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Abstract
How many ways can a rectangle be partitioned into
smaller ones? We study two variants of this problem:
when the partitions are constrained to lie on n given
points (no two of which are corectilinear), and when
there are no such constraints and all we require is that
the number of (non-intersecting) segments is n. In the
first case, when the order (permutation) of the points
conforms with a certain property, the number of par-
titions is the (n + 1)st Baxter number, B(n + 1); the
number of permutations conforming with the property
is the (n − 1)st Schröder number; and the number of
guillotine partitions is the nth Schröder number. In
the second case, it is known [22] that the number of
partitions and the number of guillotine partitions cor-
respond to the Baxter and Schröder numbers, respec-
tively. Our contribution is a bijection between permu-
tations and partitions. Our results provide interesting
and new geometric interpretations to both Baxter and
Schröder numbers and suggest insights regarding the in-
tricacies of the interrelations.

Keywords: Rectangular partitions, guillotine parti-
tions, Baxter permutations, Schröder numbers, quasi-
monotone permutations.

1 Introduction
Given a rectangle R, a Rectangular Partition (RP) is
a subdivision of R into rectangles by non-intersecting
axis-parallel segments. We investigate the number of
different rectangular partitions for two variants of the
problem: First, we consider the point-free variant,
where RP simply comprises n segments and two par-
titions are considered different if the relative ordering
of the segments is not the same. Second, we consider
point-constrained rectangular partitions, where we are
given a set P of n noncorectilinear points inside R and
every point in P must lie on (exactly) one segment of
RP.

The number of point-free rectangular partitions has
been studied elsewhere under a different name: Yao et
al. [21, 22] have shown that the number of mosaic floor-
plans containing n blocks is the number of Baxter per-
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mutations on n. They have provided two alternative
proofs of this fact: the first, by obtaining the same re-
cursive formula used by Chung et al. [4] in their analysis
of the number of Baxter permutations; and the second,
by showing a bijection between mosaic floorplans and
twin binary trees, whose number is also known [7] to be
the number of Baxter permutations. Our contribution is
a simple and direct bijection between mosaic floorplans
(point-free partitions in our terminology) and Baxter
permutations.

For point-constrained rectangular partitions it
turns out that the number of rectangular partitions, de-
noted by #RP c, depends on the relative order of the
points in P . We represent this order by a permutation π
on n (reflecting the order of y-coordinates with respect
to the x-coordinates), and show that as long as π avoids
forbidden subsequences with the same comparisons as
2413 and 3142, #RP c is the (n + 1)st Baxter num-
ber. Inspired by the way a permutation of this class
can be recursively constructed, we name them quasi-
monotone permutations; we observe that their number
is known to be the (n− 1)st Schröder number. We also
show that when only guillotine partitions are allowed,
then no matter what the permutation of the points is,
the number of different rectangular partitions is the nth
Schröder number.

Point-constrained partitions are related to the op-
timization problem of finding the minimum edge-length
rectangular partition of a rectangle with n noncorecti-
linear points inside it (known as RGNLP). It is shown
in [2] (as we have observed independently) that an op-
timal solution of an instance of RGNLP must be com-
posed of exactly n non-intersecting segments, yielding
the relation to point-constrained rectangular partitions.

The rest of this paper is organized as follows.
In Section 2 we briefly describe some related work
on rectangular partitions. In Section 3 we give a
short background on Baxter and Schröder numbers.
The bijection between point-free partitions and Baxter
permutations is described in Section 4. In Section 5
we consider the number of different point-constrained
rectangular partitions: we start by describing a method
to constructively enumerate them; then we discuss
guillotine partitions; next we show that for the identity
permutation of n points #RP c is the (n + 1)st Baxter
number, and finally we generalize the analysis from
identity to quasi-monotone permutations and observe



that the number of such permutations is the (n − 1)st
Schröder number. In Section 6 we discuss the relation
between point-free and point-constrained partitions.
We conclude in Section 7.

2 Related Work
Sakanushi and Kajitani [17] were the first to consider
the number of distinct (mosaic) floorplans. They found
a recursive formula for this number, but did not recog-
nized it to be the same recursive formula suggested by
Chung et al. [4] in their analysis of the number of Baxter
permutations. Yao et al. [21] were the first to show that
the number of distinct floorplans containing n blocks is
the number of Baxter permutations on n. They have
derived the same recursive formula, however, by using
a different analysis. Moreover, in the journal version of
their work [22] they have provided an alternative proof:
a bijection between floorplans and twin binary trees.
The number of twin binary trees is known [7] to be the
number of Baxter permutations. Yao et al. have also
considered slicing floorplans (guillotine partitions in our
terminology) and proved that their number is the nth
Schröder number.

To the best of our knowledge, enumerative aspects
of point-constrained rectangular partitions (as defined
above) have never been studied before. However,
there is a considerable amount of work that concerns
optimization problems related to rectangular partitions,
the most general of which is: Partition a rectilinear (i.e.,
axis-parallel) polygon which encloses a set of “holes”
(non-intersecting rectilinear polygons) into rectangles
in a way that minimizes the total length of the edges
participating in the partition. (Other criteria, e.g.,
obtaining the minimum number of rectangles, have also
been considered.) One application of this problem is in
the area of integrated-circuit design, e.g., in MIT’s “PI”
system [16]: Once the electronic modules have been
placed on the chip, the routing area is partitioned into
rectangles (channels), in order to simplify signal wires
routing. This stage is known as “channel definition,”
and the minimum edge-length criterion was chosen since
it results in more “natural-looking” rectangles.

