.
Step 1. Let us check that for each x ∈ L the endomorphism adx of L is

nilpotent. In fact, let Lx : End(V )→ End(V ) be the left multiplication by x and
Rx be the right multiplication. Then adx = Lx − Rx. The operators Lx and Rx

commute. Both of them are nilpotent since x is a nilpotent endomorphism of V .
Therefore, adx is nilpotent by 5.3.1.

Step 2. By induction in dimL we assume the theorem has been already proven
for Lie algebras K of dimension dimK < dimL.

Step 3. Consider a maximal Lie subalgebra K of L strictly contained in L. We
will check now that K is a codimension one ideal of L.

Let us prove first K is an ideal in L. Let

I = {x ∈ L|∀y ∈ K [x, y] ∈ K}.
This is a Lie subalgebra of L (Jacobi identity). Obviously I ⊇ K. We claim
I 6= K. By maximality of K this will imply that I = L which precisely means
that K is an ideal in L.

In fact, consider the (restriction of the) adjoint action of K on L. K is a K-
submodule of L. Consider the action of K on L/K. By the induction hypothesis
(here we are using adx is nilpotent!), there exists a non-zero element x ∈ L/K
invariant with respect to K. This means [a, x] = 0 for all a ∈ K or, in other
words, choosing a representative x ∈ L of x, we get [a, x] ∈ K for all a ∈ K.
Thus, x ∈ I \K and we are done.

Now we know that K is an ideal. Let us check dim L/K = 1. In fact, If
x ∈ L\K, the vector space K+kx ⊆ L is a subalgebra of L. Since K was chosen
to be maximal, K + kx = L.

Step 4. Put
W = {v ∈ V |Kv = 0}.

Check that W is an L-submodule of V . If x ∈ K, y ∈ L and w ∈ W , one has

x(yw) = y(xw) + [x, y]w = 0.

By the induction hypothesis, W 6= 0. Choose x ∈ L \K. This is a nilpotent
endomorphism of W . Therefore, there exists 0 6= w ∈ W such that xw = 0.
Clearly, w annihilates the whole of L.
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Theorem is proven. �

5.3.3. Corollary. Let ρ : L → gl(V ) be a representation. Suppose that for each
x ∈ L the operator ρ(x) is nilpotent. Then one can choose a basis v1, . . . , vn of
V so that

ρ(L) ⊆ nn ⊆ gln = gl(V ).

Note that the choice of a basis allows one to identify gl(V ) with gln.

Proof. Induction on n = dimV .
One can substitute L by ρ(L) ⊆ gl(V ). By Theorem 5.3.2 there exists a

nonzero element v1 ∈ V satisfying

xv1 = 0 for all x ∈ L.
Now consider L-module W = V/〈v1〉 and apply the inductive hypothesis. �

5.3.4. Corollary. (Engel theorem) A Lie algebra L is nilpotent iff the endomor-
phism adx is nilpotent for all x ∈ L.

Proof. Suppose L is nilpotent, x ∈ L. By definition adx(C
k(L)) ⊆ Ck+1(L). This

implies that adx is nilpotent.
In the other direction, suppose adx is nilpotent for all x ∈ L.
By 5.3.3 there exists a basis y1, . . . , yn of L such that

adx(yi) ∈ 〈y1, . . . , yi−1〉 for all x ∈ L, i.
This implies by induction that

Ci(L) ⊆ 〈y1, . . . , yi−n+1〉.
Therefore, Cn+1(L) = 0. �



28

Problem assignment, 4

1. Calculate the Killing form for sl2 in the standard basis.
2. Let ρ : sl2 → gl(V (n)) be the irreducible representation of sl2 of highest

weight n > 0. Prove that Bρ is non-degenerate.
Hint. Check that Bρ(h, h) 6= 0.

3. Prove that the Killing form of a nilpotent Lie algebra vanishes.
4. Prove that subalgebra and quotient algebra of a nilpotent Lie algebra is

nilpotent.
Let K be a nilpotent ideal of L and let L/K be nilpotent. Does this

imply that L is nilpotent?
5. Prove that a nilpotent three-dimensional Lie algebra L is either abelian

or isomorphic to n3.

6. Solvable Lie algebras

Recall that if V,W are vector subspaces of a Lie algebra L then [V,W ] denotes
the vector subspace of L generated by all elements [v, w] where v ∈ V, w ∈ W .

Recall also that if I, J are ideals in L then [I, J ] is also an ideal of L (Jacobi
identity).

6.1. Definition and first properties. Define a sequence of ideals of L (the
derived series) by

D0(L) := L, D1(L) := [L,L], Di+1(L) := [Di(L), Di(L)].

6.1.1. Definition. A Lie algebra L is called solvable if Dn(L) = 0 for some n.

6.1.2. Examples. Recall that the sequence of ideals Cn(L) was defined by the
formulas

C1(L) = L; Cn+1(L) = [L,Cn(L)].

A Lie algebra is nilpotent if Cn(L) = 0 for some n.
Therefore, any nilpotent Lie algebra is solvable since Dn(L) ⊂ Cn+1(L).
Define bn(k) ⊂ gln(k) as the Lie subalgebra consisting of upper triangular

matrices. Please take care: this contradicts our notation at the beginning of the
course where b denoted traceless upper triangular matrices. Sorry.

The algebra bn(k) is solvable since D1(b) = n and so Di(b) ⊂ Ci(n). However
b is not nilpotent since C2(b) = D1(b) = n and C3(b) = C2(b) = . . .. (Check
this!)

6.1.3. Proposition. The following conditions are equivalent

(i) Dn(L) = 0.
(ii) There exists a chain of ideals

L = I0 ⊃ I1 ⊃ . . . ⊃ In = 0



29

such that Ik/Ik+1 is a commutative Lie algebra that is [Ik, Ik] ⊂ Ik+1 for
all k.

Proof. (i)=⇒ (ii) since the chain Ik := Dk(L) satisfies the condition of (ii). More-
over, this is the minimal chain which satisfies the condition: if I0, . . . , In is such
that [Ik, Ik] ⊂ Ik+1 for all k, then Ik ⊃ Dk(L). Hence (ii)=⇒ (i). �

6.2. Lie theorem.

6.2.1. Theorem. Assume that the base field k is algebraically closed and has
characteristic zero. Let L be a solvable finite dimensional Lie algebra and let
ρ : L→ gl(V ) be a finite dimensional representation of L. Then one can choose
a basis of V so that the image ρ(L) is a subalgebra of bn(k), n := dimV .

The formulation is slightly similar to that of Engel theorem. There is a number
of differences.

• The assumptions in Engel theorem are about operators ρ(x) whereas in
Lie theorem the assumptions are about the Lie algebra L.

For instance, if L is nilpotent, Engel theorem does not imply that
ρ(L) ⊂ nn.
• On the other hand, Lie theorem has assumptions on the field (algebraically

closed of characteristic zero).

The proof is however similar to the proof of Engel theorem.
First of all, note that the theorem is an easy consequence (by induction on the

dimension of V ) of the following assertion.

6.2.2. Theorem. Let L and ρ be as above. Suppose that dim V > 0. Then all
endomorphisms ρ(g), g ∈ L have a common eigenvector.

In fact, suppose 6.2.2 have been proven. Then Theorem 6.2 immediately follows
by induction on dim V . In fact, by 6.2.2 there exists a common eigenvector v1 ∈
V for all operators ρ(x), x ∈ L. This means that v1 generates a one-dimensional
L-submodule of V . By the induction hypothesis, the quotient module V/kv1

admits a basis v2, . . . , vn satisfying the requirements of the theorem. Then choose
representatives vi ∈ V of the classes vi and the basis v1, v2, . . . , vn is the one we
were looking for.

From now on we will concentrate on proving Theorem 6.2.2. The proof will go
by induction on dim L.

Here are the steps of the proof.

• Find in L an ideal I of codimension 1.
• By the induction hypothesis, all endomorphisms ρ(g), g ∈ I have a com-

mon eigenvector v0. Let W be the space of all common eigenvectors of
ρ(g), g ∈ I with the same eigenvalues. We prove that W is L-submodule.
• Choose x ∈ L such that L = I+kx. The element ρ(x) has an eigenvector

in W . It will be automatically a common eigenvector to all ρ(g), g ∈ L.
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6.2.3. Proof of 6.2.2. We are proving the theorem by induction on dim L.
Basis of the induction.
For dim L = 1 one has L = kx. Since the field k is algebraically closed and

dimV < ∞, ρ(x) has an eigenvector v. Obviously v is an eigenvector of all
endomorphisms ρ(g), g ∈ L.

The step of the induction
1. First of all, we will prove there exists an ideal I in L having codimesion one.
Since L is solvable, [L,L] 6= L.
Observe that any subspace of L containing the commutant [L,L] is an ideal of

L.
Hence L has an ideal I of codimension 1: L = I ⊕ kx.
2. By the induction hypothesis, all endomorphisms ρ(g), g ∈ I have a common

eigenvector v0 6= 0. For any g ∈ I denote by χ(g) the scalar satisfying ρ(g)v0 =
χ(g)v0. This uniquely defines a map χ : L→ k satisfying two properties

• χ is linear;
• χ([x, y]) = 0 for all x, y ∈ I.

