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Abstract

We investigate the number of different ways in which a rectangle containing a set of n
noncorectilinear points can be partitioned into smaller rectangles by n (non-intersecting)
segments, such that every point lies on a segment.

We show that when the relative order of the points forms a separable permutation, the
number of rectangulations is exactly the (n+ 1)st Baxter number. We also show that no
matter what the order of the points is, the number of guillotine rectangulations is always
the nth Schröder number, and the total number of rectangulations is O(20n/n4).

1 Introduction

Given a set P of n points within a rectangle R, a rectangulation (or rectangular partition) of
(R,P ) is a subdivision of R into rectangles by non-intersecting axis-parallel segments, such
that every point in P lies on a segment.

The problem of finding a rectangulation that minimizes the sum of lengths of the segments
(known as RGP [11], or RPP [5]) has attracted some attention. First, it was introduced by
Lingas et al. [16] as a special case of partitioning a rectilinear polygon containing rectilinear
holes into rectangles. The motivation for this partitioning problem comes from integrated
circuits design. This problem as well as RGP were shown to be NP-hard [16]. Later, several
approximation algorithms for RGP were suggested (see, e.g., [9, 11, 12, 13, 15]), including a
polynomial-time approximation scheme [6, 17]. RGP has applications to stock (or die) cutting
in the presence of material defects.

When the points in P are in general position in the sense that no two points have the
same x or y coordinate, i.e., the points are noncorectilinear, then the complexity class of the
minimization problem (known as RGNLP [11], or NCRPP [5]) is still unknown. However, Cal-
heiros et al. [5] have shown that an optimal solution must comprise exactly n non-intersecting
segments.

In this paper we consider the number of such rectangulations, namely:

Given a set P of n noncorectilinear points in the plane within a rectangle R,
how many different ways are there to divide R into smaller rectangles by n (non-
intersecting) segments such that every point in P lies on a segment?

See Figure 1 for examples of such rectangulations. We denote the number of rectangula-
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Figure 1: Rectangulations of (R,P )

tions of a set of points P within a rectangle R by Ξ(P ), since, clearly, the dimensions of
the bounding rectangle do not affect the number of rectangulations. Moreover, we observe
that Ξ(P ) depends only on the relative order of the points in P . We represent this or-
der by a permutation π on [n] (reflecting the order of y-coordinates with respect to the
x-coordinates when listing the points in P from left to right), and show that if π is a sep-
arable permutation [4], then the number of rectangulations is the (n + 1)st Baxter number,

B(n+ 1) =
∑n

r=0

(n+2

r )(n+2

r+1)(
n+2

r+2)
(n+1

1 )(n+1

2 )
= Θ(8n/n4). A separable permutation can be characterized

by the recursive process in which it is constructed, or by the absence of subsequences with
the same comparisons as 2413 or 3142.

When the permutation of the points is arbitrary, we use a novel technique of Santos and
Seidel [20] to show an upper bound of O(20n/n4) for the number of rectangulations. We also
show that the number of guillotine rectangulations (see Definition 4.1) in this case is the nth
Schröder number.

Previous work has considered the number of different point-free rectangulations, i.e., the
number of different ways to divide a rectangle R into n + 1 smaller rectangles by n non-
intersecting segments. Point-free rectangulations have applications in integrated circuits de-
sign: During the physical design of a chip, the shape, size, and position on chip of every module
are determined. The shape of the chip and the modules (blocks) is usually a rectangle. A
floorplan describes the topological structure of the blocks, thus, it is often represented by a
partition (dissection) of a rectangle into m rectangles (rooms) such that there is a one-to-one
mapping from the n (n ≤ m) blocks to the rooms. In a mosaic floorplan [14] there are no
empty rooms: every room contains exactly one block. Thus, a mosaic floorplan is equivalent
to a point-free rectangulation.

Sakanushi and Kajitani [19] were the first to consider the number of distinct mosaic floor-
plans. They found a recursive formula for this number, but did not recognize it to be the same
formula suggested by Chung et al. [7] in their analysis of the number of Baxter permutations.
Yao et al. [26] showed a bijection between mosaic floorplans and binary twin trees whose
number is known [10] to be the number of Baxter permutations. They have also considered
slicing floorplans and proved that their number is the nth Schröder number.

In this work we show that given a set P of n points whose permutation is separable, and a
mosaic floorplan f with n segments, f can be drawn such that every point in P is on exactly
one segment of f . From this result we conclude a stronger version of a result of de Fraysseix,
de Mendez and Pach [8] about the embedding of bipartite planar graphs as contact graphs of
vertical and horizontal segments in the plane.
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The rest of this paper is organized as follows. In Section 2 we describe two methods to
enumerate rectangulations. Next, we show the upper bound for the number of rectangula-
tions. In Section 4 we discuss guillotine rectangulations. The heart of the paper (Section 5) is
an analysis of the exact number of rectangulations. We start by observing that this number
depends only on the permutation of the points in P , then we show that for points arranged in
an identity permutation the number of rectangulations is B(n+ 1). Next we define separable
permutations and generalize this result for them. In Section 6 we discuss the relation between
rectangulations and floorplans, and finally, we conclude in Section 7. For clarity, implemen-
tation issues related to the two enumeration methods suggested in Section 2 and a proof of
one of the lemmata in Section 5 appear in an appendix.

2 Enumerating Rectangulations

In this section we present two methods of computing the number of rectangulations. The first
generates all the rectangulations using two simple operators; the second method counts the
number of rectangulations without actually generating them, and is thus more efficient.

2.1 Enumeration by Generating All the Rectangulations

Following we define two operators that enable us to explore the space of all the rectangulations
of a given point set P (within a rectangle1 R). Given a rectangulation x we can obtain new
rectangulations by applying each of the following operators on x.

Definition 2.1 (Flip) Let p be a point in P such that the segment s containing p does not
contain any endpoints of other segments. The operator Flip(x, p) changes the orientation of
s from vertical to horizontal or vice-versa.

