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Abstract

Let t(C) be the number of tangent pairs among a set C of n Jordan regions in the
plane. Pach, Suk, and Treml [6] showed that if C consists of convex bodies and its
intersection graph is bipartite then t(C) ≤ 4n−Θ(1), and, moreover, there are such sets
that admit at least 3n−Θ(

√
n) tangencies. We close this gap and generalize their result

by proving that the correct bound is 3n−Θ(1), even when the intersection graph of C is
only assumed to be triangle-free.

1 Introduction

Erdős’s famous unit distance problem [3, 5] asks for the maximum number of pairs of points
that are at unit distance from each other among n distinct points in the plane. This is
equivalent to asking for the maximum number of tangency points among n distinct unit
disks in the plane.

Let C be a family of Jordan regions in the plane. We say that two regions are tangent if
they intersect at a single point, and denote by t(C) the number of tangent pairs in C. It is
easy to see that n (convex) regions might determine Θ

(
n2
)

tangency points: e.g., there are
n2 tangency points (tangencies) between the 2n regions consisting of the n sides of a convex
n-gon and a set of n convex n-gons each of which has a vertex on each of the sides of the first
polygon. However, more restricted families of regions might determine less tangencies. One
example are unit disks (Erdős’s unit distance problem): they are are known to admit at most
O
(
n4/3

)
tangencies [7], and it is conjectured that the correct bound is Erdős’s lower bound

of Ω
(
ne

c logn
log logn

)
[5] (see also [3] for the history of this problem and additional references).

Another example are regions such that the boundary curves of every pair of them intersect
exactly once or twice and no three boundary curves intersect at a point. Such regions admit
only O(n) tangencies [1, 2].

For a set of regions C denote by I(C) the intersection graph of C. That is, the graph
whose vertex set is C and whose edge set consists of all the intersecting pairs. Ben-Dan and
Pinchasi [4] observed that if I(C) is bipartite then t(C) = O

(
n3/2 log n

)
and suggested that

the correct bound is O(n). Pach, Suk, and Treml [6] proved this conjecture for the case
of convex regions, and found almost matching lower and upper bounds for the maximum
number of tangencies.

Theorem 1 ([6]). Let C be a set of n convex bodies in the plane. If I(C) is bipartite, then
t(C) ≤ 4n−Θ(1). Moreover, for every n there is set C of n convex bodies in the plane such
that I(C) is bipartite and t(C) ≥ 3n−Θ(

√
n).

They also suggested the following conjecture.
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Conjecture 2 ([6]). For every fixed integer k > 2, if C is a set of n convex bodies in the
plane such that I(C) is Kk-free, then t(C) ≤ ckn, for some constant ck that depends only on
k.

In this note we close the gap in Theorem 1 and prove Conjecture 2 for k = 3.

Theorem 3. Let C be a set of n convex bodies in the plane. If I(C) is triangle-free, then
t(C) ≤ 3n−Θ(1). Moreover, for every n there is set C of n convex bodies in the plane such
that I(C) is bipartite and t(C) ≥ 3n−Θ(1).

2 Proof of Theorem 3

Most of the proof is devoted to the upper bound. For the lower bound see Proposition 2.13.
Let C be a set of n ≥ 4 convex bodies in the plane. We prove by induction on n that if

I(C) is triangle-free, then t(C) ≤ 3n − 6. The first steps of the proof follow the proof of [6,
Theorem 7]. Since t(C) ≤

(
n
2

)
, for n = 4 there are at most

(
4
2

)
= 6 ≤ 3n − 6 tangencies.

Suppose now that n ≥ 5 and that the theorem holds for every C′ as above, with 4 ≤ |C′| < n.
Let C be a set of n convex bodies in the plane, such that I(C) is triangle-free, that is, C
does not contain three pairwise intersecting bodies. We may assume that every body in C
is tangent to at least 4 other bodies, for otherwise we can conclude by induction. We begin
by replacing every convex body C ∈ C by a convex polygon whose vertices are the tangency
points along the boundary of C. Henceforth, C denotes the set of convex polygons.