(Explanation: χ is the homomorphism I → gl1 corresponding to the one-dimensional
representation generated by v0).

3. The space W := {v ∈ V | ρ(g)v = χ(g)v, ∀g ∈ I} contains v0. Any vector
of W is a common eigenvector for all endomorphisms ρ(g), g ∈ I. To finish the
proof, it is enough to verify that ρ(x)W ⊂ W since this inclusion implies the
existence of an eigenvector of ρ(x) in W .

4. Hence we need to show that ρ(x)W ⊂ W or, equivalently, that ρ(g)ρ(x)v =
χ(g)ρ(x)v for all v ∈ W, g ∈ I.

One has

ρ(g)ρ(x)v = ρ(x)ρ(g)v + ρ([x, g])v = χ(g)ρ(x)v + χ([g, x])v

since [g, x] ∈ I. Therefore, our aim is to prove that χ([x, g]) = 0 for each g ∈ I.
5. Fix v ∈ W \ {0} and for each k ∈ N denote by Vk the span of v =

ρ(x)0v, ρ(x)v, . . . , ρ(x)kv.
Let us show that for any g ∈ I, k ∈ N ρ(g)Vk ⊂ Vk and, moreover, ρ(g)ρ(x)kv =

χ(g)ρ(x)kv modulo Vk−1 (set V−1 = 0). We show this by induction on k. For
k = 0 the assertion follows from the definition of W . For the induction step,
observe that

ρ(g)ρ(x)k+1v = ρ(x)ρ(g)ρ(x)kv + ρ([g, x])ρ(x)kv.

Since I is an ideal, [g, x] ∈ I. Then, by the induction hypothesis, ρ([g, x])ρ(x)kv ∈
Vk and ρ(g)ρ(x)kv = χ(g)ρ(x)kv modulo Vk−1. Therefore ρ(g)ρ(x)k+1v = χ(g)ρ(x)k+1v
modulo Vk as required.

Let k ∈ N be maximal such that the vectors v, ρ(x)v, . . . , ρ(x)kv are linearly
independent. Then Vm = Vk for all m ≥ k. As we showed, Vk is ρ(I)-stable
and relative to the basis v, ρ(x)v, . . . , ρ(x)kv each matrix ρ(g) (g ∈ I) is upper
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triangular with the diagonal entries equal to χ(g). Obviously ρ(x)Vk = Vk and
so for any g ∈ I ρ([x, g]) = ρ(x)ρ(g)− ρ(g)ρ(x) is a traceless endomorphism. In
the other hand, the trace of ρ([x, g]) is (k + 1)χ([x, g]). Since char(f) = 0, this
implies χ([x, g]) = 0 as required.

Thus, W is ρ(x)-invariant, therefore, W contains a ρ(x)-invariant vector which
is invariant with respect to the whole of L.

The theorem is proven.

6.3. Remarks.

6.3.1. The Lie theorem immediately implies that if V is a finite dimensional
irreducible representation of a solvable Lie algebra then it is one-dimensional.

6.3.2. Even though Lie theorem looks very similar to Engel theorem, they are
very different. Lie theorem provides an information about the structure of repre-
sentations of a solvable Lie algebra. Engel theorem says nothing about represen-
tations of a nilpotent Lie algebra; it is applicable only if the image of the Lie al-
gebra consists of nilpotent endomorphisms. For example, if L is one-dimensional
(therefore nilpotent), it has representations corresponding to any (not necessar-
ily nilpotent) endomorphisms. However, existence of Jordan normal form shows
that any (single) representation can be written by as an upper-triangular matrix,
provided the base field is algebraically closed.

6.3.3. Corollary. Let k be algebraically closed field of characteristic zero. Let L
be a solvable Lie algebra. Then there exists a sequence of ideals

0 = I0 ⊆ I1 ⊆ . . . ⊆ In = L

where dim Ik = k.

Proof. Apply Lie theorem to the adjoint representation. �

6.3.4. Corollary. Let k, L be as above. Then [L,L] is nilpotent Lie algebra.

Proof. Let x ∈ [L,L]. The element x acts trivially on any one-dimensional rep-
resentation of L, in particular, on any factor Ik/Ik−1 of the sequence of ideals
guaranteed by 6.3.3. This implies that adx is nilpotent. Then by Engel theorem
[L,L] is nilpotent. �

6.3.5. Corollary. Let k, L be as above. Let K : L× L→ k be the Killing form.
Then K(x, y) = 0 if x ∈ L, y ∈ [L,L].

Proof. According to 6.3.3, L admits a base in which adx has an apper triangular
form. Then ady for y ∈ [L,L] has in this base a strictly upper triangular form.
This implies the claim. �

It turn out the converse is also true. It is called Cartan criterion (of solvability).
We will use it without proof (the proof is tricky).
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6.3.6. Theorem. Let k be a field of characteristic zero and let L be a Lie subal-
gebra of gl(V ). The following conditions are equivalent.

• The Lie algebra L is solvable.
• For each x ∈ L and y ∈ DL = [L,L] one has tr(x ◦ y) = 0.

6.3.7. Corollary. Let L be a finite dimensional Lie algebra. Then L is solvable
iff K(x, y) = 0 for any x ∈ L, y ∈ [L,L].

Proof. Corollary 6.3.5 gives one direction of the equivalence. In the opposite
direction, we apply Cartan criterion to the algebra ad(L) ∈ gl(L). We deduce
that ad(L) is solvable. The kernel of ad is the center of L which is obviously
a solvable ideal. This implies that L is solvable, by Exercise 3 of the Problem
assignment 5. �

Problem assignment, 5

1. Prove that any subalgebra of a solvable Lie algebra is solvable.
2. Prove that any quotient algebra of a solvable Lie algebra is solvable.
3. Let L be a Lie algebra and I be an ideal in L. Prove that if L and L/I

are solvable then L is solvable.
4. Let L be a Lie algebra. Prove that L contains a (unique) maximal solvable

ideal.
5. Let L = V ⊕ k · e with the bracket defined by the formulas [v, v′] =

0 (v, v′ ∈ V ), [e, v] = A(v) where A : V → V is a fixed operator.
a Verify that L is a Lie algebra.
b Verify that L is nilpotent iff A is a nilpotent operator.
c Verify that the Killing form vanishes iff tr(A2) = 0.
d Give example of a non-nilpotent operator A such that tr(A2) = 0.

7. Semisimplicity

7.1. Radical. Recall (see Problem 4 of the last problem assignment) that any
finite dimensional Lie algebra has a unique maximal solvable ideal.

This ideal R ⊆ L is called the radical of L.

7.2. Semisimple Lie algebras.

7.2.1. Definition. A Lie algebra L is called semisimple if its radical is trivial.

It is clear that any simple algebra is semisimple.
Here is an equivalent definition.

7.2.2. Definition. A Lie algebra L is semisimple if it has no nontrivial abelian
ideals.

In fact, any abelian ideal is solvable, so if L has nontrivial abelian ideals, it is
not semisimple. In the other direction, if L is not semisimple, i.e. if its radical
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R is non-zero, consider the sequence of derived ideals Dk(R); the last non-zero
ideal Dn(R)) will be abelian.

There exist very nice criteria of semisimplicity.
The first one uses the Killing form

K(x, y) = tr((adxady).

The proof of the following lemma is based on Cartan criterion.

7.2.3. Lemma. Let L be a finite dimensional Lie algebra over a field of charac-
teristic zero and let I be the kernel of the Killing form K:

(12) I = {x ∈ L|∀y ∈ L K(x, y) = 0}.
The I is a solvable ideal in L.

Proof. I is an ideal since K is invariant. In fact, if x ∈ I and z ∈ L then

K([x, z], y) = K(x, [z, y]) = 0 for all y ∈ L.
Solvability of I immediately follows from Cartan criterion. �

7.2.4. Theorem. A Lie algebra L is semisimple iff its Killing form is non-
degenerate.

Proof. If L is semisimple, the kernel of the Killing form should be trivial or the
whole L. In the second case L should be solvable, which contradicts semisimplic-
ity of L. Thus, the Killing form on a semisimple Lie algebra is non-degenerate.

In the other direction, suppose that L is not semisimple. Then L admits a
nontrivial abelian ideal I. Then for x ∈ I, y ∈ L one has

• adxady(L) ⊂ I;
• adxady(I) = 0.

This implies that adxady is nilpotent, therefore, K(x, y) = 0. �

The above criterion is very powerful.

7.2.5. Corollary. Let L be a semisimple Lie algebra and let I be an ideal in L.
Put J = I⊥ (the orthogonal complement to I with respect to K). Then J is an
ideal in L and L = I × J .

Proof. J is ideal by invariance of K: y ∈ J iff ∀x ∈ I K(x, y) = 0. Then for
z ∈ L and for all x ∈ I one has

K([z, y], x) = −K([y, z], x) = −K(y, [z, x]) = 0.

