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Abstract

Given a set S of n points in the plane, the reflexivity of S, ρ(S), is the minimum
number of reflex vertices in a simple polygonalization of S. Arkin et al. [4] proved that
ρ(S) ≤ ⌈n/2⌉ for any set S, and conjectured that the tight upper bound is ⌊n/4⌋. We
show that the reflexivity of any set of n points is at most 3

7
n + O(1) ≈ 0.4286n. Using

computer-aided abstract order type extension the upper bound can be further improved
to 5

12
n + O(1) ≈ 0.4167n. We also present an algorithm to compute polygonalizations

with at most this number of reflex vertices in O(n log n) time.

1 Introduction

Given a set S of n ≥ 3 points in the plane, a polygonalization of S is a simple polygon P
whose vertices are the points of S. Throughout this paper we assume that the points are in
general position, that is, no three of them are collinear. A vertex of a simple polygon is reflex
if the (interior) angle of the polygon at that vertex is greater than π. We denote by ρ(P ) the
number of reflex vertices of a polygon P . The reflexivity of a set of points S, ρ(S), is the
smallest number of reflex vertices any polygonalization of S must have. Further, we denote by
ρ(n) the maximum value ρ(S), such that S is a set of n points. Table 1 lists ρ(n) for n ≤ 10.
These values were verified using a computer [2, 4].

n 3 4 5 6 7 8 9 10

ρ(n) 0 1 1 2 2 2 3 3

Table 1: ρ(n) for n ≤ 10

The notion of reflexivity was suggested by Arkin et al. [4] as a measure for the “goodness” of
a polygonalization of a set of points. They showed that ⌊n/4⌋ ≤ ρ(n) ≤ ⌈n/2⌉ and conjectured
that the lower bound is tight – see also Conjecture 7 in Chapter 8.5 of [5]. Settling this

∗School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, eyal@cs.sfu.ca
†Institute for Software Technology, Graz University of Technology, Austria, oaich@ist.tugraz.at Sup-

ported by the Austrian FWF Joint Research Project ’Industrial Geometry’ S9205-N12.
‡Department of Mathematics and its Applications, Central European University, Budapest, Hungary,

tphkeb01@phd.ceu.hu This work was done while visiting the School of Computing Science at Simon Fraser
University.

1



conjecture is one of the open problems listed in The Open Problems Project [7]. We refer the
reader to [4] and [5] for a more detailed discussion on the notion of reflexivity, its applications,
and related problems.

Our main result is the following improvement for the upper bound of ρ(n).

Theorem 1. ρ(n) ≤ 3⌊n−2

7
⌋+ 2.

The result will be obtained by considering a slightly modified version of reflexivity, namely
to force a given convex hull edge to be part of the polygonalization. The main ingredient is an
iterative subdivision of the point set, together with a good polygonalization of sets of constant
size. Theorem 1 then directly follows from Theorem 5 below.

Utilizing a computer-aided abstract order type extension [3] we will further improve the
upper bound to

Theorem 2. ρ(n) ≤ 5⌊n−2

12
⌋+ 4.

2 Modified Reflexivity and Iterative Subdivision

Recall that the convex hull of a finite set S of points, CH (S), is composed of the boundary
and the interior of a convex polygon. A boundary edge of CH (S) is an edge of that polygon.
To prove a stronger variant of Theorem 1 we first introduce some notation. Let S be a set of
points and let e be a boundary edge of CH (S). We denote by ρe(S) the minimum number
of reflex vertices in any polygonalization P of S, such that e is an edge of P . Similarly, let
ρ̄(S) be the maximum value of ρe(S) taken over all the edges e of the boundary of CH (S),
and let ρ̄(n) be the maximum value of ρ̄(S) taken over all sets S of size n. The definition of
ρ̄(·) is perhaps a bit counter-intuitive (one might expect to take the minimum over all edges),
however, it is crucial for our purposes.

Obviously ρ(n) ≤ ρ̄(n), so our goal is to derive good upper bounds for ρ̄(n). To this end
we first provide a central lemma, which allows us to subdivide a point set in a way that we
can consider the polygonalizations of the subsets rather independently.