Proposition 2.1. There are no two polygons P,Q ∈ C such that a vertex of P is inside Q.

Proof. Suppose there is such a vertex v. Then P touches another polygon R 6= P,Q at v.
Therefore, P,Q,R are pairwise intersecting. 2

Denote by T the set of tangency points, and let m = |T |. Next, we define a planar graph
G = (V,E) by placing a vertex at every point in T and at every intersection point between
sides of two polygons. Note that this graph is 4-regular. Denote by F the set of faces of G,
and by |f | the size of a face f ∈ F . A k-face is a face of size k. We write f ⊆ P when a
face f is contained in a polygon P . Note that each face f ∈ F is contained in exactly 0, 1,
or 2 polygons, since I(C) is triangle-free. Denote by Fi the set of faces that are contained in
exactly i polygons, for i = 0, 1, 2. We proceed with a few observations on G, most of them
already appear in [6].

Proposition 2.2. Let v be a vertex of a face f ∈ F1. If v /∈ T then one of its neighbors in
f is also a crossing point.

Proof. Suppose that v /∈ T is a vertex of f ∈ F1 and let P ∈ C be the polygon that contains
f . Then v is the intersection point of a side of P and a side of another polygon Q. This side
must intersect P at another point u, since by Proposition 2.1, P does not contain a vertex
of Q. The segment vu cannot be crossed by a side of another polygon, since there are no
three pairwise intersecting polygons. Therefore, uv is an edge of f , and u /∈ T is a neighbor
of v in f . 2

Proposition 2.3. If f ∈ F0 ∪F1 is a 3-face, then f ∈ F1 and f has exactly one vertex from
T .

Proof. The three edges of f must be contained in sides of two polygons. Indeed, if all of them
are contained in sides of one polygon, then this polygon is a triangle, however, we assumed
that any polygon has at least 4 vertices. Otherwise, if each edge of f is contained in a side
of a different polygon, then we have three pairwise intersecting polygons.
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Figure 1: F (t) = (3, 3, 4, 5) yields three pairwise intersecting polygons.

Therefore, f has two edges that are contained in sides of the same polygon, hence they
intersect at vertex of this polygon and f ∈ F1. The third edge of f must belong to a side of
another polygon, thus, the remaining vertices of f are crossing points. 2

Every tangency point t ∈ T is adjacent to two faces from F1 and to two faces from F0.

Define F (t)
def
= (|f1|, |f2|, |f3|, |f4|), where the faces fi, 1 ≤ i ≤ 4, are the four faces adjacent

to t, such that f1, f2 ∈ F1, |f1| ≤ |f2|, and f3, f4 ∈ F0, |f3| ≤ |f4|. We may assume that
all the faces adjacent to a tangency point are distinct, for otherwise G has a cut vertex and
we can conclude by induction. Call a vertex bad if it is adjacent to at least one 3-face, and
double bad if it is adjacent to two 3-faces. The next observation follows from Proposition 2.3.

Observation 2.4. If t ∈ T is a bad vertex, then in each of the two faces from F0 that are
adjacent to t, at least one neighbor of t is a crossing point. If t is double bad, then all of its
neighbors are crossing points.

Proposition 2.5. If t ∈ T is a double bad vertex, then F (t) ∈ {(3, 3, 4,≥ 6), (3, 3,≥ 5,≥ 5)}.