The intersenction I ∩ J is solvable by Cartan criterion applied to the restriction
of the adjoint representation of L. Therefore, I∩J = 0 and this implies L = I⊕J
as vector spaces. The rest is obvious. �

7.2.6. Lemma. The direct product L ×M is semisimple iff both L and M are
semisimple.
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Proof. Killing form on L × M is the orthogonal sum of the Killing forms on
L and on M . Orthogonal sum is non-degenerate iff the summands are non-
degenerate. �

Taking into account everything said above we deduce

7.2.7. Theorem. A Lie algebra L is semisimple iff it is a direct product of simple
algebras.

7.3. The algebra sln. We will prove here that sln is a simple Lie algebra. The
idea is similar to the case n = 2.

It is more convenient to work with the algebra L = gln. Our aim is the following

7.3.1. Theorem. The only ideals of gln are sln and kI where I is the unit matrix.

In particular, since gln = sln × kI, this implies that sln is a simple algebra.
Let us choose a convenient basis.
Let eij be the matrix having 1 at (i, j)-th place and 0 elsewhere.
Denote H = 〈e11, . . . , enn〉. This is an n-dimensional commutative Lie subalge-

bra. We can easily describe L as a H-module with respect to the adjoint action.
The result is given by the formula

(13) L = H ⊕
⊕
i 6=j

〈eij〉.

Where H is a sum of trivial H-modules and each 〈eij〉 is a one-dimensional H-
module defined by the character χij : H → k given by the formula

χij(h) = hii − hjj.

Let I be an ideal of L.
We are in the situation of Theorem 4.6.1. L is a completely reducible represen-

tation of H, I is a subrepresentation. Therefore, I is also completely reducible.
Every simple H-submodule of L is either 〈eij〉 for i 6= j or a one-dimensional
subspace of H.

Suppose there exists i 6= j so that eij ∈ I. Then [eji, eij] = ejj − eii ∈ I.
Then [ejj − eii, ekl] which is ekl up to a non-zero constant whenever k 6= l and
{k, l} ∩ {i, j} 6= ∅.

Then it is easy to see that eij ∈ I for all i 6= j and finally I ⊇ sln.
Suppose now that none of the eij, i 6= j, belongs to I. Then I ⊆ H. Since

eij ∈ I, for each h ∈ I one should have

[h, eij] = (hii − hjj)eij = 0

which implies that I ⊆ kI.
Theorem is proven.
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8. Jordan decomposition: theme with variations

8.1. Recall that f ∈ End(V ) is semisimple if f is diagonalizable (over the alge-
braic closure of the base field). Equivalently, this means that V admits a basis
of eigenvectors. Equivalently, this means that the minimal polynomial for f has
distinct roots. This formulation is convenient to prove that if W is an invariant
subspace of V and f is semisimple, then f |W is semisimple as well.

8.1.1. Proposition. Let x ∈ End(V ).

1. There exist unique elements s, n ∈ End(V ) such that x = s + n, s is
semisimple, n is nilpotent and [s, n] = 0.

2. There exist polynomials p, q ∈ k[t] with no constant term, such that
s = p(x), n = q(x). Thus, s and n commute with every endomorphism
commuting with x.

3. If A ⊆ B ⊆ V and x(B) ⊆ A then s(B) ⊆ A and n(B) ⊆ A.

Proof. Existence in 1. follows from the standard linear algebra theorem (Jordan
decomposition). The claim 2 seems to be ugly. It will, however, help us to prove
the rest of the claims.

Let ai, i = 1, . . . , k be the eigenvalues of x with multiplicities mi. Then
V =

∑
Vi and the characteristic polynomial of x|Vi is (t− ai)mi .

We claim there is a polynomial p ∈ k[t] such that
p ≡ ai mod (t−ai)mi and p ≡ 0 mod t (the proof see below; this claim is called
Chinese remander theorem).

Then for each i the restriction of the operator p(x) on Vi is p(x) = ai+qi(x)(x−
ai)

mi = ai. This proves that p(x) = s. If we put q = t− p, we get q(x) = n.
Thus, we have proven claim 2 for the specific decomposition x = s + n. Let

us now prove uniqueness of the decomposition. Let x = s + n = s′ + n′. Since
s′ and n′ commute with x and s = p(x), n = q(x), s′ commutes with s and n′

commutes with n. Then one has

s− s′ = n′ − n.

The sum of two commuting nilpotent elements is nilpotent. The sum of two
commuting semisimple elements is semisimple. A nilpotent semisimple element
is zero. This together gives the uniqueness claim.

Finally, since p, q have no constant term, the claim 3 follows. �

Here is the famous Chinese Remainder theorem.

8.1.2. Lemma. Let f1, . . . , fk be pairwise coprime polynomials in k[t]. Let a1, . . . ak ∈
k[t]. Then there exists a polynomial p ∈ k[t] satisfying the equality

p ≡ ai mod (fi).
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Proof. We proceed by induction in k. The case k = 1 is obvious, let us settle the
case k = 2. Since f1, f2 are coprime, there exist g1, g2 such that f1g1 + f2g2 = 1.
Then it is easy to see that p = a1f2g2 + a2f1g1 satisfies the requirements.

The general case is proven by induction. Let k > 2. By the above, there
exists q such that q = ai( mod fi) for i = 1, 2. We now replace f1, f2 with one
polynomial f1f2 and we are looking for p such that p = q( mod f1f2), p = ai(
mod fi) for i > 2. By the induction assumption this problem has a solution. �

8.1.3. Lemma. Let x ∈ End(V ), x = s + n. Then adx = ads + adn is the
Jordan-Chevalley decomposition of adx.

Proof. ads is semisimple and adn is nilpotent (see Lemma in Engel theorem).
The rest is obvious. �

8.2. Let L be a semisimple Lie algebra. Each element x ∈ L defines an endo-
morphism adx ∈ End(L) which has a unique semisimple and nilpotent part

adx = s+ n.

We will see later that the elements s and n can be also expressed (in a unique
way) as

s = adxs ; n = adxn .

The presentation x = xs + xn is called the abstract Jordan decomposition.
The existence of such decomposition in a semisimple Lie algebra is a first step

in the classification of semisimple Lie algebras.

8.2.1. Lemma. Let V be a finite dimensional algebra and D = Der(A). If x =
s+ n ∈ D then s ∈ D, n ∈ D.

Proof. Let V = ⊕aVa be the decomposition of V into generalized eigenspaces
with respect to the eigenvalues of x. We claim that Va · Vb ⊆ Va+b. In fact, if
v ∈ Va, w ∈ Vb, so that

(x− a)iv = 0, (x− b)jw = 0,

then

(x− a− b)i+j(vw) =
∑
k

(
i+ j

k

)
(x− a)i+j−k(v)(x− b)k(w) = 0.

Here is the explanation of the last formula. We prove it by induction in n =
i+ j. For n = 1 it says

(x− a− b)(vw) = (x− a)(v)w + v(x− b)(w)

that immediately follows from Leibniz rule. To prove the formula for n = k + 1,
we apply the operator (x−a− b)k to (x−a− b)(vw) = (x−a)(v)w+v(x− b)(w)
and use the standard binomial identities.
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The endomorphism s has value a on Va. Therefore, Leibniz identity is obvious
for s.

Finally, since x, s ∈ D, n = x− s is in D as well. �

8.2.2. Proposition. Let L be semisimple. Then the map

ad : L→ Der(L)

is a Lie algebra isomorphism.

Proof. L is semisimple, therefore, has no center. Thus, ad : L → D = Der(L) is
injective. Identify L with ad(L). We claim L is an ideal in D. In fact, if x ∈ L
and d ∈ D then [d, adx] = add(x).

Let us check that the Killing form of D restricted to L, gives the Killing form
of L. Choose a base in L and complete it to a base in D. Then one sees that for
x, y ∈ L one has

trD(adxady) = trL(adxady)

since ady(D) ⊆ L, so adxady(D) ⊆ L, and the trace depends on diagonal elements
only.

Now, use that the Killing form of L is non-degenerate. This means that L⊥ ∩
L = 0 which implies D = L ⊕ L⊥. Since the Killing form is invariant and L
is an ideal, we deduce that L⊥ is also an ideal. Therefore, [L,L⊥] = 0 that is
D = L× L⊥.

Finally, if d ∈ L⊥ and x ∈ L then [d, adx] = add(x) which implies that d(x) = 0.
Thus, d = 0 and we are done. �

8.3. We are now ready to deduce the main result.

8.3.1. Proposition. Let L be a semisimple Lie algebra, x ∈ L. Then there exist
unique elements xs, xn ∈ L such that

• x = xs + xn, and the three elements commute with each other.
• adxs is semisimple and adxn is nilpotent.

Proof. adx is a derivation, therefore its semisimple and nilpotent parts are deriva-
tions by Lemma 8.2.1. Then by Proposition 8.2.2 the semisimple and nilpotent
parts of adx come also from L. �



38

Problem assignment, 6

1. The algebra sp4 consists of 4× 4-matrices of form(
M N
P Q

)
where M,N,P,Q are two-by-two matrices satisfying the conditions

N,P are symmetric; Q = −N t.