Definition 2.2 (Rotate) Let s1 be a segment that contains one or more endpoints of other
segments, and let t be such an endpoint which is extreme on s1 (closest to one of its endpoints).
Denote by s2 the segment terminated at t. The operator Rotate(x, t) extends s2 beyond t until
it reaches another segment (or the boundary) and shortens s1 to t.

See Figure 2 for examples of the Flip and Rotate operators.

Given a set of (noncorectilinear) points P , we denote by G(P ) = (V,E) the graph of
rectangulations of P , where V = {x : x is a rectangulation of P} and E = {(x1, x2) : x2

is reachable from x1 by a single Flip or Rotate operation}. G(P ) is undirected since both
operators are clearly reversible.

Lemma 2.3 Let P be a set of noncorectilinear points in the plane and let G(P ) be the graph
of rectangulations of P . Then G(P ) is connected.

Proof: Let x1 and x2 be two different rectangulations, and let xv be the rectangulation in
which all the segments are vertical. The rectangulation xv can be reached from both x1 and

1The bounding rectangle is obviously irrelevant to the number of rectangulation, so we sometimes omit it.
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Figure 2: Applying the Flip and Rotate operators

x

`

Figure 3: 10101101 represents the intersection of x and `.

x2 by a finite series of Rotate and Flip operations: Shorten every horizontal segment that
contains endpoints of other segments by the Rotate operator, then turn it into a vertical
segment by the Flip operator. Therefore there is a path between x1 and x2 (through xv) in
G(P ). 2

It is thus possible to generate and iterate over all the rectangulations of P by traversing
G(P ) by, say, a standard depth- (or breadth-) first search. Since the Flip and Rotate opera-
tions can be implemented in O(1) time, exploring all the rectangulations in such a way takes
O(nΞ(P )) time and O(nΞ(P )) space. Alternatively, it is possible to traverse a spanning tree
of G(P ) using the reverse search method [2] in O(Ξ(P ) log(n)) time and O(n3) space. For
details see Appendix A.1.

2.2 Fast Enumeration of Rectangulations

Let x be a rectangulation of P , a set of n points, and let ` be a horizontal line not containing
any point from P . The intersection of x and ` can be represented by a binary word of length
n + 2, in which the (i + 1)st bit (from left to right) is set if ` intersects a vertical segment
that passes through the ith point (left-to-right) in P . (For convenience, the first and last bits
of the word are always set, in order to represent the intersection of the sweeping line with
the bounding rectangle.) See Figure 3 for an example. If we sweep ` from bottom to top
(skipping over the points of P ) we get a sequence of n+ 1 binary words of length n+ 2 that
represents the rectangulation x. For example, the rectangulation in Figure 3 is represented
by the sequence (10001001, 10001101, 10001101, 10101101, 10100101, 10100101, 10100101).
This observation suggests a way of computing the number of rectangulations of P as follows.
Define the following directed acyclic graph G = (V,E):

1. Set two distinct vertices vN and vS , and (n + 1)2n vertices of the form vj
w, for every

w ∈ 1{0, 1}n1 and 1 ≤ j ≤ n + 1. For 1 ≤ j ≤ n, a vertex of the form vj
w corresponds

to an intersection of the sweeping line just below the jth point (from bottom to top),
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Figure 4: vj
1...101011...1 and its neighbors according to rule 3(b)

resulting in the sequence w. A vertex of the form vn+1
w corresponds to an intersection

of the sweeping line just above the nth point (from bottom to top), resulting in the
sequence w.

2. Set edges from vS to v1
w and from vn+1

w to vN , for every w ∈ 1{0, 1}n1.

3. Let p2, p3, . . . , pn+1 be the points of P , such that pk+1 is the kth point from left to right.
Let pi be the (i − 1)st point from left to right, and the jth point from bottom to top.
Denote by wk the kth bit of w. Then, the neighbors of vj

w are defined by the following
rules:

(a) If wi = 1, then vj
w has only one neighbor, vj+1

w . This case corresponds to a vertical
segment through pi.

(b) Assume that wi = 0. This case corresponds to a horizontal segment through pi.
The neighbors of vj

w are all the vertices vj+1

w′ that satisfy:

i. w′
i = 0 (since the segment through pi is horizontal); and

ii. there are integers 1 ≤ l < i and i < r ≤ n+ 2 (representing the left and right
endpoints of the horizontal segment through pi) such that:

A. wl = w′
l = wr = w′

r = 1;

B. ws = w′
s for every 1 ≤ s < l and r < s ≤ n+ 2;

C. w′
s = 0 for every l < s < r such that ps is below pi; and

D. ws = 0 for every l < s < r such that ps is above pi.

See Figure 4 for an example of the neighbors of a certain vertex according to this
rule.

Consequently, the number of rectangulations is the number of paths in G from vS to vN .
Counting the number of rectangulations in this way can be implemented in O(n42n) time and
O(n32n) space. For details see Appendix A.2.
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3 An Upper Bound on the Number of Rectangulations

In this section we prove the following theorem:

Theorem 1 The maximum number of rectangulations of n noncorectilinear points (by n seg-
ments) is at most 20n/

(

n+4

4

)

.

Proof: Denote by f(n) the maximum number of rectangulations of n points. Let P be a
set of n noncorectilinear points within a rectangle R, such that Ξ(P ) = f(n), and let x be
a rectangulation of (R,P ). A T-junction is an endpoint of a segment on another segment,
or on the boundary. The degree of a point p ∈ P in x is the number of T-junctions on the
segment that contains p. For example, the rightmost point in P in Figure 1(a) has degree 2
in the rectangulation of Figure 1(b) and degree 3 in the rectangulation of Figure 1(c). Let nx

i

be the number of points with degree i in x, then clearly n =
∑

i n
x
i .

