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Abstract. Bose et al. [1] asked whether for every simple arrangement
A of n lines in the plane there exists a simple n-gon P that induces A
by extending every edge of P into a line. We prove that such a polygon
always exists and can be found in O(n log n) time. In fact, we show that
every finite family of curves C such that every two curves intersect at least
once and finitely many times and no three curves intersect at a single
point possesses the following Hamiltonian-type property: the union of the
curves in C contains a simple cycle that visits every curve in C exactly
once.

1 Introduction

Arrangements of lines in the plane are among the most studied structures in
Combinatorial and Computational Geometry (see, e.g., [4, 5]). Every set of straight-
line segments S naturally induces an arrangement of lines, simply by extending
every segment in S into a line. Bose et al. [1] asked the following natural question.

Problem 1. Does every simple arrangement A of n lines contain a simple n-gon
that induces A?

An arrangement of lines is simple if every pair of lines intersects, and no
three lines intersect at a single point. A polygon (resp., curve) is simple if it
is non-self-intersecting. Fig. 1(a) shows a simple arrangement of six lines and a
simple hexagon that induces this arrangement.

Problem 1 remained open until now, though a few partial results were ob-
tained. In [1] it was shown that a simple arrangement A of n lines contains a
subarrangement of m ≥

√
n− 1 + 1 lines that has an inducing simple m-gon,

and that A always has an inducing simple n-path (a polygonal chain consist-
ing of n line segments), which can be constructed in O(n2) time. Recently, the
third and fourth authors [8] showed that an inducing n-path can be constructed
in O(n log n) time, and that there always exists an inducing simple O(n)-gon,
which can be found in O(n2) time.

Our main result is an affirmative answer to Problem 1.
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Fig. 1. An inducing simple n-gon and n-path.

Theorem 1. For every simple arrangement A of n > 2 lines in the plane there
is a simple n-gon that induces A. Given the set of n lines that form A, such a
polygon can be constructed in O(n log n) time.

We give two different constructive proofs for the existence of an inducing
simple n-gon. The first proof is short and elegant and yields a non-optimal but
polynomial-time algorithm for finding such a polygon. The second proof yields
an O(n log n)-time algorithm. It is based on a simple idea, however, it involves
several case distinctions and is, thus, quite technical.

During our quest for a solution to Problem 1, we proved the following inter-
esting fact.

Theorem 2. For every simple arrangement A of n non-vertical lines in the
plane there is an x-monotone n-path that induces A.

Note that the first part of Theorem 1 can also be phrased as follows: Every
arrangement of lines contains a simple cycle (i.e., a closed curve) that visits every
line exactly once. To be more precise, we say that a curve x visits another curve
y if their intersection contains a point in which they neither cross nor touch. A
simple curve visits y exactly once if it visits y and their intersection is connected.
The first part of Theorem 1 is then equivalent to saying that every simple line
arrangement contains a simple (polygonal) cycle that visits every line exactly
once. We also have the following generalization of Theorem 1.

Theorem 3. Let C be a finite family of n > 2 simple curves in R3, such that
every pair of curves in C intersects at least once and at most finitely many times,
and no three curves intersect at the same point. Then ∪

C∈C
C contains a simple

cycle that visits every curve exactly once.

The rest of this paper is organized as follows. A first proof for the existence
of an inducing simple n-gon is given in Section 2. This proof is then extended
in Section 3 to a proof of Theorem 3. In Section 4 we describe a different and



more efficient way of finding an inducing simple n-gon. Due to space limitations,
we only sketch the idea of the proof and omit most of the details, which can be
found in the full version of this paper. Theorem 2 is proved in Section 5, while
Section 6 contains some concluding remarks.