The partitioning problem where the holes are degen-
erate, i.e., a hole is a point and the bounding rectilinear
polygon is a rectangle, is known as RGP (partitioning a
rectangle with possibly-corectilinear points). This prob-
lem has applications to stock (or die) cutting in the
presence of material defects. RGP, similarly to most
of the polygon partitioning problems mentioned above
(but unlike RGNLP), was shown to be NP-hard [13].
Over the years several approximation algorithms for
RGP were suggested (see, e.g., [6, 8, 9, 10, 12]), includ-
ing a polynomial-time approximation scheme [3, 14].
de Meneses and de Souza [5] suggested an integer pro-
gramming formulation of RGP, and used this formula-

tion and integer programming techniques to find exact
solutions for medium sized instances of RGP. In [2], Cal-
heiros, Lucena, and de Souza presented a reduced inte-
ger programming formulation for RGNLP instances.

3 Baxter and Schröder Numbers
3.1 Baxter numbers. The nth Baxter number is
the number of Baxter permutations on n. A Baxter
permutation on n can be defined as a permutation
π = (σ1, σ2, σ3, . . . , σn) that satisfies the following two
conditions:
For every 1 6 i < j < k < l 6 n:

1. If σi + 1 = σl and σj > σl then σk > σl; and
2. If σl + 1 = σi and σk > σi then σj > σi.

For example, for n = 4, (3,1,4,2) and (2,4,1,3) are the
only non-Baxter permutations. This class of permuta-
tions was introduced by Baxter [1] in the context of fixed
points of the composite of commuting functions. Chung
et al. [4] showed that the number of Baxter permuta-
tions on n is

(3.1) B(n) =
n−1∑
r=0

(
n+1

r

)(
n+1
r+1
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n+1
r+2

)
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Dulucq and Guibert [7] have shown one-to-
one correspondences between Baxter permuta-
tions, twin binary trees, and three non-intersecting
paths on a grid. The first Baxter numbers are
{0, 1, 2, 6, 22, 92, 422, 2074, . . .}.

3.2 Schröder numbers. The (large) Schröder num-
bers arise in several enumerative combinatorial prob-
lems. One example is the number of paths on a grid
from (0, 0) to (n, n), that stay below the line y = x + 1
and use only the steps (1, 0), (0, 1), and (1, 1). Other ex-
amples can be found in [19]. The first Schröder numbers
are {1, 2, 6, 22, 90, 394, 1806, . . .}.

4 Point-Free Partitions
A point-free rectangular partition of a rectangle R is
a partition of R into rectangles by non-intersecting
rectilinear segments. Throughout this section, unless
stated otherwise, the term ‘partitions’ refers to point-
free rectangular partitions, and n marks the number
of rectangles in a partition (it is easy to see that the
number of rectangles is the number of segments plus 1).
In order to count the number of different partitions
(into n rectangles), we must first define equivalence of
partitions. We follow the definition of Sakanushi et
al. [17]: A top-, left-, right-, or bottom-seg-rect relation
between a segment s and a rectangle r exists if s
supports r from the respective direction. Two partitions
are equivalent if there is a labeling of their rectangles
and segments such that they hold the same seg-rect
relations.
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Figure 1: Enumerating rectangles according to their
deletion order from the top-left corner.

Definition 4.1. A rectangle r1 is above a rectangle
r2 if: (1) There is a segment s such that there is a
bottom-seg-rect relation between r1 and s and a top-seg-
rect relation between r2 and s; or (2) there is a rectangle
r3 such that r3 is above r2 and r1 is above r3.

The relation left of is defined similarly.

4.1 A bijection between Baxter permutations
and point-free partitions. As we have mentioned in
the introduction, there is a bijection between point-free
partitions and twin binary trees [22], and a bijection
between twin binary trees and Baxter permutations [7].
Here we present a direct bijection between Baxter per-
mutations and point-free partitions. We first describe a
one-to-one mapping from point-free partitions to Bax-
ter permutations. Then we show a one-to-one mapping
in the opposite direction.

4.1.1 A one-to-one mapping from point-free
partitions to Baxter permutations. Given a par-
tition, we can delete its top-left rectangle by ‘sliding’
either the right edge of the rectangle to the left (see Fig-
ure 1(a)), or its bottom edge upwards (see Figure 1(b)).
This operation is called block deletion [11], and it could
be defined similarly for every corner of the bounding
rectangle. In Figure 1 the rectangles are enumerated
according to their deletion order from the top-left cor-
ner.
We define a mapping Ψ from partitions to permutations
in the following way:

1. Given a partition x we name its rectangles accord-
ing the order in which they are deleted from the
top-left corner.

2. Ψ(x) corresponds to the order in which the rectan-
gles are deleted from the bottom-left corner.

For example, the permutation that corresponds to
the partition of Figure 1 is 413652.