Every segment is bounded by two T-junctions, thus every segment s contributes at most 4
to the total sum of degrees: 2 to the point it contains, and 1 to every point that is contained
in a segment bounding s (if it is not a boundary segment). Thus, the total sum of degrees is
4n − b, where b is the number of T-junctions on the boundary of R in x. It is easy to verify
that if n ≥ 3, then b ≥ 4. Thus, for n ≥ 3 we have

4n− 4 ≥
∑

i

i · nx
i .

Easy manipulations show that

4
∑

i

nx
i ≥ 4 +

∑

i

i · nx
i ,

∑

i

(4 − i)nx
i ≥ 4,

∑

i

(5 − i)nx
i ≥ 4 +

∑

i

nx
i = n+ 4.

Considering only the positive summands on the left-hand side of the last equation we have:

3nx
2 + 2nx

3 + nx
4 ≥ n+ 4. (1)

Now, let p ∈ P be a certain point and let r′ be a rectangulation of (R,P \ {p}). We
denote by hi the number of rectangulations of (R,P ) that we obtain by adding p to x′ and
“stretching” the segment through p such that the degree of p in the resulting rectangulation
is i. Clearly, h2 = 2, since the segment through p can be either vertical or horizontal and we
must stop “stretching” it as soon as it hits another segment in each direction. In a similar
way we have h3 ≤ 4 (see Figure 5) and h4 ≤ 6 (and in general hi ≤ 2(i− 1)).

Let Ni be the number of points with degree i in all the rectangulations of (R,P ). Then,

Ni ≤ n · hi · f(n− 1),

since any fixed point can be inserted into any of at most f(n − 1) rectangulations of the
remaining n − 1 points in at most hi different ways, such that its degree in the resulting
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Figure 5: Four possible ways of adding p to r′ such that the degree of p is 3

rectangulation is i. Specifically, we have N2 ≤ 2n · f(n − 1), N3 ≤ 4n · f(n − 1), and
N4 ≤ 6n · f(n− 1).

We now prove by induction on n that f(n) ≤ 20n/
(

n+4

4

)

. For n = 0, 1, 2 the claim holds

trivially: f(0) = 1 = 200/
(

4

4

)

, f(1) = 2 < 4 = 201/
(

5

4

)

, and f(2) = 6 < 26.666... = 202/
(

6

4

)

.
Now assume that the claim holds for all n′ ≤ n, for n ≥ 3. By summing Equation 1 over all
possible rectangulations, we have:

3N2 + 2N3 +N4 ≥ (n+ 4)f(n), (2)

since we chose P such that Ξ(P ) = f(n). On the left-hand side of Equation 2 we have:

20n · f(n− 1) ≤ 20n
20n−1

(

n+3

4

) = (n+ 4)
20n

(

n+4

4

) .

Hence, f(n) ≤ 20n/
(

n+4

4

)

, and the claim follows. 2

4 Guillotine Rectangulations

In this section we consider a special class of rectangulations: guillotine rectangulations.

Definition 4.1 (Guillotine rectangulation) In a guillotine rectangulation the segments
can be ordered so that when the partition is executed according to that order, the current
segment always partitions a rectangle into two rectangles.

For example, the rectangulation in Figure 1(b) is guillotine, whereas the rectangulation
in Figure 1(c) is not. In this section we consider the number of guillotine rectangulations.
It is easy to see that this number depends only on the number of points in P . Let Γ(n) be
the number of guillotine rectangulations when |P | = n. Clearly, Γ(n)/2 guillotine rectangula-
tions contain a vertical segment cutting the bounding rectangle into two rectangles, while the
remaining Γ(n)/2 rectangulations contain a horizontal segment cutting the bounding rectan-
gle into two. Considering only the first set and denoting by k the first point left to right,
through which passes a vertical segment cutting the bounding rectangle into two, we derive
the following recursive formula for Γ(n):

Γ(n)/2 = Γ (n− 1) +
n

∑

k=2

(

1

2
Γ (k − 1)

)

Γ (n− k) ,

where Γ(0) = 1 The formula holds since for k = 1 there are Γ(n−1) guillotine rectangulations,
while for k > 1 the segment through the kth point splits the bounding rectangle into two
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rectangles: the right one has Γ(n− k) guillotine rectangulations, while the left one has Γ(k−
1)/2 guillotine rectangulation as it must be cut into two by a horizontal segment.

This formula is equivalent to a recursive formula of the nth (large2) Schröder number:

rn = rn−1 +
n−1
∑

k=0

rkrn−1−k, r0 = 1

Thus, we have:

Theorem 2 Given a rectangle R which encloses a set P of n noncorectilinear points, the
number of guillotine rectangulations of (R,P ) is the nth Schröder number.

The Schröder numbers arise in several enumerative combinatorial problems. One example
is the number of paths on a grid from (0, 0) to (n, n), that stay strictly below the line y = x+1
and use only the steps (1, 0), (0, 1), and (1, 1). Other examples can be found in [24, pp. 239–
240].

The nth Schröder number, rn, also satisfies the following summation formula:

rn =

n
∑

k=0

(

2n− k

k

)

Cn−k,

where Cn is the nth Catalan number. It can be shown (see, e.g., [22]) that rn = Θ
(

(3 +
√

8)n/n1.5
)

.
The first Schröder numbers (starting from n = 0) are {1, 2, 6, 22, 90, 394, 1806, . . .}.

5 The Exact Number of Rectangulations

In this section we investigate Ξ(P )—the exact number of rectangulations (guillotine and non-
guillotine) of a set P of n noncorectilinear points within a rectangle R. We start by observing
that Ξ(P ) depends only on the permutation of the points in P . Next, we show that for identity
permutations the number of rectangulations equals the (n+ 1)st Baxter number. Finally, we
generalize this result for the class of separable permutations.

A Baxter permutation on [n] = {1, 2, . . . , n} is a permutation π = (σ1σ2 . . . σn) for which
there are no four indices 1 ≤ i < j < k < l ≤ n such that

1. σk < σi + 1 = σl < σj ; or

2. σj < σl + 1 = σi < σk.

