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Abstract

An ascending (resp., descending) staircase walk on a chessboard is a rook’s path that goes
either right or up (resp., down) in each step. We show that the minimum number of staircase
walks that together visit every square of an n× n chessboard is d 23ne .

1 Introduction

The motivation to this paper was a question raised by Lapid Harel, an undergraduate student in a
course taught by the second author in the Technion in 2012. He asked the following question.

Problem A. What is the minimum number of lines that intersect the interior of every square of
an n× n chessboard?

It is clear that n lines suffice and it is not hard to see that n/2 + 1 lines are necessary, as each
line can intersect the interior of at most 2n− 1 squares. Where exactly the truth is in between, is
still open.

Here we consider Problem A for curves instead of lines, such that every curve is a graph of
a strictly increasing or strictly decreasing function (lines clearly satisfy this property). We may
assume without loss of generality that no curve intersects a corner of a square, since otherwise we
can shift it a little and extend the set of squares whose interior it intersects. Therefore, the squares
whose interior a curve intersects form a staircase walk on the chessboard.

Definition 1 (Staircase walk). An ascending (resp., descending) staircase walk is a rook’s path on
a chessboard that goes either right or up (resp., down) in every step.

For the purely combinatorial question of finding the minimum number of staircase walks that
cover an entire n× n chessboard we were able to find the exact answer.

Theorem 1. The minimum number of staircase walks that together visit each square of an n× n
chessboard is d23ne.
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Figure 1: Illustrations of the terms used in the proof of the lower bound.

In Section 2 we prove that d23ne staircase walks are always needed, while in Section 3 we give
a construction showing that this bound is tight.

Theorem 1 clearly gives a lower bound for Problem A. However, it easy to see that not every
staircase walk can be “realized” by a line. For example, one cannot draw a line that intersects the
squares of a walk consisting of the first row and first column of an n × n chessboard, for n > 2.
Another example is the construction in Section 3 (otherwise, we would have settled Problem A).

Related work. We are not aware of any work that studies the problems that are described above,
or similar ones. However, there is a vast literature on enumeration of lattice paths satisfying various
restrictions (including being staircase walks). See, e.g., [1] and [2].

2 The lower bound

In this section we show that at least d23ne staircase walks are needed to cover an n×n chessboard.
We denote by (i, j) the square in the i’th column and the j’th row. Therefore, (1, 1) denotes the
bottom-left square and (n, n) denotes the top-right square. Notice that without loss of generality
we may assume that all ascending staircase walks start at (1, 1) and end at (n, n) (or else we can
extend them to be such). Similarly, we may assume that all descending staircase walks start at
(1, n) and end at (n, 1). We continue with a few definitions and some notation.

Definition 2. For every i = 1, . . . , 2n−1 we denote by Di the i’th descending diagonal of the n×n
chessboard. That is, Di is the set of all squares at position (x, y) such that x+ y = i+ 1. Similarly,
for every i = 1, . . . , 2n − 1 we denote by Ci the i’th ascending diagonal of the n × n chessboard.
That is, Ci is the set of all squares at position (x, y) such that x − y = i − n. See Figure 1(a) for
an example of these terms.

We denote by B = B0 the entire n×n chessboard. For every i > 0 we define Bi =
⋃2n−(i−1)

j=i+1 Cj

and Bi =
⋃2n−(i−1)

j=i+1 Dj . In other words, Bi (resp., Bi) is the board without the first and last i

descending (resp., ascending) diagonals. We denote by Bi
j the intersection Bi ∩ Bj . See Figure 1

for examples of these terms.

We say that two walks are disjoint if they do not share a common square. The next lemma is
crucial for the proof. It will imply that if we have p ascending staircase walks and q descending
staircase walks, then we can assume that the ascending (resp., descending) walks lie inside Bq

(resp., Bp) and are disjoint within Bp
q .

2



i

(a) `1

i

(b) `′1

Figure 2: Modifying an ascending staircase walk to be in Bq.

Lemma 1. Let `1, . . . , `p be p ascending staircase walks and let q ≤ n − p. Then there exist p
ascending staircase walks `′1, . . . , `

′
p, such that:

(1) `′1, . . . , `
′
p are contained in Bq;

(2) `′1, . . . , `
′
p are disjoint in Dp ∪Dp+1 ∪ . . . ∪D2n−p;

(3) `′1, . . . , `
′
p cover the first and last (p− 1) descending diagonals; and

(4) `′1, . . . , `
′
p cover all the squares in Bq that are covered by `1, . . . , `p.