Lemma 3. Given an integer k > 2, a set S of n > k points, and two points p, q ∈ S, such
that pq is a boundary edge of CH (S), then there exists a point t ∈ S \ {p, q} and two sets
L, R ⊂ S such that:

1. L ∪R = S, L ∩R = {t}, q ∈ R, and p ∈ L;

2. The triangle △pqt contains no other points from S;

3. CH (R) ∩ CH (L) = {t}; and

4. |R| = k.

Proof. Assume, w.l.o.g., that p and q lie on the x-axis, such that p is to the left of q and
all the remaining points are above the x-axis. Let t1 be the point of S such that the angle
∠t1pq is the smallest. Let e1 be the line determined by q and t1, and let H1 be the closed
half-plane to right of e1. Let S1 be the subset of points of S contained in H1. If |S1| > k,
then define r1 ∈ S1 \ {q, t1} to be the point creating the (k − 1)st smallest angle ∠r1t1q,

2



t1

qp

r1

f1e1

S1

(a) More than k = 8 points on or to
the right of e1. The points in R1 and
L1 are marked by crosses and circles,
respectively.
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ei−1 = fi−1
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ti
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(b) Less than k points on or to the right
of ei. The points in Ri and Li are marked
by crosses and circles, respectively.

Figure 1: Illustrations for the proof of Lemma 3

and denote by f1 the line through t1 and r1. Otherwise, if |S1| ≤ k let f1 = e1. Set
R1 = {q, t1} ∪ {p

′ ∈ S1 | p′ is to the right of f1} and L1 = (S \ R1) ∪ {t1}. Note that r1,
if defined, is in L1. We claim that t1, R1, and L1 satisfy properties (1)–(3) of the lemma:
(1) This property holds by the definition of R1 and L1; (2) By the choice of t1 the triangle
△pqt1 is empty; (3) All the points in R1 are to the right of f1, except for t1 and possibly q.
All the points in L1 are to the left of f1, except for t1 and possibly r1. However q and r1

cannot both lie on f1. If |S1| ≥ k, then we also have that |R1| = k (either by the choice of r1

or because |S1| = k, see Figure 1(a) for an illustration of the former case).

Suppose now that |S1| < k. We define ti, ei, and Si for i > 1 and |Si−1| < k recursively. Let
ti be the point that minimizes the angle ∠tipq among the points in Li−1\{ti−1} (note that this
set of points is not empty since |Si−1| < k and we show below that S1 ⊂ · · · ⊂ Si−1). Let ei be
the line through q and ti, let Hi be the closed half-plane to the right of ei, and let Si be the set
of points contained in Hi. Next, we define ri, fi, Ri, and Li. If |Si| > k define ri ∈ Si \ {q, ti}
to be the point creating the (k− 1)st smallest angle ∠ritiq, and denote by fi the line through
ti and ri. Otherwise, if |Si| ≤ k set fi = ei. Set Ri = {q, ti}∪{p

′ ∈ Si | p
′ is to the right of fi}

and Li = (S \ Ri) ∪ {ti}. See Figure 1(b) for an example where |Si| < k. The existence of a
point t and sets R, L ⊂ S as required, will follow from the next claim.

Proposition 2.1. Set S0 = ∅. Then, for every i ≥ 1 such that |Si−1| < k, ti, Ri, and Li

satisfy properties (1)–(3) of Lemma 3, and Si−1 ( Si.

Proof. By induction on i. For i = 1 the claim holds by the discussion above. Assume that
i > 1 and |Si−1| < k. Property (1) holds by the definition of Ri and Li. The triangle △tipq is
empty since: △ti−1pq is empty; ti is to the left of fi−1 and therefore △tipq does not contain
any point from Ri−1; and by the choice of ti. Thus, Property (2) holds. Property (3) clearly
holds if fi = ei. Otherwise, if ri is defined, denote by Ci the cone whose apex is at p and is
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bounded by the line through p and ti−1 and the line through p and ti. By the choice of ti
all the points in Ci are in Si−1. Since |Si−1| < k it follows that ri is to the left of the line
through p and ti. Recall that ri is to the right of ei, since ri ∈ Si. Therefore, fi is tangent
to both CH (Ri) and CH (Li) and separates them, except for the point ti. Thus, Property (3)
holds. Finally, since ti is to the left of ei−1 we have Si−1 ⊆ Si. However ti ∈ Si \ Si−1, thus,
Si−1 ( Si.