For example, for n = 4, 3142 and 2413 are the only non-Baxter permutations. This class of
permutations was introduced by Baxter [3] in the context of fixed points of the composite of
commuting functions. The nth Baxter number, B(n), is the number of Baxter permutations
on [n]. Chung et al. [7] proved that

B(n) =
n−1
∑

r=0

(

n+1

r

)(

n+1

r+1

)(

n+1

r+2

)

(

n+1

1

)(

n+1

2

)

2The nth small Schröder number counts the number of possible bracketing on a word of n letters. For n > 1
it is exactly half of the nth large Schröder number.
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Dulucq and Guibert [10] showed bijections between Baxter permutations, twin binary
trees, and some type of three non-intersecting paths on a grid. Shen et al. [22] analyzed the
asymptotic behavior of the Baxter numbers and proved that B(n) = Θ(8n/n4). The first
Baxter numbers (starting from n = 0) are {0, 1, 2, 6, 22, 92, 422, 2074, . . .}.

5.1 Rectangulations and Permutations

Definition 5.1 Given a set P of noncorectilinear points, we refer to the relative order of the
points in P as the permutation of P and denote it by π(P ).

Representing the relative order of the points by a permutation π = (σ1σ2 . . . σn) is feasible
since the points are noncorectilinear. By σi = j we mean that the ith point along the x-axis
is the jth point along the y-axis. It is easy to see that given two sets of points, P1 and
P2, such that π(P1) = π(P2), we always have Ξ(P1) = Ξ(P2). In other words, the number
of rectangulations does not depend on the actual point coordinates, it depends only on the
permutation of points. Therefore, we will also use the notation Ξ(π). However, computational
enumerations we have performed showed that when π(P1) 6= π(P2) it is possible to have
Ξ(π(P1)) 6= Ξ(π(P2)). For example, Ξ(1234) = 92, whereas Ξ(3142) = 93.

5.2 The Number of Rectangulations of Identity Permutations

Lemma 5.2 Let In be the identity permutation on [n]. Then Ξ(I) = B(n+ 1).

Proof: Given a rectangulation x we denote by bottom(x) (resp., top(x)) the set of vertical
segments touching the bottom (resp., top) edge of the bounding rectangle R. Similarly, left(x)
(resp., right(x)) denotes the set of horizontal segments touching the left (resp., right) edge
of R. Let Tn(i, j) be the number of different rectangulations x of n points with the identity
permutation, such that |top(x)| = i and |right(x)| = j. Then we can write the following
recurrence relation for n > 0:

T (n+ 1, i+ 1, j + 1) =
∞

∑

k=1

(T (n, i, j + k) + T (n, i+ k, j)), (3)

where T0(0, 0) = 1 and Tn(i, j) = 0 for n < 0. To understand why this relation holds, note that
we can create a rectangulation x of n+1 points such that |top(x)| = i+1 and |right(x)| = j+1
from a rectangulation x′ of n points, such that |top(x′)| = i and |right(x′)| = j+k (for k ≥ 1),
by:

1. Adding an additional point p to the right and above all the points of x′;

2. Setting a vertical segment s through p; and

3. Extending s downwards using Rotate operations until k−1 segments are removed from
right(x).

Figure 6 shows these steps. We can create in a similar way a rectangulation x of n+1 points,
for which |top(x)| = i+1 and |right(x)| = j+1, from a rectangulation x′ of n points, such that
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p

(a) Adding an additional
point

p

(b) Setting a vertical seg-
ment

p

(c) Extending the vertical
segment

Figure 6: From Tn(i, j + k) to Tn+1(i+ 1, j + 1)

|top(x′)| = i+k (for k ≥ 1) and |right(x′)| = j, by passing a horizontal segment through a new
point p. Clearly, every rectangulation x of n+ 1 points can be created from a rectangulation
x′ of n points as described above, and there are no two different rectangulations x′1, x

′
2 of n

points that lead to the same rectangulation of n+ 1 points. Therefore,

Ξ(In) =
∑

i,j≥0

Tn(i, j), (4)

which is exactly B(n+ 1) by [7]. 2

5.3 Separable Permutations and Their Number of Rectangulations

In this section we define the class of separable permutations and show that Ξ(π) = B(n+ 1)
if π is a separable permutation.

5.3.1 Separable Permutations

Let π′ = (α1α2 . . . αn) and π′′ = (β1β2 . . . βm) be two permutations on [n] and [m], respectively.
We say that π = (σ1σ2 . . . σn+m) is the result of concatenating π′′ above π′ if πi = αi for
1 ≤ i ≤ n and πn+i = n+ βi for 1 ≤ i ≤ m. Likewise, we say that π = (σ1σ2 . . . σn+m) is the
result of concatenating π′′ below π′ if πi = m+ αi for 1 ≤ i ≤ n and πn+i = βi for 1 ≤ i ≤ m.

Definition 5.3 (separable permutation) A permutation π is a separable if either

1. π = (1); or

2. There are two separable permutations π′ and π′′ such that π is the the concatenation of
π′′ above or below π′.

Another characterization of separable permutations is in terms of forbidden sub-sequences.
A permutation π = (σ1, σ2, σ3, . . . , σn) ∈ Sn avoids a certain sub-permutation τ ∈ Sk (for k ≤
n) if it does not contain a sub-sequence (σi1 , σi2 , . . . , σik) with the same pairwise comparisons
as τ . The set of permutations on [n] avoiding τ is denoted by Sn(τ). Bose et al. [4] showed
that the set of separable permutations is exactly Sn(3142, 2413). Separable permutations are
also the permutations that can be sorted by an unbounded sequence of pop-stacks [1] (in a
pop-stack the pop operation unloads the entire stack). Shapiro and Stephens [21] showed that
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permutation matrices that eventually fill up under bootstrap percolation, are exactly those
matrices representing separable permutations. The next observation follows from their results
and the results of West [25]:

Observation 5.4 The number of separable permutations on [n] is the (n − 1)st Schröder
number.

5.3.2 The Number of Rectangulations for Separable Permutations

In this section we prove that the number of rectangulations when the points are arranged in
a separable permutation is B(n+ 1).