Prove that sp4 is simple.
Hint. The reasoning similar to that of Theorem 7.3.1, where H is once

more the subalgebra of diagonal matrices.
2. Compute the basis in sl2 dual to the standard basis e, f, h with respect

to the Killing form.
3. Let L = L1 × L2 is a product of semisimple Lie algebras. Let x ∈ L be

presented x = x1 + x2 with xi ∈ Li. Prove that xs = x1
s + x2

s.
4. Calculate the Killing form for the two-dimensional non-abelian Lie alge-

bra.

9. Complete reducibility

9.1. The aim of this section is proving the following important theorem.

9.1.1. Theorem. Let L be a semisimple Lie algebra. Then any finite dimensional
representation of L is completely reducible.

Note that the theorem has already been proven for L = sl2. We have seen that
the complete reducibility fails for non-finitely dimensional modules: nonsimple
Verma modules are indecomposable into a sum of irreduclible modules. There-
fore, this theorem is as general as possible. We will see later that the converse
of the theorem is also correct: if L is a finite dimensional Lie algebra such that
all finite dimensional L-modules are completely reduclible, then L is semisim-
ple. The proof will result from a sequence of steps. One of the steps is a long
digression about tensor algebra of L-modules.

9.2. Step 1: Killing form. Let L be semisimple and ρ : L→ gl(V ) be injective.
Then the Killing form Bρ given by the formula Bρ(x, y) = trV (ρ(x) ◦ ρ(y)), is
nondegenerate.

In effect, the kernel I = Ker(Bρ) is an ideal of L. It is solvable by the Cartan
criterion. Therefore, I = 0.

9.3. Step 2: Casimir. Let B be a non-degenerate invariant symmetric bilinear
form on L (here L is not required to be semisimple!). Let x1, . . . , xn be a basis
in L and let y1, . . . , yn be the dual basis: B(xi, yj) = δij. We claim that the
endomorphism

Q =
∑

ρ(xi) ◦ ρ(yi) : V → V
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does not depend on the choice of the basis x1, . . . , xn; that it commutes with any
L-homomorphism of representations and with the action of L. The proof is via
a direct calculation. In what follows we omit ρ from the formulas.

Let x′i =
∑
aijxj. Then yi =

∑
ajiy

′
j and∑

xiyi =
∑

ajixiy
′
j =

∑
x′jy

′
j.

This means that the resulting operator does not depend on the choice of a basis
in L. The homomorphism Q commutes with any L-homomorphism since this
is true for any expression of this kind. Let us check that it commutes with the
action of L. We have to prove that for any z ∈ L one has∑

zxiyi =
∑

xiyiz : V → V

or, in other words, that one has the following identity

[z,
∑

xiyi] = 0

in the algebra of endomorphisms of any L-module V . Note that

[z,
∑

xiyi] =
∑

[z, xi]yi +
∑

xi[z, yi].

Since the form is invariant,

B([z, xi], yj) +B(xi, [z, yj]) = 0

which implies that

[z, xi] =
∑

B([z, xi], yj)xj = −
∑

B(xi, [z, yj])xj

and similarly

[z, yi] =
∑

B([z, yi], xj)yj.

Therefore,∑
[z, xi]yi +

∑
xi[z, yi] = −

∑
B(xi, [z, yj])xjyi +

∑
B([z, yi], xj)xiyj = 0.

We will present later on a more “scientific” explanation of this fact.

9.4. Step 3: calculation. Let B = Bρ as in Step 1 and let Q be the corre-
sponding Casimir endomorphism of V . Then trV (Q) = dimL.

9.5. Step 4: The case V is simple. Note that if V is simple (we still assume
that ρ is injective), Q : V → V is a non-zero isomorphism.
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9.6. Step 5: a special case. Assume that V ⊂ W is a pair of representations
with dim(W/V ) = 1. We claim that in this case the embedding V → W splits so
thatW is isomorphic to a direct sum V⊕1 where 1 is the trivial (one-dimensional)
representation. This is the most important part of the proof.

First of all, any one-dimensional representation is defined by a character ρ :
L → F whose kernel contains [L,L]. Since L is semisimple, L = [L,L], so such
character is trivial. Therefore, W/V is a trivial representation 1.

We will prove by induction in dim(V ) that the embedding V ⊂ W splits. The
splitting of the embedding is equivalent to the existence of w ∈ W such that
xw = 0 for all x ∈ L and W = V + Fw.

First of all, we will show that one can assume V to be irreducible.
In fact, if V ′ is a nontrivial submodule of V , we can factor both V and W

by V ′ and we get an embedding of representations V̄ = V/V ′ → W̄ = W/V ′ of
codimension one, having smaller dimension of the submodule. By the iductive
assumption, there exists w̄ ∈ W̄ such that xw̄ = 0 for all x ∈ L and W̄ = V̄ +Fw̄.

Now define W ′ as the preimage of Fw̄ under the projection W → W̄ . We
have the embedding V ′ → W ′ of codimension 1, so, one more by the inductive
hypothesis, we can find w ∈ W ′ with the required properties. Thus, V can be
assumed to be irreducible.

9.6.1. Let us now show that we can also assume that the map ρ : L → gl(V )
is injective. Let I = ker(ρ). This means that any x ∈ I annihilates V . Since
any x ∈ L carries W to V , [I, I] annihilates W . Since L is semisimple, I is also
semisimple, so [I, I] = I, therefore, both V and W are annihilated by I. Thus,
they are both modules over L/I which is also semisimple. This reduces everyting
to the case ρ is injective.

9.6.2. All reductions made, we have the following. L is a semisimple Lie algebra,
V an irreducible representation such that ρ : L→ gl(V ) is injective, and V ⊂ W
so that W/V = 1. Look now at the Casimir Qρ : W → W . Its restriction to V is a
multiplication by a nonzero constant, and its action on W/V is zero. Therefore,
Qρ : W → W has a one-dimensional kernel K. This is a one dimensional L-
submodule, so any nonzero w ∈ K satisfies the required conditions.

9.7. The general case. We wish to prove that any embedding V ⊂ W of finite
dimensional L-modules splits, that is that there exists a submodule U of W such
that W = V ⊕U . We know that this implies complete reducibility. Equivalently,
we have to prove that there exists a homomorphism π : W → V of L-modules
such that π|V = idV .

We will deduce this from the special case studied above. To proceed, we need
some general construction.
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9.7.1. Hom. Let V and W be two prepresentations of L. We will now define a
structure of L-module on the vector space Hom(V,W ).

Here is the formula. For f : V → W and x ∈ L, we define xf : V → W by the
formula

(xf)(v) = xf(v)− f(xv).

The map xf so defined is obviously linear. Therefore, the only thing to verify is
the identity

[x, y]f = x(yf)− y(x(f).

This is an easy exercise.
Here are a couple of special cases.
First, assume V = 1 = F1 is the trivial representation. Then Hom(1,W ) = W ,

the isomorphism carrying f : 1→ W to f(1).
It is easy to see that the structure of L-module on Fun(1,W ) is compatible

with this isomorphism.
Another special case is the L-module structure on the dual space V ∗ = Hom(V,1).

The L-action is given by the formula

xf(v) = −f(xv).

Note the following obvious

9.7.2. Lemma. An element f ∈ Hom(V,W ) is L-invariant, that is, xf = 0 for
all x ∈ L iff f : V → W is a homomorphism of L-modules.

9.7.3. End of the proof. We are now ready to prove that for any L-submodule V
of W there exists a splitting s : W → V that is a homomorphism of L-modules
satisfying the condition s|V = idV .

We proceed as follows. Let Hom(W,V ) be the L-module defined above and let
H ⊂ Hom(W,V ) be the collection of linear transformations φ : W → V such that
the restriction φ|V is a multiplication by a scalar. Define the map p : H → F
as the one carrying φ to the scalar c ∈ F such that φ|V = cidV . One can easily
see that p is a homomorphism of L-modules. The kernel of p is the collection of
maps φ : W → V such that φ|V = 0. It identifies with Hom(W/V, V ). Thus,
the vector space Hom(W/V, V ) is a subspace of H having codimension one. It is
an L-submodule as it is defined as the kernel of a homomorphism of L-modules.
According to the special case of the theorem proven above, there exists s ∈ H
such that xs = 0 for all x ∈ L and H = Ker(p) + Fs. We have p(s) 6= 0, so,
replacing s with p(s)−1s, we will assume p(s) = 1. This means that s|V = idV .
One the other hand, s : W → V is an L-homomorphism by Lemma 9.7.2, since
xs = 0 for all x ∈ L.

9.8. Digression: Tensor product of L-modules. In the proof of complete
reducibility of finite dimensional modules over a semisimple Lie algebra, we used
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an operation Hom assigning an L-module Hom(V,W ) to a pair of modules V ,
W . In this subsection we will discuss another operation closely related to Hom.

9.8.1. Tensor product of vector spaces. Fix a field k.

9.8.2. Definition. Let V,W,X be three vector spaces over F . An F -bilinear map
f : V ×W → X is a map satisfying the following properties.