Proof. Let F (t) = (|f1|, |f2|, |f3|, |f4|), such that |f1| = |f2| = 3. It follows from Proposi-
tion 2.3 that |f3| ≥ 4. Since |f3| ≤ |f4| then clearly if |f3| ≥ 5 then |f4| ≥ 5. Suppose
that |f3| = 4. For i = 1, 2, let ei be the opposite edge to t in fi, and let si be the side of
the polygon Pi that contains ei. Since |f3| = 4, the vertex opposite to t in f3 must be an
intersection point of s1 and s2. Clearly s1 and s2 intersect once, so |f4| ≥ 5. However, if
|f4| = 5 then there must be a side of a polygon P 6= P1, P2 that intersects s1 and s2, hence
we have three pairwise intersecting polygons (see Figure 1). Therefore, |f4| ≥ 6 in this case.
2

Proposition 2.6. Any face f ∈ F1 has at most |f | − 2 vertices t ∈ T on its boundary such
that F (t) = (3, |f |, 4, 4).

Proof. Let f be a face in F1, and suppose there are two neighboring vertices on its boundary
u, v such that F (u) = F (v) = (3, |f |, 4, 4). Then there is one polygon side that supports the
3-faces adjacent to u or v, and the 4-faces from F0 that are adjacent to u or v (see Figure 2).
Therefore, if f has |f | (3, |f |, 4, 4)-vertices on its boundary, then there is a polygon side that
surrounds f . If f has exactly |f | − 1 such vertices, then the remaining vertex must be a
concave vertex of a polygon (see Figure 2). 2

We proceed by assigning every face f ∈ F a weight w(f) = |f | − 4. Let W be the total
weight we assigned, and observe that by Euler’s polyhedral formula we have:

W =
∑
f∈F

(|f | − 4) =
∑
f∈F

(|f | − 4) +
∑
v∈V

(deg(v)− 4) = 4(|E| − |F | − |V |) = −8. (1)

Proposition 2.7. For every polygon P ∈ C it holds that w(P )
def
=
∑

f⊆P w(f) = |P | − 4.
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Figure 2: If f has |f | − 1 (3, |f |, 4, 4)-vertices on its boundary, then the remaining vertex is
concave.

Proof. Since there are no three pairwise intersecting polygons, the interior of P is divided
into faces by disjoint segments connecting pairs of interior points on the sides of P . Assume
that we add these segments one by one, while keeping track of w(P ). Every new segment
we add increases the number of faces by one (thus, contributing −4 to w(P )), and increases
by 4 the number of sides of faces in P . Therefore, w(P ) maintains its initial value, which is
|P | − 4. 2

Every tangency point is a vertex of exactly two polygons. Therefore,∑
P∈C

(|P | − 4) = 2m− 4n. (2)

Combining (1) and (2) we get:

− 8 = W =
∑
f∈F1

w(f) +
∑
f∈F2

w(f) +
∑
f∈F0

w(f)

=
1

2

∑
P∈C

w(P ) +
1

2

∑
f∈F1

w(f) +
∑
f∈F0

w(f)

= m− 2n +
1

2

∑
f∈F1

w(f) +
∑
f∈F0

w(f). (3)

Pach et al. [6] showed that if I(C) is bipartite then

1

2

∑
f∈F1

w(f) +
∑
f∈F0

w(f) ≥ −m/2, (4)

which, when plugged into (3), gives m ≤ 4n − 16. We use the discharging method to refine
their analysis and replace the right hand side of (4) by −m/3, and obtain m ≤ 3n − 12 ≤
3n− 6. Namely, we prove:

Lemma 2.8. 2
3m +

∑
f∈F1

(|f | − 4) + 2
∑

f∈F0
(|f | − 4) ≥ 0.

Proof. We assign initial charges as follows.

• For every face f ∈ F1 we set ch0(f) = w(f) = |f | − 4.

• For every face f ∈ F0 we set ch0(f) = 2w(f) = 2|f | − 8.

• For every tangency point t ∈ T we set ch0(t) = 2
3 .
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It remains to show that the total initial charge is non-negative. We do that by re-
distributing the charges (discharging) in several rounds, such that the total charge remains
the same, and eventually, every element has a non-negative final charge. We denote by chi(x)
the charge of an element x after the ith discharging round. Note that the only elements with
a negative initial charge are 3-faces, whose charge is −1. A vertex is good if it has a positive
charge.