Let x be a rectangulation. The interface of x, denoted by F(x), is an ordered quadruple
(l, t, r, b), such that l = |left(x)|, t = |top(x)|, r = |right(x)|, and b = |bottom(x)|. We denote
by Ξ(π,F) the number of rectangulations with permutation π and interface F .

Lemma 5.5 For every n, l, t, r, b, Ξ (In, (l, t, r, b)) = Ξ (In, (l, b, r, t)).

The proof of this property is not trivial and does not follow from simple symmetry argu-
ments. Since it is rather long and technical, it appears in Appendix B.

Corollary 5.6 Let In be the reverse identity permutation on [n] (n, n − 1, . . . , 1), then for
every n, l, t, r, b Ξ (In, (l, t, r, b)) = Ξ

(

In, (l, t, r, b)
)

.

Proof: Let x be a rectangulation of n points in the identity permutation, such that F(x) =
(l, t, r, b). When x is reflected with respect to the x-axis we get a rectangulation x′ of n points
in the reverse identity permutation, such that F(x′) = (l, b, r, t). The corollary follows directly
from this fact and from Lemma 5.5. 2

Lemma 5.7 Let π be a separable permutation of n points. Then for every interface F ,
Ξ(π,F) = Ξ(In,F).

Proof: By induction on n. For n = 1 a permutation of one point is both the identity
permutation and a separable permutation. Assume the claim is true for every separable
permutation of n′ < n points, and let π be a separable permutation of n points. π may be a
concatenation-above or a concatenation-below of two separable permutations. Suppose that
π is the result of concatenating a separable permutation π2 ∈ Sn−k above another separable
permutation π1 ∈ Sk. Then all the rectangulations of π can be created by considering every
pair of a rectangulation of π1 and a rectangulation of π2, and by combining every such pair
in all the possible combinations (see Figure 7). Note that given x1 and x2, rectangulations
of π1 and π2, respectively, the number of rectangulations of π that are created by combining
x1 and x2 in all the possible combinations depends only on F(x1) and F(x2). Moreover, the
interface of every such combined rectangulation also depends only on F(x1) and F(x2) and
the way they were combined.

According to the induction hypothesis, for every pair of interfaces F1 and F2 we have
Ξ(π1,F1) = Ξ(Ik,F1) and Ξ(π2,F2) = Ξ(In−k,F2). All the rectangulations of In can be
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tion of the rectangu-
lations of π1 and π2

π1

π2π

(d) Another combi-
nation of the rectan-
gulations of π1 and
π2

Figure 7: Rectangulations of a separable permutation

created by combining all the pairs of a rectangulation of Ik and a rectangulation of In−k

in all possible combinations. Again, the number of combinations and the interface of every
such combined rectangulation depends only on the interfaces of the rectangulations of Ik and
In−k, and on the way they were combined. Thus, for every concatenation-above separable
permutation π and interface F , Ξ(π,F) = Ξ(In,F).

Suppose now that π is the result of concatenating a separable permutation π2 ∈ Sn−k

below another separable permutation π1 ∈ Sk. It follows from Corollary 5.6 that for every
pair of interfaces F1 and F2, Ξ(Ik,F1) = Ξ(Ik,F1) and Ξ(In−k,F2) = Ξ(In−k,F2). Using the
induction hypothesis we conclude that for every pair of two interfaces F1 and F2, Ξ(π1,F1) =
Ξ(Ik,F1) and Ξ(π2,F2) = Ξ(In−k,F2). Then, according to the combination arguments given
above and by using Corollary 5.6, for every concatenation-below separable permutation π and
interface F , Ξ(π,F) = Ξ(In,F) = Ξ(In,F).

In conclusion, the claim holds for all separable permutations. 2

Theorem 3 Given a rectangle R which encloses a set P of n noncorectilinear points, such
that π(P ) is a separable permutation on [n], Ξ(R,P ) = B(n+ 1).

Proof: The claim follows from Lemmata 5.2 and 5.7. 2

6 Rectangulations and Floorplans

Recall that a “point-free” rectangulation, that is, a subdivision of a rectangle into smaller
rectangles by n non-intersecting axis-parallel segments is equivalent to what is known in
integrated circuits design as mosaic floorplans [14]. Yao et al. [26] proved that the number of
mosaic floorplans by n segments is B(n+1). In this section we prove that given a set of points
P in a separable permutation and a mosaic floorplan f by n segments, there is a unique way
of “combining” P and f into a rectangulation.

A mosaic floorplan is characterized by the relations between segments and rectangles it
defines: We say that a segment s and a rectangle r in a mosaic floorplan f hold a top-, left-,
right-, or bottom-seg-rect relation if s supports r from the respective direction. Two floorplans
are considered equivalent if there is a labeling of their rectangles and segments such that they
hold the same seg-rect relations.

12



(a) (b) (c)

Figure 8: Illustrations for the proof of Theorem 4.

Theorem 4 Given a mosaic floorplan f with n segments and a set P of n points arranged
in a separable permutation π, there is a unique rectangulation of P , x, such that x \ P is
equivalent to f .

Proof: We will show that it is possible to create a rectangulation of a set of points whose
permutation is π and its underlying mosaic floorplan is f . It then follows that an equivalent
rectangulation can be created for P . Since by Theorem 3 the number of rectangulations of a
set of n points in a separable permutation is B(n + 1) and this is also the number of mosaic
floorplans with n segments [26], it follows that the combination is unique.

We now prove by induction on n that for every mosaic floorplan f by n segments and a
separable permutation π ∈ Sn it is possible to create a rectangulation x of a set of n points
whose permutation is π such that the underlying floorplan of x is f . Examining the bottom-
left rectangle in f note that its top-right corner is either of the form a or T. In the first case
by ‘sliding’ the horizontal segment creating the ‘a’-junction downwards (resp., upwards) while
‘stretching’ (resp., ‘shrinking’) the vertical segments attached to it (if such exist) we create
a floorplan which is equivalent to f . In the second case one can slide the vertical segment
of the ‘T’-junction leftwards or rightwards. Note that if a segment is shifted until it hits the
boundary then we obtain a mosaic floorplan of n− 1 segments.