2 First proof of the existence of an inducing simple n-gon

Let A be a simple arrangement of n lines in the plane. We begin by constructing
a simple path that visits every line in A exactly once. This is done in a way
similar to the construction of an inducing path in [1]. Consider an arbitrary
intersection point of two lines, denote these lines by `1 and `2. Walk a short
distance on `1 toward its intersection point with `2. Remove `1, and walk on `2
in a direction that contains at least one intersection point, until reaching the
first intersection point. Let `3 be the other line that determines this intersection
point. Remove `2 and repeat the same process for `3 and so on and so forth,
until reaching a line that has no additional intersection points. Finally, walk a
short distance on this line in some direction. See Fig. 1(b) for an example.

Since every pair of lines intersects, no line is missed and this process results
in a path that induces every line in A. Denote this path by Q. The lines in A are
denoted by `1, `2, . . . , `n according to the order they are visited by Q. Denote
by sj the segment of `j on Q. Assume to the contrary that Q is self-intersecting.
Then there are two intersecting segments, si and sj , such that i ≤ j − 2. But
this is a contradiction to the definition of `i+1 as the first line, different from
`1, . . . , `i, that we encounter while walking along `i.

Observe that Q lies in one of the two half-planes determined by `n. Indeed,
otherwise `n would have crossed Q, contradicting the definition of `n as the last
line in A we encounter while creating the path Q. We assume without loss of
generality that `n coincides with the x-axis and that Q lies in the half-plane
above `n. For convenience, denote the line `n by `.

We call a simple inducing n-path of A rooted above ` if it lies in the closed
half-plane above ` and ` includes an extreme segment of the path. As we have just
seen, there is at least one simple inducing n-path rooted above `, namely Q. For
such a path W we denote by q1(W ), . . . , qn−1(W ) the n− 1 internal vertices of
the path starting from q1(W ) on `. We denote by `(W ) the line through qn−1(W )
that includes the other extreme segment of W . Denote by `−(W ) the half-line of
`(W ) that consists of all points with y-coordinates smaller than the y-coordinate
of qn−1(W ). We denote by qn(W ) the topmost (also first) intersection point of
`−(W ) with `∪ [q1(W )q2(W )]∪ . . .∪ [qn−2(W )qn−1(W )]. (Here, [ab] denotes the
line segment connecting point a to point b.)

Let z1, . . . , zm denote all the intersection points in A indexed in any way
such that i < j if the y-coordinate of zi is smaller than the y-coordinate of zj .
We then define for every j, Y (zj) = j.

For a simple inducing n-path W rooted above `, let Y (W ) =
∑n

i=1 Y (qi(W )).
Consider the simple inducing n-path W rooted above ` such that Y (W ) is mini-
mum. If qn(W ) lies on `, then observe that the vertices q1(W ), . . . , qn(W ) define
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Fig. 2. The paths W and W ′

a simple inducing closed n-path of A (see Fig. 2(a)). Assume therefore that
qn(W ) is the intersection point of `(W ) with the segment [qi(W )qi+1(W )] for
some 1 ≤ i ≤ n−2 (see Fig. 2(b)). Then we define W ′ as the path whose internal
vertices are

q1(W ), . . . , qi(W ), qn(W ), qn−1(W ) . . . , qi+2(W ),

and hence `(W ′) is the line through qi+1(W ) and qi+2(W ). Observe that W ′ is a
simple inducing n-path rooted above `. We have Y (W ′) < Y (W ) because qn(W ′)
has a smaller y-coordinate than the y-coordinate of qi+1(W ) (see Fig. 2(c)). We
have thus reached a contradiction to the minimality of W . ut

Remark. The proof of Theorem 1, presented above, yields an algorithm with
running time polynomial in n. This is because Y (W ) is always smaller than n3

and this gives a bound on the number of iterations going from W to W ′ required
to find a simple inducing closed n-path for A.

3 Proof of Theorem 3

Let C be a family of n simple curves in R3, such that every pair of curves in
C intersects at least once and at most finitely many times, and no three of the
curves meet at a point. We will show that ∪

C∈C
C contains a simple closed path

that visits every curve in C exactly once.
The proof is a modification of the argument in the proof of Theorem 1. We

first find a simple path Q that visits every curve in C exactly once, exactly in
the same way that was described in Section 2, applied this time to C. Let c be
a curve in C containing the last segment of Q thus constructed. As we observed
in the case of lines, c does not meet Q at any point outside the segment of Q
contained in c.