Round 1: A face f ∈ F0 such that |f | ∈ {6, 7} sends 4
3 units of charge (henceforth, “units”)

to each double bad vertex on its boundary, and distributes the rest of its charge evenly to
every other tangency point on its boundary. Any other face f ′ ∈ F0 ∪ F1 sends ch0(f

′)/k
units to each of the k tangency points on its boundary.

Proposition 2.9. Let f ∈ F0 be a face and let t be a tangency point on its boundary. Then
the following holds in Round 1:

(i) if t is double bad and |f | = 5, then f sends at least 2
3 units to t;

(ii) if t is double bad and |f | > 5, then f sends at least 4
3 units to t;

(iii) if |f | = 5, then f sends at least 2
5 units to t, and at least 2

4 units if t is also adjacent
to a 3-face;

(iv) if |f | ≥ 6, then f sends at least 2
3 units to t.

Proof. The claims follow from the definition of Round 1, and from Observation 2.4. 2

Proposition 2.10. After Round 1 the following holds:

(i) every face in F0 ∪ F1 has a non-negative charge;

(ii) for every vertex t ∈ T if ch1(t) < 0, then ch1(t) = −1
3 or ch1(t) = − 2

15 . In the first
case F (t) = (3, 4, 4, 4), while in the second case F (t) = (3, 5, 4, 4).

Proof. Observe that by Proposition 2.3 every 3-face has one vertex from T to which it sends
its negative charge and ends up with charge zero. Every face f has at most b|f |/2c double
bad vertices on its boundary, therefore 6- and 7-faces from F0 remain with a non-negative
charge. Any other face clearly remains with a non-negative charge, therefore (i) holds.

For the second claim, note that if ch1(t) < 0 then t must be a bad vertex. If t is double
bad, then it follows from Proposition 2.5 that F (t) = (3, 3, 4,≥ 6) or F (t) = (3, 3,≥ 5,≥ 5).
By Proposition 2.9, in the first case ch1(t) ≥ 2

3 + 2 · (−1) + 4
3 ≥ 0, while in the second case

ch1(t) ≥ 2
3 + 2 · (−1) + 2 · 23 ≥ 0.

Finally, suppose that t is adjacent to exactly one 3-face. If t is adjacent to a face f such
that f is a 6-face or |f | = 5 and f ∈ F0, then t receives from f at least 1

3 units and ends
up with a non-negative charge. The other cases are listed (note that by Proposition 2.2, a
5-face in F1 sends either 1

5 or at least 1
3 units to each tangency point on its boundary). 2

Round 2: Let t ∈ T be a tangency point with ch1(t) < 0. Then t is adjacent to a 3-face and
therefore has at most two good neighbors. If t has exactly one good neighbor or ch1(t) > −2

3 ,
then t asks for −ch1(t) units from one of its good neighbors. If t has two good neighbors
and ch1(t) = −2

3 , then t asks for 1
6 units from each of its good neighbors. If a good vertex

q ∈ T is being asked for ε units by a vertex t, then q accepts t’s request and send it ε units
if and only if ε ≤ ch1(q)/j, where j is the number of requests q got.

Round 3: Repeat Round 2 with respect to ch2(·).

Round 4: Suppose that F (t) = (3, 5, 4, 4) and let f be the 5-face that is adjacent to t. If
all the vertices of f are from T and ch3(t) = − 2

15 , then t asks for 1
15 units from each of the
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Figure 3: Round 4: if F (t) = (3, 5, 4, 4) and ch3(t) = − 2
15 , then t ask for 1

15 unit from each
of its non-neighbors in f .

two vertices of f that are not its neighbors (see Figure 2). They accept t’s requests if they
can afford it (like in Round 2).

Clearly, for any t ∈ T and i ≥ 1, if chi(t) ≥ 0 then chi+1(t) ≥ 0. Thus, by Proposition 2.10
it remains to verify that ch4(t) ≥ 0, for t ∈ T such that F (t) ∈ {(3, 4, 4, 4), (3, 5, 4, 4)}.

