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Abstract

In a coloring of a set of points P with respect to a family of geometric regions one requires
that in every region containing at least two points from P , not all the points are of the same
color. Perhaps the most notorious open case is coloring of n points in the plane with respect
to axis-parallel rectangles, for which it is known that O(n0.368) colors always suffice, and
Ω(log n/ log2 log n) colors are sometimes necessary.

In this note we give a simple proof showing that every set P of n points in the plane can
be colored with O(log n) colors such that every axis-parallel rectangle that contains at least
three points from P is non-monochromatic.

1 Introduction

A hypergraph (or range space) H consists of a vertex set V and a (hyper)edge set E ⊆ 2V .
A (valid) coloring of H assigns a color to every vertex in H such that in every edge of H
that contains at least two vertices not all vertices are of the same color (that is, the edge is
non-monochromatic). If in every edge there is a color that appears (at least once and) at
most k times, then we say that the coloring is k-conflict-free (1-conflict-free coloring is called
conflict-free coloring).

Colorings and conflict-free colorings of hypergraphs that stem from geometric regions have
attracted some attention lately, due to their applications to frequency assignment in wireless
networks, scheduling in RFID networks, and decompositions of multiple coverings (see the recent
survey of Smorodinsky on conflict-free coloring [11] and the references therein). In a typical
geometric setting, the vertex set of the hypergraph is a set of points P , and its edge set is
defined by a family of regions F , such that every region F ∈ F defines an edge that consists of
the points of P that belong to F .

Perhaps the most challenging open question concerning coloring of geometric hypergraphs is
to find tight asymptotic bounds for the minimum number of colors that suffice for coloring any
set P of n points in the plane such that any axis-parallel rectangle that contains at least two
points from P contains points of different colors. Har-Peled and Smorodinsky [8] were the first
to consider this problem and gave an O(

√
n) upper bound. Soon after, several others pointed

out that this can be slightly improved to O(
√
n/ log n) [8, 9]. Ajwani et al. [1] significantly

improved the bound to O(n0.382), and very recently Chan [6] obtained the currently best upper
bound of O(n0.368). A lower bound of Ω(log n/ log2 log n) was proved by Chen et al. [7], and
it was conjectured that the upper bound should also be polylog(n). In this note we give a
simple proof for such an upper bound when considering only rectangles that contain at least
three points. In fact, in the following theorem we prove a more general result that relates to
the notion of k-colorful coloring, introduced in [3]. In what follows and throughout the rest of
the paper log stands for log2.
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Theorem 1. For every integer k > 0, every set P of n points in the plane can be colored with
O(k4 log n) colors such that every axis-parallel rectangle that contains at least 2k−1 points from
P contains points of at least k different colors.

Next we describe two consequences of Theorem 1. For a set of points P and an integer d > 1,
let αd(P ) be the maximum size of a d-independent subset Q ⊆ P , where Q is d-independent
if there is no axis-parallel rectangle R such that there are exactly d points from P in R and
all of them belong to Q. Chen et al. [7] proved that if P is a set of n points that is randomly
and uniformly selected from the unit square, then almost surely Ω(n/ log1/(d−1) n) ≤ αd(P ) ≤
O(dn log2 log n/ log1/(d−1) n). Theorem 1 implies that α3(P ) = Ω(n/ log n) for every set P of n
points (by coloring P with O(log n) colors and taking the largest color class). This bound can
be further improved using a result of Alon; see a remark at the end of Section 2.

Corollary 2. For every set P of n points α3(P ) ≥ c1
n log logn

logn , where c1 > 0 is an absolute
constant.

Note that this bound is quite close to the above-mentioned upper bound α3(P ) ≤ O(n log2 logn√
logn

)

due to Chen et al. [7]. Their upper bound also implies that the upper bound in Theorem 1

cannot be o(
√
logn

log2 logn
).

Clearly the bound of Corollary 2 holds for αd(P ) when d ≥ 3, since any d-independent
subset is also d′-independent, for every d′ ≥ d. It would be interesting to show a bound that
increases with d.

Corollary 3. For every integer d ≥ 3, every set of n points in the plane can be (d−1)-conflict-

free colored with respect to axis-parallel rectangles using c2
log2 n

log logn colors, where c2 > 0 is an
absolute constant.

Proof. We prove the claim by induction on n. We may assume that n is large enough by choosing
c2 > 0 big enough. Define P0 = P . For every i ≥ 0 and as long as |Pi| ≥ n

2 , apply Corollary 2 for

the set Pi and find a d-independent set in Pi of size at least c1
(n/2) log log(n/2)

log(n/2) ≥ c1
(n/2) log logn

logn .
Color this set by a new color and remove it from Pi to obtain Pi+1.

When we stop i = t and we have |Pt| ≤ n
2 . We used t colors and we observe that t ≤

n
2 /(c1

(n/2) log logn
logn ) + 1 ≤ 4

c1
logn

log logn . We use the induction hypothesis and color the remaining

points in Pt by at most c log2(n/2)
log log(n/2) ≤ c

(logn− 1
2
)2

log logn colors. Now we just need to choose c > 0 big

enough such that c
(logn− 1

2
)2

log logn + 4
c1

logn
log logn ≤ c

log2 n
log logn , which is definitely possible.

Smorodinsky [11] showed that this scheme of finding a d-independent subset, coloring it with
a new color, removing it, and continuing it the same manner indeed yields a (d−1)-conflict-free
colroing. 2

2 Proof of Theorem 1

Let k be a positive integer, and let P be a set of n points in the plane. We may assume that
k ≥ 2, since the theorem trivially holds for k = 1. A q-rectangle is an axis-parallel rectangle
that contains exactly q points from P . A rectangle is k-colorful if it contains points of at least k
different colors. Since any q-rectangle such that q > (2k− 1) contains a (2k− 1)-rectangle, it is
enough to prove that P can be colored with O(k4 log n) colors such that every (2k−1)-rectangle
is k-colorful.