Since |Si| > |Si−1| there is an integer j such that |Sj−1| < k and |Sj | ≥ k. It follows from
Proposition 2.1 and the definition of Rj that tj , Rj , and Lj satisfy the required properties.

Note that Lemma 3 implies that pt is a boundary edge of CH (L) and tq is a boundary
edge of CH (R), respectively. Using this fact we will apply the suggested subdivision in the
next section in order to obtain our first main result.

3 A New Upper Bound

Figure 2 illustrates the subdivision obtained in the previous section. The idea to prove an
upper bound on ρ̄(n) is to iteratively split a set into subsets of constant size, to obtain good
polygonalizations for these sets, and then to combine them based on Lemma 3. The base case
is covered by the following result.

t

q

R

p

L

Figure 2: The subdivision of S guaranteed by Lemma 3

Lemma 4. Let S be a set of at most 8 points in the plane. Then ρ̄(S) ≤ 2.

Proof. The claim is clearly true for n ≤ 5 since any vertex on the boundary of CH (S) is a
convex vertex of any polygonalization of S. For 6 ≤ n ≤ 8 we prove the statement by a case-
analysis over the size of the onion layers of S; see Appendix A for details. The correctness of
the statement was also verified using a computer by checking all possible configurations of at
most 8 points in general position.

We are now ready for a first upper bound on ρ̄(n).

Theorem 5. ρ̄(n) ≤ 3⌊n−2

7
⌋+ 2.
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Proof. We prove the claim by induction on n. For n ≤ 8 we directly get the result from
Lemma 4.

For n > 8 we apply Lemma 3 on the set S with k = 8 and some edge pq of the boundary
of CH (S), and obtain the point t and the subsets L and R. Now according to Lemma 4 there
is a polygonalization of R containing the edge qt with at most two reflex vertices (note that
qt is a boundary edge of CH (R)). By induction, L has a polygonalization containing the edge
pt (which is a boundary edge of CH (L)) with at most 3⌊n−9

7
⌋+2 = 3⌊n−2

7
⌋−1 reflex vertices.

By removing the edge qt from the first polygonalization and the edge pt from the second, the
remaining polygonal chains, along with the edge pq, form a proper polygonalization of S with
at most 2 + 3⌊n−2

7
⌋ − 1 + 1 = 3⌊n−2

7
⌋+ 2 reflex vertices (note that t may be a reflex vertex in

the resulting polygon).

4 Improving the Constant

Generalizing the approach used to prove Theorem 5 to arbitrary k ≥ 2 we get

Corollary 4.1. If for some k ≥ 2 we have ρ̄(k) ≤ l, then ρ(n) ≤ (l+1)⌊n−2

k−1
⌋+k ≤ l+1

k−1
n+k.

If, additionally, for any k′ ≤ k we have ρ̄(k′) ≤ l, then ρ(n) ≤ l+1

k−1
n + l.

Improved bounds for ρ̄(n) for small, constant values of n thus yield a better bound on
the reflexivity of arbitrarily large sets of points. From Lemma 4 together with an extension
to n = 9, 10 by using the point set order type data base [2] we observe that ρ̄(n) = ρ(n) for
n ≤ 10, see Table 1. Therefore our next goal is to determine good bounds on ρ̄(n) for n ≥ 11.
To this end, we use the following observation which is implied by Lemma 3 and the discussion
in the previous section.

Observation 4.2. For any integers 2 < k < n, we have ρ̄(n) ≤ ρ̄(n − k + 1) + ρ̄(k) + 1.
Moreover, for every set of n points, S, there is a subset L ⊂ S, such that |L| = n− k + 1 and
ρ̄(S) ≤ ρ̄(L) + ρ̄(k) + 1.

Using the values of Table 1 for k = 3 and k = 8 we get

ρ̄(n) ≤ ρ̄(n− 2) + 1 (1)

ρ̄(n) ≤ ρ̄(n− 7) + 3

Applying these two relations we obtain the upper bounds on ρ̄(n) shown in Table 2 with an
exception for n = 13.

n 11 12 13 14 15 16

ρ(n) 3 3..4 3..4 4..5 4..5 4..6

ρ̄(n) 4 4 4 4..5 4..5 4..6

Table 2: ρ(n) and ρ̄(n) for n = 11 . . . 15

By using the point set order type data base for n = 11 points it turned out that ρ(11) = 3
whereas ρ̄(11) = 4. Interestingly, only for 36 of the 2 334 512 907 existing order types, the
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best polygonalization required 4 reflex vertices. In all these sets the boundary of the convex
hull was a triangle, and only for one (out of three) convex hull edge e we obtained ρe(S) = 4.
This has to be seen in contrast to the worst case examples for ρ(S) obtained in [4], which are
so-called double circles. There half of the vertices are on the convex hull, and the remaining
vertices form a second onion layer, each point lying close to the middle of one edge of the
convex hull.