Observation 4.1. Rectangle r1 precedes rectangle r2

according to the top-left corner deletion order and r2

precedes r1 according to the bottom-left corner deletion
order iff r1 is above r2. Similarly, r1 precedes r2

according to both orders iff r1 is left of r2.

Observation 4.2. If rectangle r1 is next to rectangle
r2 according to one of the two orders, then there is a
segment that supports both r1 and r2.

Next, we prove that Ψ is indeed a one-to-one
mapping from partitions to Baxter permutations.

Lemma 4.1. Given a partition x with n rectangles,
Ψ(x) is a Baxter permutation on n.

Proof. Suppose Ψ(x) = σ1σ2 . . . σn is not a Baxter
permutation. Then there are four indices 1 6 i < j <
k < l 6 n such that either: (1) σk < σi + 1 = σl < σj ;
or (2) σj < σl + 1 = σi < σk. Assume the first case
holds, and choose w.l.o.g. j and k such that k = j + 1.
According to observations 4.1 and 4.2 rectangle σi is left
of rectangle σl, and some segment s1 supports both of
them. Similarly, rectangle σj is below rectangle σk, and
some segment s2 supports both of them. According to
Observation 4.1 rectangle σk is to the left of rectangle
σl and above rectangle σi. Similarly, rectangle σj is to
the right of rectangle σi and below rectangle σl. Thus,
s1 and s2 must intersect. The proof in the second case
is similar and is thus omitted.

Lemma 4.2. Given two partitions x1 and x2, if
Ψ(x1) = Ψ(x2) then x1 and x2 are equivalent.

Proof. By induction on the number of rectangles n.
Let x′1 (resp., x′2) be the partition we get by deleting
the top-left rectangle of x1 (resp., x2), and let s1

(resp., s2) be the segment we ‘slide’ in order to delete
the rectangle. Then s1 and s2 must have the same
orientation, otherwise the numbers 1 and 2 will have
different orders in Ψ(x1) and Ψ(x2). Every pair of
rectangles in x1 (resp., x2) hold the same relation
(above or left of) before and after the deletion, thus,
Ψ(x′1) = Ψ(x′2). It follows that x′1 = x′2 and since s1

and s2 have the same orientation, x1 = x2.

4.1.2 A one-to-one mapping from Baxter per-
mutations to point-free partitions. Algorithm
BP2PFP (see Figure 2) constructs a partition of n rect-
angles given a Baxter permutation on n, by inserting
rectangles from the top-right corner and setting their
boundaries according to the given permutation. See
Figure 3 for an example.

Lemma 4.3. There is a one-to-one mapping from Bax-
ter permutations on n elements to partitions containing
n rectangles.

Proof. Let π be a Baxter permutation on n, and let
x be the output of Algorithm BP2PFP when applied to
π. Clearly x is a valid partition containing n rectangles.
We will show that Ψ(x) = π. It is easy to see that during
the computation of Ψ(x), the rectangles are deleted



Input: A Baxter permutation π = σ1σ2 . . . σn

Output: A point-free partition
1: Draw a rectangle σ1.
2: Construct an n× n grid within σ1.
3: for i ← 2 to n do
4: if σi < σi−1 then
5: Slice the top-right rectangle by a horizontal

segment at the (i− 1)st level of the grid.
6: Name the newly-created rectangle σi.
7: while the rectangle to the left of σi has a label

greater than σi do
8: Extend rectangle σi to the left.
9: else

10: Slice the top-right rectangle by a vertical seg-
ment at the (i− 1)st level of the grid.

11: Name the newly-created rectangle σi.
12: while the rectangle below σi has a label smaller

than σi do
13: Extend rectangle σi downwards.

Figure 2: Algorithm BP2PFP

from the bottom-left corner of x in the same order they
were added to x in the course of Algorithm BP2PFP.
Therefore, it is sufficient to prove that the order in which
the rectangles of x are deleted from the top-left corner is
1, 2, . . . , n. It is clear that the rectangle labeled 1 is the
first to be removed. Assume that for every 1 6 i 6 k the
rectangle labeled i is the ith rectangle which is removed
from the top-left corner. We show next that the next
rectangle to be deleted is the rectangle labeled k + 1.
Suppose for contradiction that k + 1 precedes k in π:
π = . . . , (k + 1), A, B, k, . . . , where A is a (possibly
empty) sequence of integers greater than k + 1 and
B is a (possibly empty) sequence of integers smaller
than k (there are no other options since π is a Baxter
permutation). Figure 4(a) shows the partition after k
was added. According to the induction hypothesis all
the rectangles in B are removed before rectangle k is
removed, so when k is removed the segment supporting
its left edge also supports the left edge of k + 1. The
bottom-right corner of k is either a ‘⊥’-junction or a ‘a’-
junction. In the second case k + 1 is the next rectangle
to be deleted. A ‘⊥’-junction can only be formed when
the first rectangle greater than k and to the right of
it in π (denote it by c) is smaller than the rectangle
below k and sharing the same segment as a right edge
(denote this rectangle by a). Figures 4(b,c) describe
the situation before and after c is added. Note that
a is the last integer in A and k < c < a. If A is
empty then a = k + 1; thus, there cannot be such a
rectangle c. Otherwise, there must be an integer i such
that k +1 6 i 6 c−1, i is to the left of a in π, and i+1
is either c or to the right of c. Therefore i, a, k, i + 1 is
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Figure 3: Algorithm BP2PFP applied to 413652

k + 1

B

A

k

k + 1

B
k

a
k + 1

B

a

k c

(a) (b) (c)

Figure 4: Illustrations for the proof of Lemma 4.3

a forbidden subsequence in π. The proof for the second
case (k precedes k+1 in π) is similar and is thus omitted.