A simple (oriented) path W that visits every curve in C exactly once will be
called rooted in c if c is the first curve visited by W . Clearly, Q is an example
for such a path.



For a path W , as above, we denote by q1(W ), . . . , qn−1(W ) the n−1 internal
vertices of the path starting from q1(W ) on c. For i = 1, . . . , n − 2 we denote
by si(W ) the segment of W whose vertices are qi(W ) and qi+1(W ), these will
be called the internal segments of W . We denote by c(W ) the curve in C that
passes through qn−1(W ) and contains the last segment of W .

Let s be a portion of a curve in C. We define |s| as the number of intersection
points of pairs of curves in C that lie on s. Finally, we define

Y (W ) = f(|s1(W )|, . . . , |sn−2(W )|),

where f(x1, . . . , xn−2) is a strictly monotone increasing function of the lexico-
graphic order of (x1, . . . , xn−2).3

Consider the simple path W that is rooted in c and visits every curve in
C exactly once, such that Y (W ) is minimum. Let p be an intersection point of
c(W ) and c. Let qn(W ) be the intersection point of c∪s1(W )∪. . .∪sn−2(W ) and
the portion of c(W ) between qn−1(W ) and p that is closest to qn−1(W ) along
the curve c(W ).

If qn(W ) lies on c, then observe that the vertices q1(W ), . . . , qn(W ) define a
simple closed path that visits every curve in C exactly once. Assume therefore
that qn(W ) is an intersection point of c(W ) with si(W ) for some 1 ≤ i ≤ n− 2.
Let s′ denote the portion of si(W ) delimited by qi(W ) and qn(W ). Let s′′ denote
the portion of c(W ) delimited by qn(W ) and qn−1(W ). Then we define W ′ as
the path rooted in c whose internal segments are

s1(W ), . . . , si−1(W ), s′, s′′, sn−2(W ), sn−3(W ) . . . , si+2(W ),

and c(W ′) is the curve containing the segment si+1(W ).
Observe that W ′ is a simple path rooted on c that visits every curve in C

exactly once. It immediately follows that Y (W ′) < Y (W ), because sj(W ′) =
sj(W ) for j = 1, . . . , i − 1 while it is easy to see that |si(W ′)| < |si(W )| as
si(W ′) = s′ ⊂ si(W ) and qi+1(W ) is an intersection point in si(W ) \ si(W ′).
We have thus reached a contradiction to the minimality of W . ut

Remarks. (1) Because Theorem 3 is stated in R3, geometry actually does not
play any role here. We may conclude the same result for “combinatorial curves”
that “intersect” finitely many times, as long as there is a total order on the set
of intersection points in each curve.
(2) The result in Theorem 3 is valid also if the curves in C are not simple and
have self-crossings. In this case we repeat the proof and ignore self-intersections
of curves. Finally, when obtaining the resulting closed path we observe that self-
intersections of the closed path result only from loops in the path. These loops
can easily be canceled.

3 For example, f(11, 0, 6, . . .) > f(6, 9, 5, . . .) > f(6, 9, 4, . . .).



4 Finding an inducing simple n-gon efficiently

LetA be a simple arrangement of n lines in the plane. We incrementally construct
a polygon inducing A by starting with the boundary of a cell of A. In every
construction step the polygon is extended using a part of the boundary of the
cell containing it. We assume that n > 4, since, combinatorially, there is only
one arrangement of size three and one of size four and their inducing polygons
can be easily found.

We start with a so-called critical point p, i.e., p is the first intersection point
on both lines g1 and g2 containing it. The initial polygon P0 is then the boundary
of the only bounded face incident to p, see Fig. 3.

p

g1 = b

g2

P0

H+

e0 e1

e2
e3

Fig. 3. Initialize P0 to be the boundary of the bounded face of A incident to a critical
point p.