Proposition 2.11. If F (t) = (3, 4, 4, 4) then ch3(t) ≥ 0.

Proof. Let f1 be the 4-face from F1 that is adjacent to t, let p and q be the vertices adjacent
to t in f1, and let r be the opposite vertex to t in f1. If neither p nor q are in T , then
the local neighborhood of t looks like Figure 4(a). If r is a crossing point, then we have
three pairwise intersecting polygons. Otherwise, if r ∈ T , then it is a concave vertex of a
polygon. Therefore, we may proceed by considering the case in which p, q ∈ T and the case
that exactly one of p and q is in T . In the latter case we assume, w.l.o.g., that p ∈ T and
q /∈ T .

Case 1: p ∈ T and q /∈ T . Since p is the only good neighbor of t, t asks 1
3 units from

p in Round 2 (and again in the next round if its first request is denied). Note that in this
case r /∈ T by Proposition 2.2, and therefore t is the only bad neighbor of p. Let f2 be the
other face from F1 that is adjacent to p. We consider four subcases, according to whether
|f2| = 3, 4, 5 or |f2| ≥ 6.

Subcase 1.a: |f2| = 3. Refer to Figure 4(b) and consider |f3|. If |f3| = 4 then the segments
s1 and s2 must intersect twice. If |f3| = 5 then there are three pairwise intersecting polygons.
Therefore |f3| ≥ 6 and (by Proposition 2.9) it sends at least 2

3 units to p in Round 1. Thus,
ch1(p) ≥ 2

3 − 1 + 2
3 = 1

3 . Since t is the only bad neighbor of p, p accepts t’s request in
Round 2, and ch2(t) = 0.

Subcase 1.b: |f2| = 4. Since F (p) = (4, 4, 4,≥ 4), we have ch1(p) ≥ 2
3 . If p has at most

one other neighbor but t that asks for charge in Round 2, then p can accept t’s request in
this round and ch2(t) = 0. Otherwise, p has exactly three neighbors with a negative charge
after Round 1, refer to Figure 4(c). Since both a and b are adjacent to f2, they must each be
adjacent to a 3-face, and to two 4-faces from F0. That is, F (a) = F (b) = (3, 4, 4, 4). Observe
that F (c) 6= (3, 4, 4, 4), by Proposition 2.6. Therefore, ch1(c) ≥ 2

3 , and in Round 2 each of a
and b asks (and receives) only 1

6 units from each of p and c. Thus, ch2(a), ch2(b) = 0 and in
the next round p can accept t’s request.
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(a) if p, q /∈ T then r is a concave ver-
tex or there are three pairwise intersect-
ing polygons.

(b) Subcase 1.a. If |f3| = 4 then s1
and s2 intersect twice. If |f3| = 5
then there are three pairwise inter-
secting polygons.

(c) Subcase 1.b. p has three bad neigh-
bors.

Figure 4: Case 1 in the proof of Proposition 2.11.

Subcase 1.c: |f2| = 5. In this case ch1(p) ≥ 13
15 . If p has at most one other neighbor

but t that requests charge in Round 2, then p can accept t’s request in this round and
ch2(t) = 0. Otherwise, p has exactly three bad neighbors asking for charge in Round 2.
Denote by a and b the other two, and observe that both of them are adjacent to f2. Therefore,
F (a) = F (b) = (3, 5, 4, 4), and ch1(a) = ch1(b) = − 2

15 . If follows that in Round 2 p sends at
most 2

15 units to each of them and 1
3 units to t in the next round.

Subcase 1.d: |f2| ≥ 6. In this case t is the only neighbor of p with a negative charge at
the beginning of Round 2, and so p can accept t’s request.

Case 2: p ∈ T and q ∈ T . Note that in this case r ∈ T as well. The first subcase that we
consider is when ch1(p) < 0. By symmetry the same arguments apply when ch1(q) < 0, so
the second subcase we need to consider is ch1(p), ch1(q) ≥ 0.