5 Point-Constrained Partitions
Given a rectangle R containing a set P of n noncorec-
tilinear points, a point-constrained rectangular partition
of R is a partition of R into rectangles, by n rectilinear
segments, such that every point in P lies on exactly one
segment (see Figure 5 for examples). Throughout this
section, unless stated otherwise, the term ‘partitions’
refers to point-constrained rectangular partitions. In
the first part of this section we present a mechanism for
exploring the space of partitions. Next, we define guil-
lotine partitions and show that the number of guillotine
partitions is the nth Schröder number. Then, we argue
that when both guillotine and nonguillotine partitions
are considered #RP c depends only on the permutation
of the points in P , and show that for the identity permu-

(a) (R, P ) (b) A guillotine (c) A nonguillo-
partition tine partition

Figure 5: Point-constrained rectangular partitions
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Figure 6: Applying the Flip and Rotate operators

tation #RP c is the (n + 1)st Baxter number. Finally,
we define a new class of permutations, so-called quasi-
monotone permutations, and extend the previous result
for this type of permutations.

5.1 Generating point-constrained partitions.
In this section we define two operators that enable us
to explore the space of all the partitions. Given a par-
tition x we can get new partitions by applying each of
the following operators on x.

Definition 5.1. Let p be a point in P , and suppose
the segment s that passes through p is horizontal. The
operator Flip(x, p) changes the orientation of s to
vertical, while extending the segments supported by s
(that is, one of whose endpoints is contained by s) until
each one of these segments reaches a horizontal segment
or the bounding rectangle. Flipping a vertical segment
is defined in a similar way.

Definition 5.2. Suppose t is an endpoint of a segment
s1, that lies on another segment s2. The operator
Rotate(x, t) extends s1 beyond t until it reaches another
segment (or the boundary), and shrinks s2 to t (deleting
the portion of s2 that does not contain the point of P )
while extending the segments that were supported by the
shrunk part (in order to maintain a valid partition).

See Figure 6 for examples of the Flip and Rotate
operators.

Given a rectangle R which encloses a set of points
P , we denote by G(R,P ) = (V, E) the directed graph
of partitions of (R, P ), where V ={x : x is a partition of
(R,P )} and E={(x1, x2) : x2 is reachable from x1 by a
single Flip or Rotate operation}.

Lemma 5.1. G(R, P ) is connected.

Proof. Let x1 and x2 be two distinct partitions, and
let xv be the partition in which all the segments are
vertical. The partition xv can be reached from both x1

and x2 by a series of at most n Flip operations, where
n is the size of P . Note that every Flip operation is
reversible by a single Flip operation on the same point,
and a series of Rotate operations. Thus, there is a path
from x1 to x2 (through xv) in G(R, P ).

It is thus possible to generate and iterate over all
the partitions of (R,P ) by traversing G(R, P ) by, say,
a standard depth- (or breadth-) first search.

5.2 Guillotine partitions.

Definition 5.3. In a guillotine partition the segments
can be ordered so that when the partition is executed
according to that order, the current segment always
partitions a rectangle into two rectangles.

See Figure 5 for examples of guillotine and non-
guillotine partitions. In this section we consider the
number of guillotine partitions. It is easy to see that
this number depends only on the number of points in
P . Let GP(n) be the number of guillotine partitions
when |P | = n. We derive a recursive formula for GP(n)
by assuming that the leftmost vertical segment that cuts
R goes through the kth point (left to right) in P , then
summing up over all possible values of k, and finally by
multiplying by 2 (for the symmetric partitions in which
R is cut by at least one horizontal segment):

GP(n) = 2
(

GP(n− 1) +(5.2)

n∑

k=2

(1
2
GP(k − 1)

)
GP(n− k)

)
,

where GP(0) = 1. This formula is equivalent to a
recursive formula of the nth Schröder number:

(5.3) S(n) = S(n−1)+
n−1∑

k=0

S(k)S(n−1−k), S(0) = 1

Thus we have:

Theorem 5.1. Given a rectangle R which encloses a
set P of n noncorectilinear points, the number of guil-
lotine partitions of (R,P ) is the nth Schröder number.

5.3 Partitions and permutations.

Definition 5.4. Given a set P of noncorectilinear
points, we refer to the relative order of the points in
P as the permutation of P and denote it by π(P ).