We may assume without loss of generality that no two points in P share the same x- or
y-coordinate, since otherwise a slight perturbation of the points can only extend the set of
(2k − 1)-rectangles. Moreover, only the relative position of the points rather than their actual
coordinates matters when it comes to the set of (2k− 1)-rectangles they induce. Thus, we may
assume that the points in P lie on an n× n portion of the integer grid.
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For an integer i we define the graph Gi(P ) as follows. The vertices of Gi(P ) are the points
of P . Two points p, q ∈ P form an edge in Gi(P ) if there exists a k-rectangle that contains both
of them and whose aspect ratio is 1/2i (the aspect ratio of a rectangle is the ratio between its
height and its width). For a set I of integers let GI(P ) =

⋃
i∈I Gi(P ).

Lemma 2.1. GI(P ) has O(k4|I|n) edges.

Proof. Rectangles of the same aspect ratio intersect as pseudo-disks, that is, the boundaries of
two rectangles intersect at most twice. By [5, Thm. 13] the number of combinatorially different
pseudo-disks containing exactly k points from a planar set of n points is O(k2n). Therefore,
there are at most O(k2n) combinatorially different k-rectangles of a given aspect ratio. Since
we consider |I| different aspect ratios and every k-rectangle induces O(k2) edges, the number
of edges of GI(P ) is O(k4|I|n). 2

Recall that a graph is c-colorable if it is possible to assign to each of its vertices one of c
colors, such that different colors are assigned to adjacent vertices. From Lemma 2.1 we can
conclude:

Lemma 2.2. GI(P ) is O(k4|I|)-colorable.

Proof. By lemma 2.1 there exists a constant c such that GI(P ) has at most ck4|I|n edges. It
is easy to show by induction on n that GI(P ) is (ck4|I| + 1)-colorable. For n ≤ k the claim
trivially holds. Let P be a set of n > k points. Since GI(P ) contains at most ck4|I|n edges, it
has a vertex v of degree at most ck4|I|. Let P ′ = P \ {v}. By the induction hypothesis GI(P ′)
is (ck4|I|+ 1)-colorable. If two points p, q ∈ P ′ are both in a rectangle R of aspect ratio x that
contains exactly k points from P , then there is also a rectangle of aspect ratio x that contains
them both and k− 2 other points from P ′: It could be R if v /∈ R or a rectangle obtained from
R by extending it while maintaining its aspect ratio until hitting a new point (there is such
a point since n > k). Therefore, GI(P ) \ {v} is a subgraph of GI(P ′) and hence GI(P ) \ {v}
is (ck4|I| + 1)-colorable. Since v has at most ck4|I| neighbors, the (ck4|I| + 1)-coloring of
GI(P ) \ {v} can be extended to a (ck4|I|+ 1)-coloring of GI(P ). 2

With Lemma 2.2 in hand we can now complete the proof of Theorem 1. Consider G = GI(P )
for I = {−blog nc, . . . , dlog ne}. By Lemma 2.2, there is a coloring of G with O(k4 log n) colors.
We will show that under this coloring every (2k − 1)-rectangle is k-colorful.

Let R be a (2k− 1)-rectangle, let h and w be its height and width, respectively, and assume
without loss of generality that h ≤ w. Since we assume that the points in P lie on an n × n
grid, we have h ≥ 1 and w ≤ n. Therefore, there is an integer 1 ≤ t ≤ dlog ne such that
2t−1h ≤ w ≤ 2th. Thus, we can cover R (and no point in R2 \R) by two, possibly overlapping,
rectangles of height h and width 2t−1h. One of these rectangles contains at least k points of P .
If it contains more points, then we can shrink it continuously while maintaining its aspect ratio
until it contains exactly k points of P . The k points inside the rectangle (whose aspect ratio is
1/2t−1) form a k-clique in G, and therefore are colored by k different colors. 2

Remarks

• For the case k = 2 it is not necessary to use [5, Thm. 13] for the proof of Lemma 2.1, since
it is not hard to show that Gi(P ) is planar in this case (see, e.g., [5, Thm. 2]). Moreover,
it is also easy to see that for every vertex v in G the subgraph G[N(v)] is 4-colorable,
where N(v) denotes the neighbors of v and G[U ] denotes the subgraph induced by a vertex
subset U . (The Southeast neighbors of v can be colored alternately with two colors. The
same two colors can be used to color the Northwest neighbors of v. Two additional colors
can be used to color the Southwest and Northeast neighbors of v.) Alon [2] proved that
if G is a graph with average degree d and G[N(v)] is r-colorable for every vertex v, then
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G has an independent set of size at least cr
n log d

d , where cr depends only on r. It follows

that GI(P ) has an independent set of size Ω(n log logn
logn ), which implies Corollary 2.

• The approach that was used in the proof of Theorem 1 will not work in three and higher
dimensions. For example, Figure 1 shows a set of n points in three dimensions that
determines Ω(n2) axis-parallel cubes that contain exactly two points.

x

y

z

~u

~v

Figure 1: A set of n points that determines Ω(n2) axis-parallel cubes that contain exactly two
points (~u lies on the xy plane and ~v is parallel to the yz plane).

• Bar-Noy et al. [4] gave a general framework for online1 conflict-free coloring k-degenerate
hypergraphs. Their approach and the proof of Theorem 1 imply:

Corollary 4. There is a randomized algorithm that online-colors every set P of n points
in the plane with respect to axis-parallel rectangles containing at least three points from P
and uses O(log2 n) colors with high probability.
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