Subcase 2.a: ch1(p) < 0, that is, F (p) = (3, 4, 4, 4). Since ch1(p) < 0, in Round 2 (and
perhaps also in Round 3) t might only ask 1

3 units from q (if q has a positive charge). Observe
that ch1(q), ch1(r) ≥ 0. Indeed, if ch1(q) < 0, then F (q) = (3, 4, 4, 4). But then f1 has three
(3, 4, 4, 4)-vertices, which contradicts Proposition 2.6. For the same reason ch1(r) ≥ 0.

Observe that F (q) 6= (3, 4, 4, 5) for otherwise there must be three pairwise intersecting
polygons (refer to Figure 5(a)). If q is not adjacent to a 3-face or F (q) = (3, 4, 4, > 6) then
ch1(q) ≥ 2

3 . Therefore, if ch1(q) < 2
3 then F (q) = (3, 4, 4, 6), in which case ch1(q) ≥ 1

3 . We
now consider both possibilities.
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(a) F (q) = (3, 4, 4,≥ 6), since F (q) =
(3, 4, 4, 4) contradicts Proposition 2.6 and
F (q) = (3, 4, 4, 5) implies three pairwise inter-
secting polygons.

(b) F (q) = (4, 4, 4, 4) and |f4| = 4.

Figure 5: Subcase 2.a: p, q ∈ T , F (t) = F (p) = (3, 4, 4, 4).

Subcase 2.a.i: F (q) = (3, 4, 4, 6). Refer to Figure 5(a). Since q is adjacent to a 3-face,
its only neighbors from T are t and r. Because ch1(r) ≥ 0, t in the only neighbor of q that
requests charge at Round 2, so q accepts t’s request and ch2(t) = 0.

Subcase 2.a.ii: ch1(q) ≥ 2
3 . If q has at most two neighbors asking charge in Round 2,

then q can send 1
3 units to t in Round 2. Otherwise, let a and b be the other two neighbors

of q that ask charge in Round 2, and let f4 be the face that is adjacent to a,b, and q (see
Figure 5(b)). Since ch1(a), ch1(b) < 0 either |f4| = 4 or |f4| = 5. We consider these two
possibilities.

• Suppose that |f4| = 4 and let c denote its remaining vertex. Then c ∈ T and observe
that ch1(c) > 0. Indeed, if ch1(c) < 0 then F (c) = (3, 4, 4, 4), which contradicts
Proposition 2.6. Therefore, each of a and b ask only 1

6 units from q at Round 2, and q
is able to accept t’s request at the next round.

• Suppose that |f4| = 5. In this case we have ch1(q) ≥ 13
15 and ch1(a), ch1(b) ≥ − 2

15 .
Therefore q accepts t’s request in Round 3.

Subcase 2.b: ch1(p), ch1(q) ≥ 0. Observe that in this case ch1(p), ch1(q) ≥ 1
6 . Indeed, if

p is not adjacent to a 3-face then ch1(p) ≥ 2
3 . Otherwise, F (p) = (3, 4, 4,≥ 5) and therefore

ch1(p) ≥ 2
3 − 1 + 2

4 = 1
6 . For the same reason ch1(q) ≥ 1

6 . Therefore, t asks in Round 2
for 1

6 units from each of p and q. Note that t’s requests are accepted, since, as we already
observed, if p is not adjacent to a 3-face, then ch1(p) ≥ 2

3 and, thus, it can accept t’s request
since it has at most four asking neighbors. Otherwise, ch1(p) ≥ 1

6 and t is the only bad
neighbor of p (since r is adjacent to a face from F0 of size at least 5). Therefore, both p and
q accept t’s request in Round 2.

This concludes the proof of Proposition 2.11. 2

Proposition 2.12. If F (t) = (3, 5, 4, 4) then ch4(t) ≥ 0.