Proof. We first show how to modify the walks, such that they will be contained in Bq. Suppose for
example that `1 is not contained in Bq. Then without loss of generality `1 contains a square from
Cq (the other possible case is symmetric, namely when `1 contains a square on C2n−q). Let i be the
smallest integer such that the square (i, n− q + i) of diagonal Cq is included in `1. It must be that
the square just below it, namely (i, n− q+ i−1), is also included in `1 because of the minimality of
i. Let j be the smallest integer such that (i + 1, j) ∈ `1. We must have that j ≥ n− q + i because
(i, n− q+ i) ∈ `1 and `1 is an ascending staircase walk. We now modify `1 by removing the squares
(i, n−q+i), . . . , (i, j) from `1 and adding the squares (i+1, n−q+i), (i+1, n−q+i+1), . . . , (i+1, j−1)
(see Figure 2 for an example of these steps). The resulting walk `′1 contains all the squares in Bq∩`1
and now the smallest index i′ such that the square (i′, n− q + i′) of diagonal Cq is included in `′1 is
at least i + 1, if at all exists. Therefore, after at most q such steps we will end up with a modified
`1 that does not contain any square on Cq.

Let `′1, . . . , `
′
p be the modified walks that are contained in Bq. Next we chop the curves by

removing from every curve its intersection with the first and last (p − 1) descending diagonals
D1, . . . , Dp−1 and D2n−p+1, . . . , D2n−1.

Suppose that `′1, . . . , `
′
p are not disjoint within

⋃2n−p
j=p Dj , and let i be the smallest index such

that Di contains a square that belongs to two walks. Since every ascending staircase walk contains
exactly one square from each descending diagonal and |Di ∩Bq| ≥ p it follows that there is at least
one square in Di ∪Bq that is not covered by any of the walks `′1, . . . , `

′
p.

Let j and k be two indices such that (j, i+1−j) ∈ Bp
q is not covered by `′1, . . . , `

′
p and (k, i+1−k)

is covered by at least two paths from `′1, . . . , `
′
p and |j−k| is the smallest. Without loss of generality

we can assume that j < k, or else we can flip the chessboard about the main diagonal Cn. We may
also assume that `′1 and `′2 are two walks that contain (k, i + 1− k).

Let (k′, i+1−k+1) be the leftmost square on the (i+1−k+1)’th row of B that is contained in `1
or `2. Without loss of generality we assume that `′1 contains this square. Notice that k′ ≥ k because
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Figure 3: Modifying `′1 and `′2.

`′1 and `′2 are ascending walks. It follows that the squares (k, i+1−k), (k+1, i+1−k), . . . , (k′, i+1−k)
are all contained in both `′1 and `′2. There are two cases to consider.

Case 1. i > p. We modify `′1 and `′2 in the following way. Because of the minimality of i it follows
that the squares (k − 1, i + 1− k) and (k, i− k) are contained in `′1 and `′2.

Suppose that `′1 contains (k − 1, i + 1− k) and `′2 contains (k, i− k). In this case we modify `′1
from the point (k − 1, i + 1− k) to go one square up to (k − 1, i + 2− k) and then all the way to
the right until square (k′, i + 2− k), and then continue along the original path of `′1. See Figure 3
for an example. If `′2 contains (k − 1, i + 1− k) and `′1 contains (k, i− k), then we can just switch
the “tails” of `′1 and `′2 (`′1 will follow `′2 until the square (k, p + 1− k), and vice versa), and then
we have the previous case.

Case 2. i = p. In this case both `′1 and `′2 start at (k, p + 1 − k), since we previously chopped
the walks. We modify `′1 in the following way. We let `′1 be the ascending walk that starts at
(k− 1, p + 2− k), goes all the way right to (k′, p + 2− k) and then follows the previous walk of `′1.

Note that by these modifications (either in Case 1 or in Case 2) we can only add squares of
B covered by `′1, . . . , `

′
p that are part of Bq. Moreover, after these modifications either there is

one more square on Di that is covered by the union of `′1, . . . , `
′
p (this happens if k = j + 1), or

(k − 1, p + 2− k) is covered by at least two paths from `′1, . . . , `
′
p and therefore we can repeat this

step with a smaller value of |j − k| (or at least we have reduced the number of such pairs j, k, if
there were more than one pair with the minimum absolute difference). Hence after finitely many
such steps every square on Di is either covered by a unique walk from `′1, . . . , `

′
p, or it it not covered

at all. In particular every square in Dp (resp, D2n−p) is covered by exactly one walk.