1. f(v + v′, w) = f(v, w) + f(v′, w).
2. f(av, w) = af(v, w) for any a ∈ F .
3. f(v, w + w′) = f(v, w) + f(v, w′).
4. f(v, aw) = af(v, w) for any a ∈ F .

Of course, we have already seen this definition in a special case V = W and
X = F — this was the definition of a bilinear form on V .

The set of bilinear maps V × W → X is a vector space: the sum of two
bilinear maps is bilinear and a bilinear map multiplied by a constant is bilinear.
We denote Bil(V,W ;X) this vector space.

9.8.3. The assignment (V,W,X) 7→ Bil(V,W ;X) is a functor (see below) in
three arguments, covariant in X and contravariant in V and in W . Here is the
precise statement.

Given a : V ′ → V , b : W ′ → W and c : X → X ′ linear maps, a map

Bil(V,W ;X)→ Bil(V ′,W ′, X ′)

is defined as the one carrying f : V ×W → X to the composition

V ′ ×W ′ a×b−→ V ×W f→ X
c→ X ′.

Of course, one has to verify that the above composition remains bilinear.

9.8.4. It turns out, for given V and W , there exists a universal bilinear map
u : V ×W → U in the following sense.

As we said above, any linear map φ : U → X defines, by composition, a bilinear
map φ ◦ u : V ×W → X.

Definition. A bilinear map u : V ×W → U is called universal if for any vector
space X the map

Hom(U,X)→ Bil(V,W ;X)

is a bijection (an isomorphism of vector spaces).

The definition above says nothing about existence or uniqueness of the univer-
sal bilinear map. We will prove existence later. We will start explaining in what
sense it is unique.

9.8.5. Lemma. Let u : V ×W → U and u′ : V ×W → U ′ be both universal.
Then there exists a unique isomorphism θ : U → U ′ such that u′ = θ ◦ u.
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Proof. Since u is universal, there exists a unique homomorphism θ : U → U ′ such
that u′ = θ ◦ u. Similarly, since u′ is universal, there exists a unique homomor-
phism θ′ : U ′ → U such that u = θ′ ◦ u′. We claim that θ and θ′ are inverse to
each other. In fact, θ′ ◦ θ : U → U satisfies the property

u = (θ′ ◦ θ) ◦ u

and idU should be the only map U → U satisfying this property (once more,
because of universality of u). The proof of θ ◦ θ′ = idU ′ goes along the same
lines. �

9.8.6. Existence. We will now prove existence of a universal bilinear map. Let X
be a basis of V and Y a basis of W . This means that any v ∈ V can be uniquely
presented as a lilnear combination of elements of X, and any element w ∈ W
has a unique presentation of elements of Y . A bilinear map f : V ×W → Z is
uniquely defined by its values on X × Y , f(x, y) ∈ Z. This is the reasoning we
know from the theory of bilinear forms.

This leads us to the following construction of a universal bilinear map. Set U to
be the vector space with the basis X×Y . We will denote the pair (x, y) ∈ X×Y
considered as an element of the basis of U , as x⊗ y. (At the moment, this is just
a notation!)

The map u : V ×W → U is the one carrying the pair (x, y) ∈ V ×W to the
basis vector x⊗ y of U .

The above description is not easy to understand. To understand it better, let
us add that, for v =

∑
cixi, w =

∑
djyj, ci, dj ∈ k, xi ∈ X, yj ∈ Y , one has

u(v, w) =
∑
i,j

cidjxi ⊗ yj.

This easily follows from bilinearity of U and from the condition u(xi, yj) =
xi ⊗ yj.

9.8.7. We define the tensor product of V and W as “the” universal bilinear map
u : V ×W → U . We denote U = V ⊗W . This is a vector space, together with a
bilinear map u : V ×W → U ⊗W defined uniquely up to a unique isomorphism.

We also denote u(v, w) as v ⊗ w ∈ V ⊗W . This extends the notation x ⊗ y
we introduced in the construction of V ⊗W .

9.8.8. Corollary. dim(V ⊗W ) = dim(V ) dim(W ).

�

A bilinear map f : V × W → X can be otherwise defined as a linear map
f̃ : V → Hom(W,X) from V to the vector space Hom(W,X) of linear maps from
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W to X. Since one has a bijection Bil(V,W ;X) = Hom(V ⊗W,X), we get a
functorial isomorphism

(14) Hom(V ⊗W,X)
∼→ Hom(V,Hom(W,X)).

The above formula connects two functors: tensor product and Hom. In the
language of category theory, this means that the functors ⊗ and Hom are adjoint.

9.8.9. There is another conection between tensor product and the functor Hom.
We know that, if V and W have (finite) dimensions m and n respectively, than
both V ⊗W and Hom(V,W ) have dimension mn. Here is a more precise con-
nection between the two notions.

For any pair of vector spaces V and W we define a linear map

θ : V ∗ ⊗W → Hom(V,W )

as follows. We start with a bilinear map

Θ : V ∗ ×W → Hom(V,W )

by the formula

Θ(f, w)(v) = f(v) · w.
Linearity in f ∈ V ∗ and in w ∈ W is obvious. Therefore, by universality of tensor
product, we have a linear map θ. We have

Proposition. Assume that V is finite dimensional. Then θ is an isomorphism.

Proof. Choose a basis v1, . . . , vn of V . Let f1, . . . , fn be the dual basis for V ∗.
Recall that this means that fj(vj) = δij, the Kronecker’s delta. If {wα} is a basis
for W (finite or infinite), the pairs (fi, wα) form a basis for V ∗ ⊗W . The map θ
carries such pair to the map φi,α : V → W carrying vi to wα and vj for j 6= i to
zero. Such φi,α form obviously a basis for Hom(V,W ). �

Using the direct sum decomposition of the tensor product presented below one
can prove that θ is also an isomorphism if W is finite dimensional. It is not an
isomorphism in general!

9.8.10. Direct sum. There is a sort of distributiva law for tensor products.
Given V1, V2 and W , we will construct an isomorphism

V1 ⊗W ⊕ V2 ⊗W → (V1 ⊕ V2)⊗W.
In order to construct the map f : X1 ⊕ X2 → Y , it is enough to construct
fi : Xi → Y , i = 1, 2: then f(x1 + x2) = f1(x1) + f2(x2). Thus, to construct
the required map, it is enough to present Vi ⊗W → (V1 ⊕ V2) ⊗W . The rest
is clear. To prove that the constructed map is an isomorphism, we choose bases
and make an easy verification.
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9.8.11. Tensor product of representations. Let V and W be L-modules. We will
now present a natural L-module structure on V ⊗W . For any x ∈ L we have
to present an endomorphism of V ⊗W . Here we use functorial properties of a
tensor product. Let us fix a notation. For f : V → V ′, we denote by f ⊗ 1 :
V ⊗W → V ′ ⊗W the map defined by the formula (f ⊗ 1)(v ⊗ w) = f(v) ⊗ w.
Similarly, for g : W → W ′, we define 1 ⊗ g : V ⊗W → V ⊗W ′ by the formula
(1⊗g)(v⊗w) = v⊗g(w). We can now define the endomorphism of V ⊗W given
by x ∈ L as x⊗ 1 + 1⊗ x. That is, we have x(v ⊗ w) = xv ⊗ w + v ⊗ xw. It is
an easy exercise to verify that this formula determines an action of L on V ⊗W .

9.8.12. Some identities. Let V,W,X be three L-modules. We can now verify
that the standard isomorphisms of vector spaces

Hom(V,Hom(W,X))→ Hom(V ⊗W,X),

θ : V ∗ ⊗W → Hom(V,W )

are isomorphisms of L-modules.

10. Levi theorem. Reductive Lie algerbas

10.1. Levi theorem. Recall that a Lie algebra L is semisimple if it has no
solvable ideals. Recall as well that any Lie algebra has a maximal solvable ideal
R called the radical (as the sum of two solvable ideals is a solvable ideal) and
that therefore the quotient L/R is semisimple (prove this!) We are going to prove
now that L contains a subalgebra isomorphic to L/R. More precisely, one has
the following theorem.

10.1.1. Theorem. (Levi) Let f : L → S be a surjective Lie algebra homo-
morphism with S semisimple. Then there exists a Lie algebra homomorphism
g : S → L splitting f , that is, satisfying f ◦ g = idS.

10.1.2. Semidirect product. Let I = Ker(f). One obviously has L = I ⊕ g(S) as
vector spaces. Note that I is an ideal and g(S) is a Lie subalgebra in L. Since I
is an ideal, [g(x), y] ∈ I for all x ∈ S, y ∈ I, so the formula

x(y) = [g(x), y]

defines on I a structure of S-module. In the opposite direction, any Lie algebra
homomorphism a : S → Der(I) allows one to define a Lie algebra structure on
L := S ⊕ I by the formula

[(x, y), (x′, y′)] = ([x, x′], [y, y′] + a(x)(y′)− a(x′)(y)).