Now suppose π can be formed by concatenating the permutation π2 ∈ Sn−k above the
permutation π1 ∈ Sk. We create two sets of the segments of f in the following manner.
We start by shrinking the bottom-left rectangle in f by sliding one of its edges as described
above. We stop sliding this edge when it is in a small distance ε > 0 from the boundary (see
Figures 8(a) and 8(b)), but we notice that if this edge vanishes in the boundary then it is
possible to slide another segment in a similar manner.

We continue by sliding this segment until it is within a distance of 2ε from the boundary.
Likewise, we slide each of the next k− 2 segments: the ith segment is shifted either leftwards
or downwards until it is within iε distance from the boundary. This ensures we maintain a
valid floorplan equivalent to f .

In a similar way we can ‘group’ the other n−k segments near the top-right corner of f . See
Figure 6 for illustrations of this process. Now divide f into four parts by drawing a vertical
and a horizontal line through its center. Every segment in the top-left and the bottom-right
parts is partly contained in either the bottom-left or the top-right parts as well. Additionally,
the bottom-left part is actually a floorplan with k segments whereas the top-right part is a
floorplan with n − k segments. By induction it is possible to embed a set of k points whose
permutation is π1 into the first floorplan, and a set of n−k points whose permutation is π2 into

13



n B(n+ 1) Minimum number Maximum number
of rectangulations of rectangulations

4 92 93 93
5 422 424 428
6 2,074 2,080 2,122
7 10,754 10,776 11,092
8 58,202 58,290 60,524
9 326,240 326,608 342,938

Table 1: Empirical results of the number of rectangulations for non-separable permutations

the second floorplan. Therefore it is possible to embed a set of n points whose permutation
is π into f .

The case in which π is concatenation-below permutation is handled in a similar manner
(this time the segments are grouped at the top-left and bottom-right corners). 2

7 Conclusions

We showed that the number of rectangulations (by n segments) of a set P of n noncorectilinear
points depends only on the permutation in which the points are arranged. For any arrangement
the number of guillotine rectangulations is always the nth Schröder number and the total
number of rectangulation is O(20n/n4).

For point sets in a separable permutation we proved that the number of rectangulations is
the (n + 1)st Baxter number. Moreover, for every mosaic floorplan f with n segments there
is a unique way to embed a set of n points, arranged in a separable permutation, in f . This
strengthens a result of de Fraysseix et al. [8]: they showed that every bipartite planar graph
can be represented as the contact graph3 of a set of non-intersecting vertical and horizontal
segments in the plane. It follows from our results that given a set P of n noncorectilinear points
in the plane, arranged in a separable permutation, and a planar bipartite graph G = (V,E)
such that |V | = n, then it is possible to represent G as a contact graph of a set S of n vertical
and horizontal segments such that every segment in S contains a single point from P .

Counting the number of rectangulations for non-separable permutations is still an open
question. Our computations have led us to the following conjecture:

Conjecture 7.1 Given a set P of n noncorectilinear points, such that π(P ) is a non-separable
permutation on [n], Ξ(P ) > B(n+ 1). Moreover, there is at least one way of embedding P in
any mosaic floorplan containing n segments.

For example, when n = 4 there are two non-separable permutations (3142 and 2413),
and for both of them (not surprisingly, since one is the reverse of the other) the number of
rectangulations is 93 (as opposed to B(5) = 92 for separable permutations). For n = 5 the
number of rectangulations varies from 424 to 428 (as opposed to B(6) = 422 for separable
permutations), but some values appear and some do not. Our empirical results are listed in
Table 1.

3In a contact graph there is an edge between two touching elements.
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(a) A set of points
P in a non-separable
permutation π =
263154

(b) A mosaic floor-
plan f

(c) A possible em-
bedding of P into f

(d) A different em-
bedding of P into f

Figure 9: Two possible embeddings for a non-separable permutation.

Perhaps the extra number of rectangulations for non-separable permutations can be com-
puted by counting the number of different ways in which they can be embedded in some mosaic
floorplans. Figure 9 shows, for example, two possible ways of embedding a set of points in a
non-separable permutation into a certain mosaic floorplan.

Other questions of interest are:

1. Improve the upper bound of O(20n/n4), perhaps to O(16n/n4) by showing that for every
mosaic floorplan and a set of points once the orientations of the segments through every
point are set then there is at most one way of embedding the points into the floorplan.

2. What is the number of rectangulations when the problem is generalized to higher di-
mensions?

3. The original minimum edge-length partitioning problem (RGNLP). Furthermore, what is
its computational complexity when restricted to monotone (or separable) permutations?

Acknowledgements We thank Eshcar Kaplan for building a tool that allowed us to ex-
periment with our hypotheses. During our quest for the right series we used the On-line
Encyclopedia of Integer Sequences [23].
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A Enumeration-related Implementation Issues

A.1 Enumerating Rectangulations by Reverse Search

In Section 2.1 we described the Flip and Rotate operators and proved that the graph of rectangulations
(of a set of points P ) defined by these operations is connected. Thus, the number of rectangulation can
be computed by a standard DFS (or BFS) on this graph. In this section we describe a more efficient
way of traversing the graph of rectangulations. It is based on a method of Avis and Fukuda [2] known
as reverse search. The key observation is that in order to visit all the vertices (rectangulations) of a
graph, it is enough to traverse a spanning tree of the graph. This saves time (we do not explore all the
edges) and space (there is no need to keep a record of the already-visited vertices).