Representing the relative order of the points by a
permutation π = (σ1, σ2, σ3, . . . , σn) is feasible since the
points are noncorectilinear. By σi = j we mean that
the ith point along the x-axis is the jth point along
the y-axis. It is easy to see that given two pairs of a
rectangle and a set of points, (R1, P1) and (R2, P2), such
that |P1| = |P2| and π(P1) = π(P2), we always have
#RP c(R1, P1) = #RP c(R2, P2). In other words, the
number of partitions depends only on the permutation
of points and neither on the bounding rectangle nor on
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the actual point coordinates. Therefore, we will also
use the notation #RP c(π). However, experiments we
have performed showed that when π(P1) 6= π(P2) it is
possible to have #RP c(P1) 6= #RP c(P2). For example,
#RP c(1, 2, 3, 4) = 92 while #RP c(3, 1, 4, 2) = 93.

5.4 The number of partitions of identity per-
mutations.

Lemma 5.2. Let In be the identity permutation on n.
#RP c(In) = B(n + 1).

Proof. Given a partition x we denote by bottom(x)
(resp., top(x)) the set of vertical segments touching
the bottom (resp., top) edge of the bounding rectangle
R. Similarly, left(x) (resp., right(x)) denote the set of
horizontal segments touching the respective edges of R.
Let Tn(i, j) be the number of different partitions of n
points with the identity permutation, such that for every
partition x, |top(x)| = i and |right(x)| = j. Then we
can write the following recurrence relation for n > 0:
(5.4)

Tn+1(i + 1, j + 1) =
∞∑

k=1

(
Tn(i, j + k) + Tn(i + k, j)

)
,

where T0(0, 0) = 1 and Tn(i, j) = 0 for n < 0. To
understand why this relation holds, note that we can
create a partition x of n+1 points such that |top(x)| =
i + 1 and |right(x)| = j + 1 from a partition x′ of n
points, such that |top(x′)| = i and |right(x′)| = j + k
(for k > 1), by:

1. Adding an additional point pn+1 to the right and
above all the points of x′;

2. Setting a vertical segment sn+1 through pn+1; and

3. Extending sn+1 downwards using Rotate oper-
ations until k − 1 segments are removed from
right(x).

Figure 7 shows these steps. We can create in a similar
way a partition x of n + 1 points, for which |top(x)| =
i + 1 and |right(x)| = j + 1, from a partition x′ of
n points, such that |top(x′)| = i + k (for k > 1)
and |right(x′)| = j, by passing a horizontal segment
through a new point pn+1. Clearly, every partition
x of n + 1 points can be created from a partition x′
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Figure 8: Partitions of a quasi-monotone permutation

of n points as described above, and there are no two
different partitions x′1, x

′
2 of n points, that lead to the

same partition of n + 1 points. Therefore,

(5.5) #RP c(In) =
∑

i,j>0

Tn(i, j),

which is exactly B(n + 1) [4].

5.5 Quasi-monotone permutations and their
number of partitions. In this section we first define
quasi-monotone permutations and explore some of their
properties. Then we show that the number of partitions
for a quasi-monotone permutation is B(n + 1).

5.5.1 Quasi-monotone permutations. Let π1 =
(α1, α2, α3, . . . , αn) and π2 = (β1, β2, β3, . . . , βm) be two
permutations on n and m, respectively. We say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating
π2 above π1 if σi = αi for 1 6 i 6 n and σn+i = n + βi

for 1 6 i 6 m (see Figure 8(a)). Likewise, we say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating
π2 below π1 if σi = m + αi for 1 6 i 6 n and σn+i = βi

for 1 6 i 6 m.

Definition 5.5. π is a quasi-monotone permutation if
1. π = (1); or
2. There are two quasi-monotone permutations π1 and

π2 such that π is the result of concatenating π2

above or below π1.

A similar definition was suggested by Shapiro and
Stephens [18] in their analysis of matrices that eventu-
ally fill up under bootstrap percolation. The following
follows from their results:



Observation 5.1. The number of quasi-monotone per-
mutations of length n is the (n− 1)st Schröder number.

They also showed that the portion of quasi-monotone
permutations (out of all permutations) approaches zero
as n tends to infinity.

Another characterization of quasi-monotone permu-
tations is in terms of forbidden subsequences. A per-
mutation π = (σ1, σ2, σ3, . . . , σn) ∈ Sn avoids a certain
subpermutation τ ∈ Sk (for k 6 n) if it does not contain
a subsequence (σi1 , σi2 , . . . , σik

) with the same pairwise
comparisons as τ . The set of permutations of length
n avoiding τ is denoted by Sn(τ). It can be shown
that the set of quasi-monotone permutations is equal to
Sn(3142, 2413), suggesting an alternative proof [20] that
their number is the (n− 1)st Schröder number.

5.5.2 The number of partitions for quasi-
monotone permutations. In this section we prove
that the number of partitions when the points are in
a quasi-monotone permutation is B(n + 1).

Let x be a partition. The interface of x, denoted
by F(x), is an ordered quadruple (l, t, r, b), such that
l = |left(x)|, t = |top(x)|, r = |right(x)|, and b =
|bottom(x)|. We denote by #RP c(π,F) the number
of partitions with permutation π and interface F .

Proposition 5.1. For every n, l, t, r, b,
#RP c(In, (l, t, r, b)) = #RP c(In, (l, b, r, t)).

Note that this property is not intuitive and does not
follow from simple symmetry arguments. In this short
version of the paper we only provide a brief sketch of
the proof.