The above construction is called the semidirect product of Lie algebras S and I
along a homomorphism a. In the special case a = 0 this is just a direct product
of Lie algerbas. Thus, Levi theorem can be reformulated as follows.
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10.1.3. Corollary. Any finite dimensional Lie algebra is a semidirect product of
its radical with a semisimple Lie algebra.

An image g(S) of the quotient of L by the radical is called a Levi factor. Note
that the Levi factor is not unique (it is in fact unique up to conjugation) as there
is a freedom of choice of teh section g.

10.1.4. Proof of Levi theorem. Note that there are similar theorems in the theo-
ries of associative algebra (Wedderburn-Malcev theorem).

Step 1. Reduce the problem to the case when I is a simple L-module. This is
done by induction in dim(I). If I is not simple, it contains an ideal J of a smaller
nonzero dimension. By induction, the projection L/J → S splits, so that there
exists ḡ : S → L/J with L/J = ḡ(S)⊕ I/J . Let L′ be the preimage of ḡ(S) in L.
This is a subalgebra of L having a projection L′ → S with the kernel J . Once
more, by induction, there is a splitting of this projection.

Step 2. Let R be the radical of L. The image of R, f(R), is a solvable ideal in
S, so f(R) = 0 so R ⊂ I. Since I is simple, either R = 0 or R = I. If R = 0, L
is semisimple and any ideal I in it is a direct factor (using Killing form). Thus,
we can assume I = R and in this case I is commutative as otherwise [I, I] is a
nontrivial submodule in I.

Step 3. Consider the case when L acts trivially on I. Then I lies in the center
of L; therefore it is the center (as otherwise L/I = S would have a center).
Then L is a module over L/I = S which is semisimple. Therefore, by complete
reducibility we have L = I ⊕K as S-modules, therefore, K = L/I is isomorphic
to S. This case is settled.

Step 4. We now assume that I is a simple nontrivial L-module and [I, I] = 0.
This is the main part of the proof. We have to find a Lie subalgebra K of L
isomorphic to S such that L = I ⊕K.

The idea of the construction of K is the following. We will present an L-module
W and and element w ∈ W such that the linear map

a : L→ W, a(x) = xw

satisfies the following properties.

• a|I is injective.
• a(L) = a(I).

Let us show how everything will follow from the properties of W and w. We
define K = Ker(a), that is K = {x ∈ L|xw = 0}. This means that K is the
stabilizer of w, in particular, it is a Lie subalgebra.

The homomorphism a : L → W produces a map of vector spaces p : L → I
carrying x ∈ L to the unique y ∈ I such that a(x) = a(y). This means that
p|I = idI , Ker(p) = K. This gives a decomposition L = I ⊕K as vector spaces.
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Let us now construct W and w as required. We put W = Hom(L,L) with the
L-module structure defined by the standard formula

(xf)(y) = [x, f(y)]− f([x, y]).

Define the following subspaces of W .

P = {ada, a ∈ I}.

Q = {φ ∈ W |φ(L) ⊂ I&φ(I) = 0}.
R = {φ ∈ W |φ(L) ⊂ I&φ|I = λ · idI , λ ∈ F}.

These are L-submodules of W . In fact, if x ∈ L then xada = ad[x,a] for a ∈ I.
This proves that P is an L-submodule. The vector subspace Q indetifies with
Hom(L/I, I) which is obviously an L-submodule of W . An easy calculation shows
that R is an L-submodule of W . One has a short exact sequence of L-modules

0→ Q→ R→ 1→ 0

where, as usual, 1 is the trivial representation of L. Furthemore, P ⊂ Q and one
deduces the following short exact sequence

0→ Q/P → R/P → 1→ 0.

Note that I acts trivially on the quotients, so this short exact sequence can be
seen as a sequence of L/I = S-modules. Since S is semisimple, the sequence
splits, so that there is an element w̄ ∈ R/P such that xw̄ = 0 for all x ∈ L and
R/P = Q/P ⊕ Fw̄. We choose w ∈ R as a preimage of w̄. The element w so
chosen is a linear map w : L → I whose restriction to I is a multiplication by a
nonzero constant and such that for any x ∈ L one has xw = ada for some a ∈ I.
Multiplying if necessary w by a nonzero constant, we can assume that w|I = idI .

Let us verify that w ∈ W satisfies the required properties.

• If a ∈ I and aw = 0, we have [ada, w] = 0 that is ada ◦w(x) = w ◦ ada(x)
that is w([a, x]) = [a, w(x)] = 0, the latter as w(x) ∈ I and [I, I] = 0.
Finally, w([a, x]) = [a, x] so [a, x] = 0 for all a ∈ I and x ∈ L which is
impossible as the action of L on I is nontrivial.
• It remains to verify that for any x ∈ L there exists a ∈ I such that
x · w = ada(w). This is just invariance of w̄.

The theorem is proven.

10.2. Reductive Lie algebras. A finite dimensional Lie algebra L is called
reductive if it is completely reducible when considered as an L-module with
respect to the adjoint action. A semisimple Lie algebra is reductive as its all
finite dimensional representations are completely reducible. A commutative Lie
algebra is reductive as it is a direct sum of trivial representations.

10.2.1. Lemma. A product of two reductive Lie algebras is reductive.
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10.2.2. Theorem. Any reductive Lie algebra is a direct product of semisimple
and commutative algebras.

Proof. The submodules of L are just the ideals. If I and J are two ideals such that
I ∩ J = 0 then obviously [I, J ] = 0. Thus, L decomposes into a finite product of
simple ideals. Any simple ideal is either a simple Lie algebra or one-dimensional.
This implies the result. �

10.3. Problem assignment, 7.

1. Prove that the radical of a reductive Lie algebra L coincides with its
center.

2. Prove that the Levi factor of a reductive Lie algebra L is (isomorphic to)
[L,L].

3. Prove that if any finite dimensional representation of L is completely
reducible then L is semisimple.

11. Study of semisimple Lie algebras

We assume here that the base field is algebraically closed.
Let L be a semisimple Lie algebra.

11.1. Maximal toral subalgebras and roots. If L does not contain ad-semisimple
elements, all its elements are ad-nilpotent by Jordan-Chevalley theorem and L is
nilpotent by Engel theorem.

Since this is not the case, L contains semisimple elements.
A Lie subalgebra of L is called toral if it consists of semisimple elements. The

above reasoning implies that any semisimple Lie algebra contains nontrivial toral
subalgebras.

One has

11.1.1. Lemma. (For k algebraically closed) Any toral subalgebra is commutative.

Proof. Let T be a toral subalgebra and x ∈ T . Observe that (adx)T ⊂ T and
denote the restriction of adx to T by adTx. We need to show that adTx = 0.
Obviously adTx is semisimple.

Let y0 ∈ T be an eigenvector of adTx that is (adx)y0 = cy0 for some c ∈ k. We
have to prove c = 0.

Since adTy0 is semisimple, T admits a basis y0, y1, . . . , yr of eigenvectors of
adTy. One has (ady0)T ⊂ {y1, . . . , yr} because (ady0)y0 = 0. Now the equality
(adx)y0 = −(ady0)x gives c = 0. �

11.1.2. Example. In the case k = R, a linear operator ψ ∈ End(V ) is called
semisimple if it complexification ψC ∈ End(V ⊗R C) is diagonalizable.

Let L = Vect be a three dimensional Lie algebra over R with respect to
vector product: [v, w] := v × w. This algebra is simple (see Lecture 2) since an
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ideal containing a given non-zero element v contains also all vectors which are
orthogonal to v and so coincides with Vect. Any element x ∈ L is ad-semisimple
since all eigenvalues of adx are distinct (0, i,−i). However L is not commutative.
Thus, the condition k = k is very important.

11.1.3. Fix a toral subalgebra H in L. Since H consists of commuting semisim-
ple elements, L has a basis for which all matrices adx : x ∈ H are diagonal. Let
v be a non-zero common eigenvector of the linear operators adx : x ∈ H. An
element µ of the dual space H∗ is called the weight of v if (adx)(v) = µ(x)v for
all x ∈ H. One has

L = L0 ⊕
⊕
µ∈∆

Lµ

where

∆ := {µ ∈ H∗ \ {0}| Lµ 6= 0}, Lµ := {x ∈ L| (adh)(x) = µ(h)x, ∀h ∈ H}.
The elements of ∆ are called the roots of L.

Denote by K the Killing form of L.

11.1.4. Lemma. i) [Lµ, Lν ] ⊂ Lµ+ν,
ii) for α ∈ ∆ all elements of Lα are nilpotent,
iii) if α + β 6= 0 then ∀x ∈ Lα, y ∈ Lβ one has K(x, y) = 0,
iv) the restriction of K to L0 is non-degenerate.