We have extended examples providing ρ̄(11) = 4 to verify that 4 reflex vertices are neces-
sary for polygonalizing certain point sets of size n = 12, . . . , 16, as is listed in Table 2. Thus,
for n = 12, together with Equation 1 we have ρ̄(12) = 4. So we will have to look for values of
k > 12 in order to benefit from Corollary 4.1. Thus we aim to show that ρ̄(13) = 4.

From Equation 1 we already know that ρ̄(13) ≤ 5. So assume that there exists a set S,
|S| = 13, with ρ̄(S) = 5. By Observation 4.2 S contains a subset L of 11 points with ρ̄(L) = 4.
We now apply abstract order type extension, which is a tool that can be used to generate all
(abstract) point sets containing a given class of sets of smaller cardinality, see [3] for details.
Applying this method to the 36 sets of n = 11 points which require 4 reflex vertices, we
obtain all sets for n = 13 which might require 5 reflex vertices. Our computations show that
all obtained sets contain a polygonalization with at most 4 reflex vertices, contradicting our
assumption, and we conclude that ρ̄(13) = 4.

By Corollary 4.1 we therefore get

Corollary 4.3. ρ̄(n) ≤ 5⌊n−2

12
⌋+ 4

which implies Theorem 2. Obviously determining ρ̄(n) for n ≥ 14 could further improve
the constant of Corollary 4.3, and we leave this for future research.

5 An Algorithm

After establishing the existence of a polygonalization with few reflex vertices we describe an
efficient way to find one.

Theorem 6. Given a set of n points S and two points p, q ∈ S such that pq is a boundary
edge of CH (S), a polygonalization P of S such that pq is an edge of P and ρ(P ) ≤ 5⌊n−2

12
⌋+4

can be found in O(n log n) time.

Proof. The proof of Theorem 5 and the discussion in Section 4 yield an algorithm for com-
puting a polygonalization with at most 5⌊n−2

12
⌋ + 4 reflex vertices, based on the subdivision

of the set S into (not necessarily disjoint) subsets of size 13 (apart from one subset of size at
most 13). Set t′0 = q, L′

0 = S, and M = ⌊(n− 2)/12⌋. Define t′l, R′
l, and L′

l, recursively, to be
the point t and the sets R and L, respectively, guaranteed by applying Lemma 3 on the set
L′

l−1
and the edge pt′l−1

, 1 ≤ l ≤M . Once the points t′l and the sets R′
l have been computed

it is easy to compute in linear time the polygonalization of S with the stated number of reflex
vertices: For each 1 ≤ l ≤ M we computed (in constant time) a polygonalization Pl of R′

l,
such that Pl contains the edge t′lt

′
l−1

and has at most four reflex vertices. By removing the
edge t′lt

′
l−1

from every polygon Pl, we get a polygonal chain P starting at t′0 = q and ending
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Figure 3: The subdivision of the point set into constant-size subsets

at t′M . If |L′
M | = 2, that is L′

M = {p, t′M}, then we obtain the desired polygonalization of S
by concatenating to P the edges pt′M and pq. Otherwise, one can compute in constant time a
polygonalization PM+1 of L′

M containing the edge pt′M and having at most four reflex vertices
(note that |L′

M | ≤ 13). By removing the edge pt′M from PM+1 and concatenating the resulting
chain to P and the edge pq we obtain the desired polygonalization of S (see Figure 3 for an
illustration).

Therefore, it remains to depict the details of the subdivision described in Lemma 3. Algo-
rithm 1 describes the implementation of this subdivision. It uses the dynamic planar convex
hull of Brodal and Jacob [6]. This data structure, denoted by DCH, maintains the convex hull
of a set of points and supports, among other things, the following operations:

• DCH.INSERT(v): insert a new point v;

• DCH.DELETE(v): remove the point v; and

• DCH.CCW(v): get the counter-clockwise neighbor in the convex hull of the point v, where
v is a vertex of the convex hull;

Insertions and deletions are performed in O(log n) amortized time, while the counter-clockwise
neighbor query takes O(log n) worst-case time.