Let Pi denote the polygon constructed in step i, and |Pi| its number of edges.
Denote by Ai the arrangement of all the lines except the ones induced by Pi. We
maintain the following invariants throughout the construction of the polygons
Pi.

Property 1.
1. Pi is a simple polygon;
2. Pi induces |Pi| lines of the arrangement A; and
3. Pi is contained in an unbounded face of the arrangement Ai.

The unbounded face of Ai containing Pi is denoted by C(i) and its by R(i).
Define the orientation of the two initial lines g1 and g2 in direction from p towards
the remaining intersection points. Without loss of generality we can assume that
all intersection points of g2 lie in the positive half-plane of g1, denoted by H+(g1),
as in Fig. 3.

For every construction step we maintain a so-called base line b(i). Intuitively,
the base line will be the line that determines the direction in which Pi is extended.
For P0 the base line is b(0) = g1. The edges of Pi are labeled in the following
way: the edge contained in the base line b(i) is the edge e(i)0 . In counter-clockwise
order we enumerate with negative indices the edges contained in the previous
base lines e(i)−1, . . . , e

(i)
−m, where e(i)−m is contained in the first base line b(0). These



edges are referred to as base edges. It can be shown that the base edges form a
connected concave chain in Pi. The remaining non-base edges are enumerated in
clockwise order with positive indices e(i)1 , . . . , e

(i)
k , where e(i)1 is incident to e

(i)
0

and e
(i)
k is incident to e(i)−m.

A line containing an edge e(i)j is denoted by l(i)j and the intersection point of

two lines l(i)j , l
(i)
m by x

(i)
j,m. We define the orientation of base edges in clockwise

direction and the orientation of non-base edges in counter clockwise direction
with respect to the polygon Pi. For each line l(i)j its orientation is defined by the

orientation of the edge e(i)j . The part of l(i)j \ e
(i)
j oriented in positive (negative)

direction of l(i)j is called positive (negative) half-line and is denoted by l
(i)+
j

(l(i)−j ), respectively. For simplicity we will omit the index (i) if all identifiers
refer to the same step i, and will use the index in order to distinguish between
different steps.

We maintain the following properties for base lines, and non-base lines, re-
spectively.4

Property 2. All intersection points of a base line lj , j ≤ 0, with Ai lie in the
positive half-line, i.e., l−j ∩ Ai = ∅ for j ≤ 0. The base edges e0, e−1, . . . , e−m

form a concave chain in Pi, and every non-base edge is contained in the union
of the positive half-planes (i.e., half-planes to the right of the oriented line) of
the base lines l0, l−1, . . . , l−m.

Property 3. The intersection of a non-base line lj with a non-base edge ek is
empty, for k > j + 1.

For the line l1 it would be helpful to have an even stronger property:

Property 4. The intersection of l1 with Pi is exactly the edge e1. That is, l1
supports Pi.

The idea of the extension step is to extend the polygon Pi in direction of the
base line by modifying the edges e0 up to at most e3 and adding a part of the
boundary R(i) to the new polygon Pi+1. In every extension step we remove a
chain of edges from the polygon Pi, and attach a simple polygonal chain to the
open ends. Thus, if the added chain does not intersect the unchanged part of Pi,
the polygon Pi+1 is simple.

Depending on the combinatorial configuration of the lines l1, l2, l3, the chain
of base edges, and the boundary R, one of several extension construction steps
is taken, until all lines of A are induced by Pj , for some j. The inducing polygon
for A is then P = Pj .

The first case distinction is whether the negative half-line of l1 intersects the
boundary R. If it does, Case 1 applies.

4 Property 3 can be violated in a special case that is considered in the full version of
the paper.



Case 1 [ l−1 ∩ R 6= ∅ ]: The edge e1 is replaced by the part of l−1 from x1,2 to
its intersection with R. The edge e0 is extended until the intersection of b and
R. Finally, we add the segment of R between these two intersection points, see
Fig. 4(a). The base line for Pi+1 remains unchanged b(i+1) = b(i).

b
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l2

Pi
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Pi+1

R(i)

x0,1

x1,2

(a) Case 1

b

Pi

e1
R

x0,1

x1,2

l2

Pi+1

b(i+1) = l
(i)
1

xj,2

(b) Case 2

Fig. 4. Case 1 and 2: The polygon Pi is the shaded area. The identifiers refer to Pi,
and the new polygon Pi+1 is outlined by the bold black line.