Proof. (i) follows from the Jacobi identity. (ii) follows from (i) and the fact that
the set of weights of L with respect to H is a finite set (it is equal to ∆ ∪ {0}).
(iii) follows from ad-invariance of K. Finally, (iv) is an immediate consequence
of non-degeneracy of K and (iii). �

11.1.5. Corollary. For any α ∈ ∆ one has dimLα = dimL−α.

Proof. Combining the non-degeneracy of K and (iii), we conclude that for any
non-zero x ∈ Lα there exists y ∈ L−α such that K(x, y) 6= 0. Therefore the
formula x 7→ fx : fx(y) := K(x, y), ∀y ∈ L−α defines an embedding Lα → L∗−α.
In particular, dimLα ≤ dimL−α. Applying the last inequality for α′ := −α, one
concludes dimLα = dimL−α. �

Since any toral subalgebra is commutative, L0 ⊇ H.

11.1.6. Proposition. Let H be a maximal toral subalgebra. Then L0 = H. That
is, a maximal toral subalgebra coincides with its centralizer.

Proof. Note that by definition L0 = {x ∈ L|[h, x] = 0 ∀ h ∈ H} is the centralizer
of H.

Step 1. Let x = s + n be the Jordan-Chevalley decomposition of an element
x ∈ L0. Then s and n are in L0.
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In effect, L0 = {x ∈ L|adx(H) = 0}. Thus, by the property of Jordan decom-
position, see 8.1.1(3), both ads and adn satisfy the same property.

Step 2. If x ∈ L0 is semisimple then x ∈ H. This follows from maximality of
H: x commutes with H, therefore H ⊕ k · x consists of semisimple elements.

Step 3. The restriction of K to H is nondegenerate. Let h ∈ H and let
K(h,H) = 0. We have to prove that h = 0. We will first check that K(h, L0) = 0
and then we deduce h = 0 from the nondegeneracy of K|L0 . For a general x ∈ L0

one has x = s + n where s ∈ H by Step 2. Obviously, tr(adh · adn) = 0 since h
and n commute and n is nilpotent. Thus, K(h, x) = K(h, s) + K(h, n) = 0 for
all x.

Step 4. L0 is nilpotent. By Engel theorem it suffices to check that adx is
nilpotent for all x ∈ L0. This is true for ads since s ∈ H so ads = 0 and this is
true for adn. Therefore, this is true for adx.

Step 5. H ∩ [L0, L0] = 0. In effect, K(H, [L0, L0]) = 0 since K is invariant. If
h ∈ H ∩ [L0, L0], K(h,H) would vanish, therefore, h would vanish since K|H is
nondegenerate.

Step 6. L0 is commutative. Otherwise [L0, L0] 6= 0 and then by Engel theorem
5.3.3 [L0, L0] ∩ Z(L0) 6= 0. Let x ∈ [L0, L0] ∩ Z(L0) and let x = n + s be the
Jordan decomposition. One has n 6= 0 since otherwise x would be semisimple,
which is impossible by Steps 2 and 5. The nilpotent element n belongs to L0 and
therefore to the center of L0 by the properties of the Jordan decomposition.

Then K(n, x) = tr(adn · adx) = 0 for all x ∈ L0 which contradicts to the
nondegeneracy of K|L0 .

Step 7. Finally, assume L0 6= H. Then there exists a nonzero nilpotent element
x ∈ L0 by Steps 1,2. Then K(x, y) = tr(adx · ady) = 0 for all y ∈ L0 since adx is
nilpotent and commutes with ady. This contradicts nondegeneracy of K|L0 .

�

11.2. Root space decomposition. Let L be a semisimple complex Lie algebra.
Recall that the Killing form

K(x, y) := tr(adx · ady)

is a non-degenerate invariant bilinear form on  L.

11.2.1. Recall that a subalgebra H ⊂ L is called toral if it consists of semisimple
elements:

∀x ∈ H adx : L→ L is a semsimple linear operator.

We have shown that any toral subalgebra is commutative and that a maximal
toral subalgebra coincides with its centralizer. Moreover the restriction of the
Killing form K to a maximal toral subalgebra is non-degenerate.
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11.2.2. Fix a maximal toral subalgebra H in L and denote by ∆ the set of roots:

L = H ⊕
⊕
α∈∆

Lα.

Recall that the restriction of K to H is nondegenerate. This means that for
each α ∈ H∗ there exists a unique element tα ∈ H such that K(tα, h) = α(h) for
h ∈ H.

The set of roots ∆ satisfies the following properties.

11.2.3. Proposition. 1. The set ∆ ⊂ H∗ spans H∗.
2. α ∈ ∆ iff −α ∈ ∆.
3. If α ∈ ∆ then [Lα, L−α] is one-dimensional spanned by tα.
4. α(tα) = K(tα, tα) 6= 0 for α ∈ ∆.
5. Let α ∈ ∆, 0 6= x ∈ Lα. There exists an element y ∈ L−α such the

triple (x, y, hα = [x, y]) generate a subalgebra of L isomorphic to sl2 and
hα = 2tα

K(tα,tα)
.

Proof. 1. If ∆ does not span H∗, there exists a non-zero element h ∈ H such
that α(h) = 0 for all α ∈ ∆. This implies that h commutes with the elements of
Lα for all α ∈ ∆. Then h is central. Since the center of L is trivial, this leads to
a contradiction.

2. Since K(Lα, Lβ) = 0 for β 6= −α and since K is nondegenerate, ∆ is
symmetric with respect to α 7→ −α.

3. Let x ∈ Lα, y ∈ L−α and let h ∈ H. One has

K(h, [x, y]) = K([h, x], y) = α(h)K(x, y) = K(tα, h)K(x, y) = K(K(x, y)tα, h).

This implies that H is orthogonal to [x, y]−K(x, y)tα which in turn yields

[x, y] = K(x, y)tα.

4. Assume α(tα) = K(tα, tα) = 0. Choose x ∈ Lα and y ∈ L−α such that
K(x, y) = 1 so that [x, y] = tα and [tα, x] = [tα, y] = 0. One can consider
Span{x, y, tα} as a solvable subalgebra of gl(L); thus, its commutator containing
tα is nilpotent; since it is in H, it is as well semisimple, that is adtα = 0 or tα is
in the center of L.

5. If x ∈ Lα and y ∈ L−α so that K(x, y) = c, we have

[x, y] = ctα, [ctα, x] = cα(tα)x, [ctα, y] = −cα(tα)y.

Thus, if we set c = 2
K(tα,tα)

, we get the required sl2-triple. �

11.2.4. Let Sα be the Lie subalgebra of L spanned by an element x ∈ Lα,
y ∈ L−α such that [x, y] = hα := 2tα

K(tα,tα)
, and hα. Note that we cannot, at the

moment, claim that Sα so defined is unique.
The map Sα → L is a map of Lie algebras and Sα acts on L via the adjoint

action.
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We know that L decomposes, as Sα-module, into a direct sum of irreducible
modules whose structure we fortunately know.

Consider the vector subspace M of L of the form

M = H ⊕
⊕
c∈C∗

Lcα.

This is a Sα-submodule since [Lα, Lβ] ⊂ Lα+β. Since hα(cα) = 2c and the weights
of M are integral (M is finite dimensional), c ∈ 1

2
Z. Note that H = C · hα ⊕H ′

where H ′ = {h ∈ H|α(h) = 0}, and each element of H ′ generates a trivial Sα-
submodule. Since Sα has weights 0,±2, and H ′ has codimension 1 in H, the
sum Sα ⊕H ′ contains all irreducible Sα-modules of even weight (those having a
zero weight space). In particular, we deduce that if α ∈ ∆ then 2α 6∈ ∆. But
then α/2 6∈ ∆ as well. This implies that 1 is not a weight of M . Therefore,
M = H ′ ⊕ Sα.

This immediately implies the following property of the set of roots ∆ and
corresponding Lie algebra.

Proposition. 1. Let α and cα belong to a root system ∆. Then c = ±1.
2. For each α ∈ ∆ one has dim Lα = 1.

As a corollary, we get, for each α ∈ ∆, a unique Lie subalgebra Sα isomorphic
to sl2, spanned by Lα, L−α and hα ∈ H.

11.3. L as Sα-module. A lot of information can be deduced from considering
L as Sα- module. Let β 6= ±α be an element of ∆. Define

M = ⊕k∈ZLβ−kα.
Obviously M is an Sα-submodule of L. Its weights with respect to hα are

(β − kα)(hα) = β(hα)− 2k.

This implies that M is a simple Sα-module. This implies the following result.

11.3.1. Proposition. 1. For any α, β ∈ ∆ one has β(hα) ∈ Z.
2. The set of k ∈ Z for which β − kα ∈ ∆ is a segment [−r, s] and β(hα) =
s− r.

11.4. ∆ is a root system. We will now see that the set ∆ ∈ H∗ satisfies very
special symmetricity properties. For any α ∈ ∆ we define a linear operator sα in
H∗ by the formula

(15) sα(γ) = γ − γ(hα)α.

We immediately see that sα(α) = −α and s2
α = id. Thus, sα is a reflection. We

have

11.4.1. Lemma. For any α ∈ ∆ one has sα(∆) = ∆.
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Proof. sα(β) = β − β(hα)α. The number β(hα) is equal to s − r that always
belongs to the segment [−r, s], see 11.3.1(2). �

It is a good time to define the abstract notion of a root system.