Proof. We prove this proposition by showing a one-to-
one mapping, ψ, such that for every partition x of n
points in the identity permutation and with the interface
(l, t, r, b), ψ(x) is a partition of n points in the identity
permutation, and F(ψ(x)) = (l, b, r, t). The mapping ψ
is defined recursively: If x contains a guillotine cut, then
ψ(x) is the result of applying ψ on the partitions induced
by that cut (if the cut is horizontal, then reflection about
the ascending diagonal is required before applying ψ on
the subproblems, and reflection about the descending
diagonal is required afterwards). Otherwise, we find
two segments (after reflection if needed), s1 ∈ top(x)
and s2 ∈ bottom(x), such that s1 is to the left of s2.
We use these segments as ‘pseudo’ guillotine cuts and
apply ψ on the subproblems they induce.

Corollary 5.1. Let In be the reverse identity per-
mutation on n (n, n − 1, . . . , 3, 2, 1), then for every
n, l, t, r, b, #RP c(In, (l, t, r, b)) = #RP c(In, (l, t, r, b)).

Proof. Let a be a partition of n points in the identity
permutation, such that F(a) = (l, t, r, b). When we

reflect a with respect to the x-axis we get a partition
a′ of n points in the reverse identity permutation, such
that F(a′) = (l, b, r, t). The corollary follows directly
from this fact and from Proposition 5.1.

Lemma 5.3. Let π be a quasi-monotone permutation
of n points. For every interface F , #RP c(π,F) =
#RP c(In,F).

Proof. By induction on n. For n = 1 a permutation
of one point is both the identity permutation and
quasi-monotone permutation. Assume the claim is
true for every quasi-monotone permutation of n′ < n
points, and let π be a quasi-monotone permutation of
n points. The permutation π may be a concatenation-
above or a concatenation-below of two quasi-monotone
permutations.

Suppose that π is the result of concatenating a
quasi-monotone permutation π2 ∈ Sn−k above another
quasi-monotone permutation π1 ∈ Sk. Then all the
partitions of π can be created by considering every
pair of a partition of π1 and a partition of π2, and
by “combining” every such pair in all the possible
combinations (see Figure 8). Note that given x1 and
x2, partitions of π1 and π2, respectively, the number
of partitions of π that are created by combining x1

and x2 in all the possible combinations depends only
on F(x1) and F(x2). Moreover, the interface of every
such combined partition also depends only on F(x1) and
F(x2) and the way they were combined.

According to the induction hypothesis, for every
pair of interfaces F1 and F2 we have #RP c(π1,F1) =
#RP c(Ik,F1) and #RP c(π2,F2) = #RP c(In−k,F2).
All the partitions of In can be created by combining all
the pairs of a partition of Ik and a partition of In−k in
all possible combinations. Again, the number of combi-
nations and the interface of every such combined parti-
tion depends only on the interfaces of the partitions of
Ik and In−k, and on the way they were combined. Thus,
for every concatenation-above quasi-monotone permu-
tation π and interface F , #RP c(π,F) = #RP c(In,F).

Suppose now that π is the result of concatenat-
ing a quasi-monotone permutation π2 ∈ Sn−k below
another quasi-monotone permutation π1 ∈ Sk. It fol-
lows from Corollary 5.1 that for every pair of inter-
faces F1 and F2, #RP c(Ik,F1) = #RP c(Ik,F1) and
#RP c(In−k,F2) = #RP c(In−k,F2). Using the induc-
tion hypothesis we conclude that for every pair of two
interfaces F1 and F2, #RP c(π1,F1) = #RP c(Ik,F1)
and #RP c(π2,F2) = #RP c(In−k,F2). Then, ac-
cording to the combination arguments given above
and by using Corollary 5.1, for every concatenation-
below quasi-monotone permutation π and interface F ,
#RP c(π,F) = #RP c(In,F) = #RP c(In,F).

In conclusion, the claim holds for all quasi-
monotone permutations.



Theorem 5.2. Given a rectangle R which encloses a
set P of n noncorectilinear points, such that π(P ) is
a quasi-monotone permutation on n, #RP c(R,P ) =
B(n + 1).

Proof. The claim follows from lemmata 5.2 and 5.3.

6 Point-Free and Point-Constrained Partitions
In this section we establish a relation between point-free
partitions and point-constrained partitions. First, we
present a new representation of a point-free partition—
the partition graph. Then, we use this representation
to describe the relation between point-free and point-
constrained partitions.

6.1 The partition graph

Definition 6.1. Given a (point-free) partition we de-
fine two partial orders of the segments in the partition.
We say that segment s1 is left of segment s2, denoted
s1 ≺` s2, if:
1. s1 is vertical, s2 is horizontal, and s1 contains the

left endpoint of s2; or
2. s1 is horizontal, s2 is vertical, and s2 contains the

right endpoint of s1; or
3. s1 and s2 are vertical, `1 is the line supporting s1,

s2 is to the right of `1, and the projection of s2 on
`1 contains more than one point of s1; or

4. There is a segment s /∈ {s1, s2} such that s1 ≺` s
and s ≺` s2.

In a similar manner we define the relation below
between two segments s1 and s2, and denote it by
s1 ≺b s2.