To complete the proof of the lemma note that it is very easy to extend the walks `′1, . . . , `
′
p

so that they will cover all the squares on the diagonals D1, . . . , Dp−1 and D2n−p+1, . . . , D2n−1
without changing the situation on the diagonals Dp, . . . , D2n−p. We illustrate this for the diagonals
D1, . . . , Dp−1 and a symmetric argument applies for the diagonals D2n−p+1, . . . , D2n−1. Without
loss of generality we assume that square (i, p + 1 − i) belongs to `′i for i = 1, . . . , p. For every
1 ≤ i ≤ p we modify `′i by starting at (1, 1), then going right all the way to (i, 1), then up all the
way to (i, p + 1− i), and then continuing along `′i. This way we cover all the squares on diagonals
D1, . . . , Dp−1, without changing the situation on the squares of Bp

q .

By reflecting the chessboard about a horizontal line we can deduce from Lemma 1 the following
analogous lemma:
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Lemma 2. Let `1, . . . , `q be q descending staircase walks and let p ≤ n − q. Then there exist q
descending staircase walks `′1, . . . , `

′
q, such that:

(1) `′1, . . . , `
′
q are contained in Bp;

(2) `′1, . . . , `
′
q are disjoint in Cq ∪ Cq+1 ∪ . . . ∪ C2n−q;

(3) `′1, . . . , `
′
q cover the first and last (q − 1) ascending diagonals; and

(4) `′1, . . . , `
′
q cover all the squares in Bp that are covered by `1, . . . , `q.

We are now ready to prove Theorem 1. Suppose we can cover the entire n×n chessboard B by
p ascending staircase walks and q descending staircase walks. We aim to show that p + q ≥ d23ne.
Therefore, we can clearly assume that p + q ≤ n. Using Lemmas 1 and 2, we can assume that
the ascending walks are contained in Bq and the descending walks are contained in Bp. Moreover,
we can assume that no two ascending walks share a common square in Bp

q and no two descending
walks share a common square in Bp

q .

The number of squares in Bp
q is equal to n2−p(p+ 1)− q(q+ 1). Every ascending walk contains

precisely 2n−1−2p squares from Bp
q . Similarly, every descending walk contains precisely 2n−1−2q

squares from Bp
q . The important observation is that every ascending walk and every descending

walk must share at least one common square. This square must be located in Bp
q because the

ascending walks are contained in Bq while the descending walks are contained in Bp.

We conclude that the number of squares in Bp
q which is n2− p(p+ 1)− q(q+ 1) must be smaller

than or equal to p(2n−1−2p)+q(2n−1−2q)−pq which is the total number of squares covered by
the ascending and descending walks in Bp

q minus at least pq distinct times where the same square
in Bp

q is covered by an ascending walk and a descending walk. Those squares are distinct because
no two ascending walks share a square in Bp

q and the same is true for descending walks.

Therefore,

n2 − p(p + 1)− q(q + 1) ≤ p(2n− 1− 2p) + q(2n− 1− 2q)− pq.

After some easy manipulations we obtain

(n− (p + q))2 ≤ pq.

The right hand side is always smaller than or equal to
(p+q

2

)2
and therefore,

(n− (p + q))2 ≤
(
p + q

2

)2

,

from which we conclude that p + q ≥ 2
3n. Since p + q is an integer, we have that p + q ≥ d23ne. �

3 The upper bound

In this section we show that it is always possible to cover an n× n chessboard with d23ne staircase
walks.

It is easy to see that a 3×3 chessboard can be covered by one ascending walk and one descending
walk (for obvious reasons we omit a figure). Given any 3k × 3k chessboard, we can cover it with
k ascending walks and k descending walks as follows (see Figure 4 for an example). Let `1, . . . , `k
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Figure 4: Covering a 9× 9 board with 3 ascending walks and 3 descending walks.

be the following ascending walks. For every 1 ≤ i ≤ k let `i start from (1, 1), then go right all the
way to (i, 1), then go all the way up to (i, 2k− i + 1), then right all the way to (2k + i, 2k− i + 1),
then up all the way to (2k + i, 3k), and then right all the way to (3k, 3k).

Let m1, . . . ,mk be the following descending walks. For every 1 ≤ i ≤ k let mi start from (1, 3k),
then go down all the way to (1, 3k− i+ 1), then go all the way right to (2k− i+ 1, 3k− i+ 1), then
down all the way to (2k− i+ 1, k− i+ 1), then right all the way to (n, k− i+ 1), and finally down
all the way to (n, 1).

It is easy to check by inspection that the 2k staircase walks `1, . . . , `k and m1, . . . ,mk cover the
entire 3k × 3k chessboard.

Therefore, we can cover a 3k × 3k chessboard by 2k staircase walks. If we are given a (3k +
1)× (3k + 1) board, then we can cover the top row and right column by one descending walk and
the remaining 3k× 3k board by 2k walks as before. Similarly, if we are given a (3k + 2)× (3k + 2)
board, then we can cover the two top rows and two rightmost columns by two descending walks,
and the remaining 3k × 3k board by 2k walks as before. �
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