The next distinction is whether l+2 intersects R:

Case 2 [ l−1 ∩ R = ∅ and l+2 ∩ R 6= ∅ ]: In this case e1 is replaced by the part
of l+1 from x0,1 to its intersection with R. The edge e2 is extended following the
orientation of l2 until the intersection of l+2 and R. Finally, we add the segment
of R between these two intersection points, see Fig. 4(b). The new base line for
the polygon Pi+1 is now b(i+1) = l

(i)
1 .

It is easy to verify that all the above-mentioned properties are maintained
when applying Cases 1 or 2. Due to space limitations we do not include the
remaining and more complicated cases in this extended abstract, and refer the
reader to the full version of the paper for those missing details.

Running Time. In the initialization step we need to find an intersection point of
the arrangement that is the last point on both lines intersecting in it. Ching and
Lee [3] showed that such points are a subset of the intersection points between
two neighboring lines sorted by slope. Thus, the initialization can be performed
in O(n log n) time by sorting the lines by slope, computing the intersection points
of the neighboring lines and selecting the point with the maximum or minimum
x-coordinate.

For the extension steps we consider the dual points of the lines of the ar-
rangement, where the dual space π∗ is defined as in [2]: The dual of a point



p : (a, b) in the primal space is the line p∗ : f(x) = ax − b in π∗; the dual of a
line l : f(x) = ax+ b in the primal space is the point l∗ : (a,−b) ∈ π∗.

Let A∗ denote the set of points in π∗ dual to the lines of the arrangement
A. We will utilize the following property of the dual points: the points of the
lower/upper convex hull of A∗ are the duals of the lines in A that form the
boundary of the upper/lower unbounded face of the arrangement.

For that purpose we can rotate the arrangement A such that the initial
two lines g1 and g2 have the maximal and the minimal slope, the initial point
p = g1 ∩ g2 is a vertex of the lower unbounded face, and no line of A is vertical.
Observe that p must be the only vertex of the lower unbounded face.

When the lines g1 and g2 are removed from A the point p is contained in the
new lower unbounded face. Similarly, after every extension step the constructed
polygon is contained in the lower unbounded face of the arrangement of the
remaining lines.

In every extension step we need to determine the intersection points of a
constant number of lines with the boundary of the lower unbounded face of the
arrangement of the remaining lines and to update the boundary of the lower
unbounded face after deleting some lines. Updating the boundary of the lower
unbounded face corresponds to updating the upper convex hull of the dual point
set. Using the dynamic convex hull data structure by Hershberger and Suri [6]
updates of the upper convex hull of the point set can be performed in O(log n)
time, that is O(n log n) time in total.

Intersection points of a line l with the boundary of the lower unbounded face
correspond in dual space to lines through l∗ that are tangent to the upper convex
hull of the remaining points. These tangent lines can be found in O(log n) time.

Thus the total time complexity of the construction algorithm is O(n log n).

5 x-monotone inducing n-path: Proof of Theorem 2

In this section we show that every simple arrangement of n non-vertical lines,
contains an inducing x-monotone n-path. Since the path is x-monotone, it is
clearly simple. Suppose first that n is an even number. We sort the lines according
to their slopes, and denote by A the set of the first n/2 lines in this order, and
by B the rest of the lines. Initially, all the lines are unmarked. Pick the leftmost
intersection point of two unmarked lines, one from A and one from B, then mark
these lines. Continue to pick a total of n/2 points p1, p2, . . . , pn/2 this way. We
will construct an x-monotone n-path through p1, p2, . . . , pn/2.