Proof. Let f1 ∈ F1 be the 5-face adjacent to t. If f1 has at most three tangency points, then
each of them gets at least 1

3 units in Round 1, and so ch2(t) ≥ 0. It remains to consider the
case where all the vertices of f1 are from T , i.e., f1 is a polygon from C. (By Proposition 2.2
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Figure 6: F (t) = F (p) = F (q) = (3, 5, 4, 4).

f1 cannot have exactly one vertex which is a crossing point.) Let p and q be the neighbors
of t in f1. If at least one of them has a positive charge after Round 1, then t asks one of
them for 2

15 units in Round 2. The other case to consider is when ch1(p), ch1(q) < 0.

Case 1: ch1(p) > 0 or ch1(q) > 0. Assume, w.l.o.g., that ch1(p) > 0 and t asks p for
2
15 units in Round 2. If p is not adjacent to a 3-face, then ch1(p) ≥ 13

15 . In this case,
in Round 2 p accepts t’s request, since p may send at least 13

15/4 > 2
15 to each of its at

most four bad neighbors. Otherwise, since p receives 1
5 units from f1 in Round 1 and

ch1(p) > 0, it follows that p is adjacent to a face of size at least 5 from F0. That is,
F (p) = (3, 5, 4,≥ 5). By proposition 2.9 this face sends at least 2

4 units to p in Round 1,
therefore, ch1(p) ≥ 2

3 − 1 + 1
5 + 2

4 = 11
30 . Note that t is the only bad neighbor of p, thus, p

accepts t’s request in Round 2.

Case 2: ch1(p), ch1(q) < 0. Then by Proposition 2.10 F (p) = F (q) = (3, 5, 4, 4). Let
a, b ∈ T be the other vertices of f1 (see Figure 6). It follows from Proposition 2.6 that
F (a), F (b) 6= (3, 5, 4, 4), therefore, ch1(a), ch1(b) ≥ 0. Moreover, we claim that ch2(a) ≥ k

15 ,
where k ∈ {1, 2} is the number of 5-faces from F1 that are adjacent to a. Indeed, if F (a) =
(3, 5, 4,≥ 5) then ch1(a) ≥ 11

30 , and only p requests charge ( 2
15 units) from a in Round 2.

Hence, ch2(a) ≥ 7
30 > 1

15 . Otherwise, if a is not adjacent to a 3-face, then ch1(a) ≥ 2
3 + k

5

and ch2(a) ≥ 2
3 + k

5 − 2 · 13 −
2
15 = 3k−2

15 ≥
k
15 .

Similarly, we have that ch2(b) ≥ l
15 , where l ∈ {1, 2} is the number of 5-faces from F1

that are adjacent to b. It follows that if ch2(t) = − 2
15 then in Round 4 a and b can each send

1
15 units to t and so ch4(t) = 0. 2

Lemma 2.8 now follows from Propositions 2.11 and 2.12. 2

The upper bound in Theorem 3 follows from (3) and Lemma 2.8.

Proposition 2.13. For any n there is a set C of n convex regions in the plane, such that
I(C) is bipartite and t(C) ≥ 3n−Θ(1).

Proof. We use the same construction of Pach et al. [6] (see Figure 7) which yields a set C
of n convex hexagons with t(C) ≥ 3n−Θ(

√
n). However, we observe that one can take this

double hexagonal grid with a constant number of rows, ‘wrap’ it around a cylinder, and then
project it back to the plane. Observe that in such a construction all but a constant number
of hexagons touch exactly 6 other hexagons. 2
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Figure 7: A set of n convex hexagons with a bipartite intersection graph and 3n − Θ(1)
tangencies. This double grid is ‘wrapped’ around a cylinder such that the pairs of black and
hollow points coincide, then projected back to the plane.
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[5] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.

[6] J. Pach, A. Suk, and M. Treml, Tangencies between families of disjoint regions in the
plane, Proc. 26th ACM Symp. on Computational Geometry (SoCG 2010), Snowbird,
Utah, USA , June 2010, 423–428.
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