We show below that the union of ≺` and ≺b is a
total relation on any set of segments defining a valid
partition.

Let s be a horizontal segment. We denote by sl and
sr the vertical segments that bound s from left and from
right, respectively. Similarly, for a vertical segment s,
we denote by sb and sa the horizontal segments that
bound s from below and from above, respectively. The
next observation follows from Definition 6.1 and will be
useful later on:

Observation 6.1. Let s be a horizontal segment and
let x 6= s be another segment. If s ≺` x then either
x = sr or sr ≺` x. If x ≺` s then either x = sl or
x ≺` sl. We can derive a similar observation about
vertical segments and the ‘below’ relation.

Using the ‘left’ and ‘below’ relations, we can now
define the “partition graph.”

Definition 6.2. Given a partition r of a rectangle by
n segments s1, s2, . . . , sn, the partition graph of r is a
directed graph G(r) = (V = {v1, v2, . . . , vn}, E), such

that: (1) Every vertex vi ∈ V has a label ‘vertical’
or ‘horizontal,’ according to the orientation of si; and
(2) There is an edge from vi to vj labeled ‘left’ (resp.,
‘below’) if si ≺` sj (resp., si ≺b sj).

Using the concept of a partition graph it is possi-
ble to define two point-free partitions as equivalent if
their partition graphs are isomorphic. We proceed by
mentioning some properties of partition graphs.

Property 6.1. Given a partition r, G(r) is a tourna-
ment.

Proof. (sketch) This property can be proven by induc-
tion on n and considering the partition we get by remov-
ing either the lowest segment in left(r) or the leftmost
segment in bottom(r) (the one whose endpoint lies on
the other is removed).

Note that since a partition graph is also transitive
(this follows from Definition 6.1(4)), it must be acyclic
(even when the labels on the edges are ignored). Thus,
any partition graph defines a total order of its vertices.
The next observation follows from this fact and from
Observation 6.1.

Observation 6.2. Given a partition r, let si be a
vertical (resp., horizontal) segment, and let v1 < v2 <
· · · < vn be the total order of the vertices of G(r).
(vi < vj if there is an edge vi → vj.) Let vj ≡ vb

i and
vk ≡ va

i (resp., vj ≡ vl
i and vk ≡ vr

i ) be the vertices that
correspond to sb

i and sa
i (resp., sl

i and sr
i ). Then j is

the maximal index such that there is an edge vj
below→ vi

(resp., vj
left→ vi), and k is the minimal index such that

there is an edge vi
below→ vk (resp., vi

left→ vk).

Lemma 6.1. Suppose G(V, E) is a partition graph, and
let v1 < v2 < · · · < vn be the total order of V . Then the
graph induced by v2, v3, . . . , vn is also a partition graph.

Proof. Let r be a partition whose partition graph is
G, and let s1 be the segment in r that corresponds to
v1. s1 must be the lowest segment in left(r) or the
leftmost segment in bottom(r). Removing s1 from r
while extending the segments that have their bottom
endpoint (in the first case) or their left endpoint (in the
second case) on s1, towards the bounding rectangle, will
result in a valid partition whose corresponding graph is
the subgraph of G induced by v2, v3, . . . , vn.

We can argue the same about the subgraph induced
by v1, v2, . . . , vn−1. Thus:

Corollary 6.1. Suppose G(V, E) is a partition graph,
let v1 < v2 < · · · < vn be the total order of V ,
and 1 6 i < j 6 n. Then the subgraph induced by
vi, vi+1, . . . , vj is also a partition graph.



6.2 A relation between point-free and point-
constrained partitions.

Definition 6.3. Given a partition graph G(V, E),
|V | = n, and a set P of n points whose relative order is
given by a permutation π = (σ1, σ2, . . . , σn), we say that
a one-to-one mapping φ : V → {1, 2, . . . , n} embeds G

in P if for every edge vi
left→ vj (resp., vi

below→ vj),
φ(vi) < φ(vj) (resp., σφ(vi) < σφ(vj)). We denote by
embeddings(G,P ) the set of different mappings that em-
bed G in P .

Intuitively, an embedding describes a way to “place” the
segments of a point-free partition on a set of points, in
order to obtain a valid point-constrained partition.

Lemma 6.2. Given a rectangle R which encloses a
set of points P , a partition graph G(V, E), and an
embedding φ of G in P , there is exactly one partition
r of (R, P ) whose partition graph is equivalent to G and
in which for every 1 6 i 6 n the segment in r that
corresponds to vi contains pφ(vi) (the (φ(vi))th left-to-
right point in P ).

Proof. (sketch) We construct a partition r of (R, P )
in the following way. Let vi be a vertex in V labeled
‘horizontal,’ and let vl

i and vr
i be the vertices as defined

in Observation 6.2. Draw a horizontal segment si

through pφ(vi) and set its left and right endpoints
to the x-coordinates of the points pφ(vl

i)
and pφ(vr

i ),
respectively. If vl

i (resp., vr
i ) is not defined, set the left

(resp., right) endpoint at the left (resp., right) edge of
R. Construct vertical segments in a similar way.