Given a set of points P , let rh be the rectangulation of P in which all the segments are horizontal.
For every rectangulation except rh we designate one of its neighbors to be its “parent” in such a way
that every rectangulation is a descendent of rh. The parent of a rectangulation r 6= rh is defined as
follows: Let s be the leftmost vertical segment in r. If the operator Flip can be applied on s, then the
result of applying it is the parent of s. Otherwise, we can apply the Rotate operator and shorten s. If
we can shorten s from below, then the rectangulation we get as a result is the parent of r. Otherwise,
the rectangulation we get by shortening s from above is the parent of r. Clearly, every rectangulation
(except rh) has a parent, and every rectangulation is a descendent of rh.

In order to find the children of a certain rectangulation r we can keep a pointer to the leftmost
vertical segment in r, and a sorted list of flippable horizontal segments that are to the left of it (that
is, segments that pass through points which are left of the vertical segment). The children of r are
obtained by either:

1. Flipping one of the horizontal segments. In this case the flipped segment becomes the leftmost
vertical segment and the list of flippable horizontal segments is the list of flippable horizontal
segments to the left of it that do not contain endpoints of the flipped segment.

2. Extending the leftmost vertical segment using a Rotate operation (downwards if it is possible,
or upwards if it is possible and it is impossible to shorten it from below by a Rotate operation).
In this case the leftmost vertical segment remains the same. Additionally, at most one segment
is added to the list of flippable horizontal segments and at most one segment is removed from
this list.

Updating the sorted list of segments can be performed in O(log n) using a (slightly modified) determin-
istic skip list [18]. Therefore, the time complexity of enumerating (by generating) all the rectangulations
is O(Ξ(P ) log n). The depth of the spanning tree is bounded by O(n2), since, when traversing from
parent to child, the leftmost vertical segment is either extended or replaced by a vertical segment to
the left of it. Thus, the space complexity is O(n3).

A.2 Faster Enumeration of Rectangulations

This section refers to the faster enumeration method described in Section 2.2.

Lemma A.1 Given a set of n points P , let G = (V,E) be the corresponding DAG of rectangulations.
Then, |E| = Θ(n32n).

Proof: Let pj+1 be the jth point left-to-right and the kth point bottom-to-top, and let ek be the number
of edges of the form (vk

w → vk+1

w′ ). Then ek = 2n−1+(j−1)(n−j)2n−3+(j−1)2n−2+(n−j)2n−2+2n−1.
The first summand stands for all the words w in which the jth bit is set (i.e., there is a vertical segment
through pj+1), from which there is only one out-edge. The second summand represents all the cases
in which the endpoints of the horizontal segment through pj+1 are set by coordinates of other points
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Figure 10: Illustrations for the proof of Proposition B.1

from P : one to the left of pj+1 and the other to the right of pj+1. There are (j − 1)(n− j) options to
choose such a pair and 2n−3 options to set the other bits in w and w′ (if a bit in w can be either 0 or
1, then the corresponding bit in w′ has only one option, and vice versa). The rest of the summands
are for the cases in which one or two of the endpoints of the horizontal segment through pj+1 are on
the bounding rectangle. Therefore,

|E| = 2 · 2n +

n
∑

k=1

ek = Θ(n32n).

2

Constructing G takes O(n22n + n|E|) time since computing the neighbors of every vertex vj
w can

be performed in O(n + dout(v
j
w)) time. Computing the number of paths from a source vertex to a

sink vertex in a DAG takes O(|E|) time. Since every vertex is represented by an n-bit word,4 the time
complexity of this enumeration algorithm is O(n42n). Considering the space complexity, note that
the DAG is composed of n+ 3 “levels” and the edges are only between consecutive levels. Thus, it is
enough to hold in memory only two consecutive levels and therefore the space complexity is O(n32n).

B Proof of Lemma 5.5

In this section we consider only point sets that are arranged in the identity permutation. Let x be a
rectangulation of a point set P that lies within a rectangle R. We denote by H(x) (resp.,V(x)) the
set of segments in x touching both vertical (resp., horizontal) edges of R. Clearly, H(x) 6= ∅ implies
V(x) = ∅ and V(x) 6= ∅ implies H(x) = ∅.

Given a rectangulation x, we call a pair of segments s1 ∈ top(x) and s2 ∈ bottom(x), such that
s1 is to the left of s2, \-segments. If, in addition, there is no other segment s ∈ top(x) ∪ bottom(x)
between s1 and s2, we say that s1 and s2 are adjacent \-segments. The next observation will be useful
in the sequel.

Proposition B.1 Given a rectangulation x of (R,P ), such that π(P ) = In and H(x) = V(x) = ∅:

1. There is a pair of \-segments in x; or

2. There are segments s1 ∈ left(x) and s2 ∈ right(x) such that s1 is above s2.

Proof: H(x) = ∅ implies that top(x) 6= ∅ and bottom(x) 6= ∅. Suppose that there is no pair of
\-segments in x. That is, all the segments in top(x) are to the right of all the segments in bottom(x).
Let a be the rightmost segment in bottom(x), and let b be the leftmost segment in top(x). Let c and
d be the horizontal segments terminating a and b, respectively (there must be such segments since
V(x) = ∅). Suppose further that the height of c is at least the height of d (see Figure 10(a)). Then,

4Likewise, a factor of logn should be added in the analysis of the previous algorithm; however, we follow
the common practice and omit this factor.
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Figure 11: ψ(x) when V(x) 6= ∅

as we now show, there must be a horizontal segment in left(x) whose height is at least the height of
c. We traverse c to the left. If we reach the left edge of R, then c is the sought segment. Otherwise,
we reach a vertical segment e that terminates c. It must be that e /∈ top(x), since all the segments in
top(x) are to the right of a. Therefore, there is a horizontal segment f that terminates e from above.
We proceed this way leftward and upward until we reach the left edge of R. Thus, there is a segment
s1 ∈ left(x) which is not lower than c. Using the same arguments one can show that there exists a
segment s2 ∈ right(x) which is not higher than d. Thus, s1 and s2 are the segments we seek.