Next, we explain Algorithm 1, using the notation of Lemma 3. The algorithm begins by
removing the vertex q (line 5). Now, CCW(p) is t1. Then, we remove CCW(t1) repeatedly
at most k − 2 times while it is to the right of e1 (lines 15–23). If k − 2 times CCW(t1) was
to the right of e1, then all those points that were removed along with t1 constitute the set
R, with t = t1 (lines 24–27). Otherwise, by deleting t1 (line 5), CCW(p) is the point t2 that
forms the smallest angle ∠t2pq among the points to the left of e1. The algorithm proceeds by
re-inserting all the points that were deleted in the previous iteration and are to the left of the
line determined by p and t2 (lines 9–12). This step is performed since it is possible that these
points will not be among the set of points p′ ∈ S2 creating the (k− 2)nd smallest angles p′tiq
(whereas the points that are to the right of the line through p and t2 must be in this set, and
thus, remain in R). Next, we remove CCW(t2) repeatedly (as long as it is to the right of e2),
this time k − 1− |R| times (lines 15–23). As before, if k − 1− |R| times CCW(t2) was to the
right of e2, then we are done. Otherwise, we proceed to the next point t3.
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Require: A set of n points S; DCH(S); p, q ∈ S s.t. pq is a boundary edge of CH (S); an
integer k > 2

Ensure: The set R and the point t as described in Lemma 3.
R← ∅;
i← 0;
ti ← q;
while |R| < k do

DCH.DELETE(ti);
R← R ∪ {ti};
i← i + 1;
ti ← DCH.CCW(p);
for all {r ∈ R : r is to the left of the line through p and ti} do

R← R \ {r};
DCH.INSERT(r);

end for

ei ← the line through q and ti;
m← (k − 1− |R|); /* The number of points missing in R */
for j = 1 to m do

s← DCH.CCW(ti);
if s is to the right of ei then

DCH.DELETE(s);
R← R ∪ {s};

else

quit the for-loop;
end if

end for

if s is to the right of ei then

R← R ∪ {ti}; /* |R| = k */
t← ti;

end if

end while

Algorithm 1: Generating the subdivision of Lemma 3

For the same arguments used to claim that |Si| > |Si−1| in the proof of Lemma 3 it follows
that the size of R at, say, line 24 grows along the iterations of the main loop (lines 4–28).
Therefore, the main loop is executed O(k) times, and thus, the run-time of the procedure
described in Algorithm 1 is O(k2 log n) amortized time. The number of times this procedure
is executed is O(n/k). Thus, the overall run-time, including the initialization of DCH, is
O(nk log n). As in our case k = 13, the run-time is O(n log n)

6 Discussion and Open Problems

We showed that for every set S of n points in general position in the plane there is a polyg-
onalization of S with at most 5⌊n−2

12
⌋ + 4 reflex vertices, and such a polygonalization can be
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found in O(n log n) time. The basic idea of the proof is that by Lemma 3 we can subdivide
S into some fixed-size parts and use a stronger result on each of these parts. It would be
interesting to find other applications of the subdivision suggested in Lemma 3.

Conjecture 3.4 in [4] states that ρ(n) = ⌊n
4
⌋. Considering the values for ρ(n) in Tables 1

and 2 the conjecture has to be modified to

Conjecture 6.1. ⌊n
4
⌋ ≤ ρ(n) ≤ ⌈n

4
⌉.

It is challenging to determine the structure of sets maximizing the reflexivity for fixed
cardinality. On the one hand we have the sets used in [4] to provide the bound of ρ(n) ≥ ⌊n

4
⌋,

which have half of their vertices on the boundary of the convex hull. This so-called double
circle configuration is also conjectured to minimize the number of triangulations [1], and
therefore seems to be a promising extremal example, supporting Conjecture 6.1. On the other
hand all maximizing examples for ρ̄(11) have a triangular convex hull, so it could be that for
larger cardinality ρ̄(n) is more than a constant additive factor larger than ρ(n), contradicting
Conjecture 6.2.

It would be interesting to bound ρ̄(n) in terms of ρ(n).