A simple case analysis shows that the endpoints of
every segment in r lie on different segments or on the
boundary, and that there are no intersecting segments,
thus r is a valid partition.

We prove that the segments in r have the same
relations as the vertices of G by considering all the
possible ways that an edge vi

left→ vj (resp., vi
below→ vj)

was created and by showing that in all those cases
vi

left→ vj implies si ≺` sj (resp., vi
below→ vj implies

si ≺b sj). Thus, the partition graph of r is isomorphic
to G.

Finally, suppose that r′ is another partition of
(R,P ) whose partition graph is equivalent to G and in
which for every index i the segment that corresponds to
vi contains pφ(vi). It follows from the construction of r
and from Observation 6.2 that for every i the segment
through pφ(vi) has the same orientation and endpoints
in r and in r′, thus r and r′ are equivalent.

Lemma 6.3. Let G(V, E) be a partition graph, |V | = n,
and let P be a set of n points such that π(P ) = In, then
|embeddings(G,P )| = 1.

Proof. Let v1 < v2 < · · · < vn be the total order of V ,
and let φ(vi) = i. Then φ is the only embedding of G
in P .

Corollary 6.2. There is a bijection between point-free
partitions and point-constrained partitions of a set of
points arranged in the identity permutation.

Proof. Follows immediately from Lemma 6.3 and the
fact that every point-constrained partition can be
turned into a point-free partition by removing the point
constraints. Note that we do not use here the fact that
the number of distinct partitions is the Baxter number
in both cases.

In fact, Lemma 6.3 and Corollary 6.2 can be gener-
alized for any quasi-monotone permutation.

Lemma 6.4. Let G(V,E) be a partition graph, |V | = n,
and let P be a set of n points in a quasi-monotone
permutation. Then |embeddings(G,P )| = 1.

Proof. By induction on n. For n = 1 the only permu-
tation is the identity permutation which is also quasi-
monotone. Let π ∈ Sn be the quasi-monotone permu-
tation of P . Suppose π is the result of concatenating
a quasi-monotone permutation π2 ∈ Sn−k above an-
other quasi-monotone permutation π1 ∈ Sk. Assume
v1 < v2 < · · · < vn is the total order of V . Let G1

and G2 be the graphs induced by V1 = {v1, v2, . . . , vk}
and V2 = {vk+1, vk+2, . . . , vn}, respectively, and let
P1 = {p1, p2, . . . , pk} and P2 = {pk+1, pk+2, . . . , pn}. It
follows from Corollary 6.1 that G1 and G2 are partition
graphs. Thus, according to the induction hypothesis
|embeddings(G1, P1)| = 1 and |embeddings(G2, P2)| =
1. Let φ be the union of these embeddings. For each
pair of vertices vi ∈ V1 and vj ∈ V2, the edge connecting
them in G is directed from vi to vj since vi precedes vj

in the order. Recall that P1 is below and to the left of
P2, thus φ is an embedding of G in P .

Suppose there was another embedding φ′ of G in
P . Let P ′1 and P ′2 be the sets of points to which V1

and V2 are mapped under φ′. If P ′1 = P1 and P ′2 = P2

then by the induction hypothesis φ′ = φ. Otherwise,
there must be two vertices vi ∈ V1 and vj ∈ V2 such
that pφ′(vi) ∈ P2 and pφ′(vj) ∈ P1, thus φ′ is not a valid
embedding.

The proof for the case in which π is the result of
concatenating a quasi-monotone permutation π2 below
another quasi-monotone permutation π1 is quite similar.
The main difference is that instead of using the total
order of V , we use the order of V , in which for every
two vertices vi and vj , if vi

left→ vj then vi precedes vj ,

and if vi
below→ vj then vj proceeds vi. Since this order is

equivalent to a total order of the graph obtained from
G by reversing the edges labeled ‘below,’ it is unique.



Corollary 6.3. There is a bijection between point-free
partitions and point-constrained partitions of a set of
points arranged in a quasi-monotone permutation.

7 Conclusion
In this paper we discuss the number of distinct rect-
angular partitions for point-free and point-constrained
partitions. For the point-free variant we present a di-
rect bijection between partitions and Baxter permuta-
tions. It is worth mentioning that this bijection also
maps quasi-monotone permutations to guillotine parti-
tions. The number of partitions with point constraints
depends on the permutation of points. We show that if
the permutation of the points is quasi-monotone, then
the number of partitions is also the number of Baxter
permutations. Finally, we mention a few open questions
related to the problems discussed in this paper:

1. How many point-constrained partitions are there
for non-quasi-monotone permutations?

2. The original minimum edge-length partitioning
problem (RGNLP). Furthermore, what is the com-
putational complexity of RGNLP when it is re-
stricted to (quasi-)monotone permutations?

3. What is the number of point-free (or point-
constrained) partitions when the problem is gen-
eralized to higher dimensions?

Note added in proof: After completion of this
manuscript, we discovered the existence of a paper by
Murata et al. [15], in which a mapping from sequence-
pairs to rectangular dissections is presented. From
this mapping it is not hard to induce a bijection
between Baxter permutations and point-free partitions.
However, we feel that the bijection we describe in
Section 4.1 is much simpler.
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