The other case in which c is lower than d, (see Figure 10(b)) is handled in an similar manner. The
claim follows. 2

Proposition B.2 Let X be the set of all the rectangulations of (R,P ) when π(P ) = In. Then there
is a mapping ψ : X → X such that for every rectangulation x ∈ X:

1. |H(x)| = |H(ψ(x))| and |V(x)| = |V(ψ(x))|; and

2. if F(x) = (l, t, r, b) then F(ψ(x)) = (l, b, r, t).

According to the these properties, ψ(x) has the same number of segments crossing from left to
right and from bottom to top as x, and the same interface as x except the numbers of top-touching
and bottom-touching segments which are interchanged. Note that these properties are not trivial and
do not follow from simple symmetry arguments.

Proof: We will build such a mapping by induction on n. When n = 1 there are only two possible
rectangulations, each one corresponding to itself. Assume that such a mapping ψ exists for all the
rectangulations of n′ < n points. Let x be a rectangulation of n points arranged in the identity
permutation, such that F(x) = (l, t, r, b). There are three cases:

1. V 6= ∅;
2. H 6= ∅; or

3. V = H = ∅.

We now describe ψ(x) in each of these cases.

1. V(x) 6= ∅. Let s be the leftmost segment in V(x). We find the corresponding rectangulations
for the points to the left and to the right of s, and concatenate them to create y = ψ(x) (see
Figure 11). Clearly, F(y) = (l, b, r, t), |H(y)| = |H(x)|, and |V(y)| = |V(x)|.

2. H(x) 6= ∅. Let s be the lowest segment in H(x). Let x′ be the rectangulation we get when we
reflect x with respect to the primary diagonal (along the points). The points of x′ are arranged
in the identity permutation, V(x′) 6= ∅ and F(x′) = (b, r, t, l), thus x′ qualifies for the previous
case. Let y be the rectangulation we get when reflecting ψ(x′) with respect to the secondary
diagonal. Clearly, F(y) = (l, b, r, t), |H(y)| = |H(x)|, and |V(y)| = |V(x)|. See Figure 12 for an
illustration of these steps.
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Figure 13: ψ(x) when x contains \-segments

3. H(x) = V(x) = ∅. In this case there are two subcases:

(a) There is a pair of \-segments in x; or

(b) There is no such pair of segments.

Proposition B.1 guarantees that in the second subcase there are segments s1 ∈ left(x) and
s2 ∈ right(x), such that s1 is higher than s2. By following the same series of steps described
above (see Figure 12), we can reduce this subcase to the first subcase.

Let us, then, consider the first subcase of the current case. Let (a, b) be the leftmost pair of
adjacent \-segments. Let x(−a) be the rectangulation induced by the points to the left of a, and
let x(a − b) and x(b−) be the rectangulations induced by the points between a and b, and the
points to the right of b, respectively. We construct ψ(x) by concatenating ψ(x(−a)), x(a − b),
and ψ(x(b−)). However, since a and b do not cut R we need to “combine” right(ψ(x(−a))) with
bottom(x(a − b)) ∪ {a, b}, and top(x(a − b)) ∪ {a, b} with left(ψ(x(b−))) in order to create a
valid rectangulation. Here are the details of this combination: Suppose the ith (bottom to top)
segment in right(x(−a)) is terminated by the jth (left to right) segment in bottom(x(a − b)) ∪
{a, b}. We stretch the ith segment in right(ψ(x(−a))) until the jth segment in bottom(x(a −
b)) ∪ {a, b}, and vice versa. We do the same in order to combine top(x(a − b)) ∪ {a, b} with
left(ψ(x(b−))). The result is a rectangulation y such that F(y) = (l, b, r, t) and V(y) = H(y) = ∅.
Figure 13 shows an example of the steps in this case.

2

It is not hard to prove the next property of ψ (e.g., by induction on the number of points).

Observation B.3 ψ preserves pairs of adjacent \-segments (although their dimensions might change)
and does not introduce such new pairs.

Proposition B.4 ψ is one-to-one.
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Proof: We show the claim by induction on n. For n = 1, ψ is one-to-one. Let us assume that ψ
is one-to-one for every n′ < n. Let x1 and x2 be two different rectangulations of n points, and let
y1 = ψ(x1) and y2 = ψ(x2). We consider the different cases as in the definition of ψ.

1. V(x1) 6= ∅. If V(x2) = ∅ then clearly y1 6= y2 since by Proposition B.2 we have V(y1) 6= ∅ and
V(y2) = ∅. Otherwise, if V(x2) 6= ∅, then if the leftmost vertical segment in V(x2) is different
from the leftmost vertical segment in V(x1), then y1 6= y2 since applying ψ on a rectangulation
x does not change the leftmost vertical segment in V(x). If the same segment is the leftmost
segment both in V(x1) and V(x2), then we can conclude by the induction hypothesis.

2. H(x1) 6= ∅. This case is similar to the previous case, and is thus omitted.

3. H(x1) = V(x1) = ∅. As in the definition of ψ, in this case we consider two subcases:

(a) There is a pair of \-segments in x; or

(b) There is no such pair of segments.

According to Observation B.3, if x1 contains \-segments and x2 does not, then y1 6= y2. Assume
that (a1, b1) and (a2, b2) are the leftmost pairs of adjacent \-segments in x1 and x2, respectively,
and let p1, q1, p2, q2 be the points through which a1, b1, a2, b2 pass, respectively. If p1 6= p2 or
q1 6= q2, then by Observation B.3 y1 6= y2. Otherwise, one of the induced rectangulations in x1

must be different from its corresponding induced rectangulation in x2, or x1 and x2 are different
in the way the induced rectangulations are “combined.” In the first case, it follows from the
induction hypothesis and the definition of ψ that y1 6= y2. In the second case, after applying ψ
on the induced rectangulations of x1 and x2, they are “combined” in a similar way as in x1 and
x2, therefore again we have y1 6= y2.

The second subcase is handled in a similar manner, and is thus omitted.

2

Corollary B.5 (Lemma 5.5) For every n, l, t, r, b, Ξ (In, (l, t, r, b)) = Ξ (In, (l, b, r, t)).
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