Conjecture 6.2. There is a constant c0 such that ρ̄(n) ≤ ρ(n) + c0.

Note that the stronger statement that ρ̄(S) ≤ ρ(S) + O(1) for any set S might also hold.

Conjecture 6.2, if true, would mean that it is possible (although not necessarily practical)
to get arbitrarily close to the best possible linear upper bound by checking only finitely many
small cases. In other words, suppose the conjecture holds and c is a constant such that
ρ(n) ≤ cn. Then, for any ǫ > 0 there is k = k(ǫ) such that if we verify that ρ(k) ≤ ck, then
for n > k we have ρ(n) ≤ (c + ǫ)n + O(1). Indeed, k large enough such that ck+c0+1

k−1
≤ (c + ǫ)

holds, would do. Moreover, the discussion above is still valid if we replace c0 in Conjecture 6.2
by some function f(n) such that f(n) ∈ o(n).

Conjecture 6.2 is true when we consider reflexivity in the presence of Steiner points. Fol-
lowing the notation of [4], a Steiner point is a point q /∈ S that may be added to S in order to
improve some structure. For example, we define the Steiner reflexivity of S, ρ′(S), to be the
minimum number of reflex vertices of any simple polygon with vertex set V ⊇ S. Similarly,
ρ′(n) = max|S|=n ρ′(S). The (stronger statement) of Conjecture 6.2 can be easily proved if we
allow Steiner points.

Lemma 7. Let S be a set of n points and let pq be a boundary edge of CH (S). Then, there
are points p′, q′ (inside CH (S)) such that S ∪ {p′, q′} has a polygonalization containing the
edge pq and having at most ρ(S) + 1 reflex vertices.

Proof. We assume, w.l.o.g., that the fixed edge pq is horizontal, p is left to q, and the remaining
points S \ {p, q} are above the line through p and q. Let P be a polygonalization of S, such
that P does not contain the edge pq. We show that P can be modified into a polygonalization
P ′ of a set V ⊃ S such that P ′ contains the edge pq and ρ(P ′) ≤ ρ(P ) + 1.

Let p1 be the counter-clockwise neighbor of p in P , and let q1 and q2 be the counter-
clockwise and clockwise neighbors of q in P , respectively. Fix p′ slightly to the right and

9



p q

p1

q1

q2

(a)

p q

p1

q1

q2

q
′p

′

(b)

Figure 4: Illustrations for the proof of Lemma 7

above p, and q′ slightly to the left and above q. Now by replacing the chain q1 q q2 with the
chain q1 q′ q2, and the edge p p1 with the chain p q p′ p1, one obtains the desired polygonalization
P ′ (see Figure 4 for an illustration). Note that the only reflex vertex that might be introduced
in these steps is p′.

As before, this implies that we can get arbitrarily close to any linear upper bound on ρ′(n)
by checking only finitely many small cases. Note that it is important here that the Steiner
points we add lie inside the convex hull of the original set of points.

Adding a (Steiner) point to a set of points might result in a set of points whose reflexivity
is smaller than this of the original set (see [4] for examples). However, we are confident,
although we were not able to prove, that for every set of points one can add some point that
will not reduce the reflexivity. This would imply

Conjecture 6.3. ρ(n + 1) ≥ ρ(n)

A similar statement should hold for restricted reflexivity.

Conjecture 6.4. ρ̄(n + 1) ≥ ρ̄(n)

If this conjecture is true, then the last inequality of Corollary 4.1 always holds.

Acknowledgments. We thank anonymous referees for suggestions that helped improving
the presentation of the paper.
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A Proof of Lemma 4

Lemma 4. Let S be a set of at most 8 points in the plane. Then ρ̄(S) ≤ 2.

Proof. Given a set of n points S′, the algorithm in the proof of Theorem 3.1 in [4] generates
a polygonalization of S′ with at most ⌈nI/2⌉ reflex vertices, where nI is the number of points
in S′ that are internal points of CH (S′). Moreover, this algorithm begins with fixing one edge
of the boundary of CH (S′) (the edge p0p1 in [4]’s notation), and one can observe that this
edge is an edge of the resulting polygonalization when the algorithm terminates. Therefore,
it is enough to consider the case in which |S| = 8 and the boundary of CH (S) is a triangle.