11.4.2. Definition. A finite subset R of an Euclidean space V (that is, a real
vector space with an inner product 〈 , 〉) is called a root system if

1. R spans V and does not contain 0.
2. If α and cα belong to R then c = ±1.
3. For α, β ∈ R one has 〈α, β〉 ∈ Z.
4. For any α ∈ R one has sα(R) = R. Here sα is the orthogonal reflection

of V carrying α to −α.

11.4.3. Let us write down the explicit formula for sα. The conditions are that
sα(α) = −α and sα(v) = v whenever 〈v, α〉 = 0. This yields the formula

sα(v) = v − 2
〈v, α〉
〈α, α〉

α.

11.4.4. In order to see that ∆ is a root system, we have to embed it into an
Euclidean space so that the reflections sα that we defined earlier by the formula
sα(β) = β − β(hα)α become the orthogonal reflections.

It can be easily done. Let us first define the real vector space V . This can be
nothing but the real span of ∆, V = SpanR(∆). Killing form on L restructs to a
nondegenerate form on H. This induces an isomorphism κ : H → H∗ which in
turn gives a symmetric bilinear for on H∗. We will verify that its restriction to
V is positively definite.

Look at the real vector space HR = SpanR(hα) spanned by all hα, α ∈ ∆. It
is easy to calculate the restriction of the Killing form on it. Given h =

∑
aαα,

aα ∈ R, one has K(h, h) = tr(adh ◦ adh) =
∑

α∈∆ α(h)2. This is a nonnegative
number as all α(h) are real. Thus, K induces a positively definite form on HR.
The real vector space HR spans H as hα span H. On the other hand, if we choose
an orthonormal basis in HR, it will become orthonormal in H, thereforem linearly
independent over C. This implies that dimRHR = dimH.

We are more interested in another real space, V = SpanR(∆). Fortunately,
the map κ : H → H∗ carries HR to V . Thus, the symmetric form on V induced
by the Killing form is positive definite. This also proves that V spans H∗ and
dimR(V ) = dim(H).

It remains to verify that the formula

sα(v) = v − v(hα)α

is an orthogonal reflection, with respect to the inner product. This follows from
the formula

κ(hα) =
2

〈α, α〉
α.
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11.5. Note the following fact without proof.

Theorem. All maximal toral subalgebras are conjugate: if H,H ′ are maximal
toral subalgebras of L then there exists an automorphism ψ : L → L such that
ψ(H) = H ′.

This fact implies in particular that the root system defined by a semisimple
Lie algebra is independent of the choice of a maximal toral subalgebra.

It turns out that, in the opposite direction, the root system ∆ completely
determines L (see the book of Serre for a proof).

To provide some detail, let ∆ ⊂ V be a root system in a real vector space
V . We denote H to the the complexification of the dual vector space V ∗. The
semisimple Lie algebra determined by the root system ∆ will be, as a vector
space, the direct sum

L = H ⊕
⊕
α∈∆

Lα

where Lα are one-dimensional vector spaces with a fixed generator xα. The
bracket should satisfy the properties

• xα, x−α] = hα ∈ H.
• [xα, xβ] = 0 if α + β 6∈ ∆.
• [xα, xβ] = cα,βxα+β if α + β ∈ ∆ for certain constants cα,β.

The remaining problem of finding the constants cα,β is not very easy. Still, there
is a unique algebra, up to isomorphism, with a given root system ∆.

Thus, classification of (complex) semisimple Lie algebras reduces to the clas-
sification of the root systems.

11.6. There is a full classification of the root systems. Irreducible root systems
consist of four infinite series An, Bn, Cn, Dn (n = dimH is called the rank of a
root system) and 5 exceptional series E6, E7, E8, F4, G2.

We will list the rank one and rank two root systems

11.6.1. Rank one, A1. This root systems consists of two vectors, α and −α, in
R1. It corresponds to the Lie algebra sl2.

11.6.2. Direct product. Let ∆ be a root system in V and ∆′ a root system in R′.
We define a root system ∆×∆′ in V ⊕ V ′ as the set of pairs (α, β) with α ∈ ∆
and β ∈ ∆′.

Direct product of root systems corresponds to a direct product of semisimple
Lie algebras. An algebra is simple if the corresponding root system is irreducible
that is cannot be presented as a product of root systems.

11.6.3. Rank two, A1 × A1. This one corresponds to the Lie algebra sl2 × sl2.

11.6.4. Rank two, A2. This root systems consists of 6 vectors that form a right
hexagon, see the picture on the next page.
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11.6.5. Rank two, B2. This root system has 8 elements, the vectors with coordi-
nates (±1, 0), (0,±1), (±1,±1), see the picture on the next page.

11.6.6. Rank two, G2. See the picture on the next page.

11.6.7. Weyl group. Recall that any root α ∈ ∆ gives rise to a reflection sα so
that sα(∆) = ∆.

Let W be the subgroup of automorphisms of H∗ generated by sα. This is a
finite group (should be proven) acting on ∆. It is called the Weyl group of the
root system ∆ (and of the corresponding semisimple Lie algebra L).
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11.7. Example: sl(n). To describe a root system of sl(n), it is convenient to
start from gl(n). The latter is reductive: gl(n) = sl(n) × Cz and we can define
a maximal toral subalgebra in the same manner; it is easy to check that such a
subalgebra is of the form h′ = h × Cz where h is a maximal toral subalgebra of
sl(n).

The natural choice for h′ is the set of diagonal matrices

h′ := {
∑

aiEi,i, ai ∈ C}.

The natural choice for h is the set of traceless diagonal matrices

h := {
∑

aiEi,i|
∑

ai = 0}.

Let {εi}ni=1 be a basis of (h′)∗ which is dual to the basis Ei,i. Since h is a
subspace of h′, the dual space h∗ may be naturally viewed as a factor space

h∗ = span{εi}ni=1/
n∑
i=1

εi.

In this notation, one has
∆ := {εi − εj}i 6=j.

The sl(2) triple corresponing to (εi − εj) is

Ei,j, hεi−εj := Ei,i − Ej,j, Ej,i.
The (εi − εj)-strings take form

εk − εi; εk − εj.
Therefore the integers β(hα) are

(εk − εi)(hεi−εj) = −1

(εi − εj)(hεi−εj) = 2

(εk − εj)(hεi−εj) = 1

where k 6= i, j and zero for all remaining cases.

11.8. Example: sp(n) (n = 2l). This is a Lie subalgebra of gl(n) which consists
of all matrices T satisfying TA+ AT t = 0 where

A =

 0 | Il
−− − −−
−Il | 0


and Il stands for the identity l × l matrix.

The matrices in sp(n) are of the form

Tx,y,z :=

 x | y
−− − −−
z | −xt


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where x, y, x are l × l matrices and y, z are symmetric: yt = y, zt = z. We have
a natural embedding gl(l) ⊂ sp(2l) (x 7→ Tx,0,0).

Let h be the set of diagonal matrices

h := {
l∑

i=1

ai(Ei,i − El+i,l+i)}

(it corresponds to h′ in the previous example). Retain notation for the dual basis.
Obviously this is a commutative Lie subalgebra. To check that h is a maxi-

mal toral subalgebra, let us show that it consists of ad-semisimple elements and
coincides with the own centralizer (so it is a maximal commutative subalgebra).

Indeed, if x = Ei,j, y = z = 0 then Tx,0,0 has weight εi− εj (in this example i, j
are assumed to be distinct integeres from 1 to l).

If x = 0, y = Ei,i then T0,y,0 = Ei,l+i and has weight 2εi.
Similarly, if x = 0, z = Ei,i then T0,0,z = El+i,i and has weight −2εi.
If x = 0, y = Ei,j + Ej,i then T0,y,0 has weight εi + εj.
If x = 0, z = Ei,j + Ej,i then T0,0,z has weight −(εi + εj).
Thus h is a maximal toral subalgebra and

∆ := {εi − εj;±(εi + εj);±2εi}.
We have the following sl(2)-triples. The sl(2) triple corresponing to (εi − εj)

comes from gl(l) ⊂ sp(2l) and takes form

Ei,j − El+j,l+i, hεi−εj := (Ei,i − Ej,j)− (El+i,l+i − El+j,l+j), Ej,i − El+i,l+j.
The sl(2) triple corresponing to 2εi is

Ei,l+i, hεi+εj := Ei,i − El+i,l+i, El+i,i
Finally, the sl(2) triple corresponing to (εi + εj) is

Ei,l+j + Ej,l+i, hεi+εj := (Ei,i + Ej,j)− (El+i,l+i + El+j,l+j), El+j,i + El+i,j.

Examples of strings:

2ε2 − string : ε1 − ε2, ε1 + ε2;

(ε1 − ε2)− string : 2ε2, ε1 + ε2, 2ε1;

(ε1 + ε2)− string : −2ε2, ε1 − ε2, 2ε1.
The numbers < α, β >= α(hβ):

< ε1 − ε2, 2ε2 >= −1, < ε1 + ε2, 2ε2 >= 1

< 2ε2, ε1 − ε2 >= −2, < 2ε2, ε1 + ε2 >= 2
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