Let CHi (S) denote the ith layer in the “onion peeling” of S. More precisely, set CH0 (S) =
CH (S), and let CHi (S) be the convex hull of S \ {p ∈ S | p is a vertex of the boundary of
CHj (S), 0 ≤ j < i}. We say that a point p outside of CHi (S) sees a vertex q of the boundary
of CHi (S) if the segment pq does not cross CHi (S).

Assume that the fixed edge of the boundary of CH (S) is e = (A, B), such that e is on the
x-axis, A is left of B, and let C be the third vertex of the boundary of CH (S). Consider the
lines determined by C and each of the internal points. Let p0 be the point that determines the
line with smallest slope. Clearly, p0 is a vertex of the boundary of CH1 (S). Let p1, p2, . . . , pk

be the remaining vertices of the boundary of CH1 (S) in a clockwise order around CH1 (S).
Denote by pi the point that determines (along with C) the line with the largest slope, and by
pl the lowest point in CH1 (S). (Note that it is possible that pl = p0 or pl = pi.) The following
two observations are easy.

Observation A.1. The point A (resp., B) sees all the vertices on the boundary of CH1 (S)
along the clockwise (resp., counter-clockwise) chain from pl to pi (resp., p0).

Proof. Follows from convexity.

Observation A.2. If i ≤ 3 then A sees p1 or B sees pi−1.

Proof. Since i ≤ 3 we have l ∈ {0, 1, i− 1, i}. If l ∈ {1, i− 1}, then, since both A and B see pl

we are done. Otherwise, suppose that l = 0. Then, by the previous observation, A sees all the
vertices on the clockwise chain from p0 to pi. Similarly, B sees this chain in case l = i.

We proceed proving Lemma 4 by case analysis, based on the number of vertices on the
boundary of CH1 (S).
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Figure 5: The case of 5 vertices on the boundary of CH1 (S)
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Figure 6: The case of 4 vertices on the boundary of CH1 (S)

Case 1: There are 5 vertices on the boundary of CH1 (S). We consider two subcases:
(a) Suppose that i ≤ 3. Then by Observation A.2 A sees p1 or B sees pi−1. Assume, w.l.o.g.,
that B sees pi−1. Then we draw the desired polygon as in Figure 5(a). (b) Suppose that
i = 4. Then pl 6= p0 or pl 6= pi. Assume, w.l.o.g., that pl 6= pi. Then by Observation A.1 A
sees pl+1. The polygon A pl+1 . . . pi C p0 . . . pl B A is the desired polygon (see Figure 5(b)).

Case 2: There are 4 vertices on the boundary of CH1 (S). Let q be the single vertex on
the boundary of CH2 (S). We consider the different subcases, based on the value of i. (a)
Suppose i = 1. If Aq or Bq cross p0p1, then we can draw the desired polygon as in Figure 6(a).
Otherwise, A sees the vertex p2 of the boundary of CH1 (S) (and B sees p3), and we can draw
the polygon as in Figure 6(b). (b) Suppose i = 2. The vertex p1 of the pentagon A B p0 p1 p2

is reflex. Thus at most one of the vertices p0 and p2 of this pentagon is reflex (a pentagon has
at most two reflex vertices). Assume, w.l.o.g., ∠p1p2A is less than π, then we can draw the
polygon as in Figure 6(c). (c) Suppose i = 3. Then at most one of vertices p1 and p2 of the
quadrangle B p1 p2 A is reflex. Assume, w.l.o.g., that ∠p1p2A is less than π. Then we draw
the polygon as in Figure 6(d). (Note that if A does not see p2, then p3 is below the segment
Ap2 and therefore ∠p1p2A is greater than π.)

Case 3: There are 3 vertices on the boundary of CH1 (S). If i = 2 then by Observation A.2
A or B sees p1. If i = 1, then A and B sees p0 or p1. Hence, A sees pi−1 or B sees p1.
We assume, w.l.o.g., that A sees pi−1. Then we have the chain pi C B A pi−1. It remains
to connect pi−1 to pi through pi+1 (addition is modulo 3) and the two vertices q1, q2 of the
boundary of CH2 (S). Let q1 be the point such that ∠pi−1pi+1q1 < ∠pi−1pi+1q2. Then the
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Figure 7: The case of 3 vertices on the boundary of CH1 (S)

chain pi−1 q1 pi+1 q2 pi completes the desired polygon (see Figure 7).
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