Denote the lines that intersect at pi by ai ∈ A and bi ∈ B, i = 1, 2, . . . , n/2.
First, pick arbitrarily one of the lines that intersect at p1, say a1, walk a short
distance on a1 from a point left of p1 to p1, then walk a short distance on b1
rightwards. Assume that we have built an x-monotone 2i-path that goes a short
distance rightwards beyond pi and induces the lines a1, . . . , ai and b1, . . . , bi.
We will show how to extend it into an x-monotone 2(i + 1)-path that goes a
short distance rightwards beyond pi+1 and induces the lines a1, . . . , ai+1 and
b1, . . . , bi+1.



Observation 4 The intersection of ai+1 (resp., bi+1) and bi (resp., ai) is to
the right of pi.

Proof. Otherwise this intersection point would be picked instead of pi.

Consider the triangle with a vertex at pi, an edge on the vertical line through
pi+1, an edge ea on ai, and an edge eb on bi (see Fig. 5).

Observation 5 ea (resp., eb) is crossed by ai+1 or bi+1.

Proof. We consider two cases based on whether pi+1 is inside the wedge deter-
mined by ai and bi. Suppose that it is. Then ai+1 (resp., bi+1) must cross either
ea and eb. Suppose, w.l.o.g., that they both cross ea (otherwise, we can reflect
everything with respect to the x-axis). See Fig. 5(a). Then ai+1 must have a

ai

bi

pi

pi+1

ai+1

eb

ea

(a) pi+1 is inside the wedge deter-
mined by ai and bi.

ai

bi

pi

pi+1

ai+1

eb

ea

(b) pi+1 is outside the wedge deter-
mined by ai and bi.

Fig. 5. An illustration for the proof of Observation 5. ai+1 cannot be in the shaded
region.

larger slope than bi, otherwise it will cross bi to the left of pi, contradicting
Observation 4. This is of course impossible.

Suppose that pi+1 is outside the wedge determined by ai and bi. We can as-
sume, w.l.o.g., that it is below the wedge, for otherwise we can reflect everything
with respect to the x-axis. If ai+1 does not cross both ea and eb, then it must
have a larger slope than bi, or cross bi to the left of pi, which is impossible. See
Fig. 5(b) for an illustration.

Now, suppose that the path built so far goes a short distance rightwards
beyond pi on ea (resp., eb). Then by Observation 5 there is a line ` ∈ {ai+1, bi+1}
that crosses ea (resp., eb). Walk on ea (resp., eb) until the intersection point with
`, then walk on ` until pi+1, and finally walk a short distance rightwards on the



other line in {ai+1, bi+1}. The new path is an x-monotone 2(i + 1)-path that
goes a short distance rightwards beyond pi+1 and induces the lines a1, . . . , ai+1

and b1, . . . , bi+1.
It remains to consider the case that n is an odd number. Let ` be the line with

the median slope. Create a new line `′ that is a slightly rotated copy of ` such
that its slope is slightly smaller than the slope of `, and their intersection point
is the leftmost intersection point in the arrangement A ∪ {`′}. Now continue as
before, while choosing `′ as the first induced line. Finally, remove the segment
of `′ from the constructed path.

Time complexity. An inducing x-monotone n-path can be found in O(n2) time
as follows. First we construct the arrangement of lines. This can be done in
O(n2) time [2]. Then we find the sets A and B in O(n log n) time. For every line
in A we find its leftmost intersection point with a line from B. The first vertex
of the path is the leftmost point among these points. The two lines defining this
minimum point are removed from the arrangement while updating the minimum
leftmost points for the other lines. This can be done in O(n) time. The process of
finding the next leftmost intersection point between a line from A and a line from
B (among the remaining lines), removing the corresponding lines, and making
appropriate updates is then repeated O(n) times.

6 Concluding remarks

We proved in two different ways that every simple arrangement of n lines contains
an inducing simple n-gon. The proof given in Section 2 actually works also for
pseudoline arrangements. A pseudoline arrangement consists of a finite set of
x-monotone curves, unbounded in both directions, such that every two curves
intersect at exactly one point where they properly cross each other. It is enough
to show that there is a partial order of the intersection points that lie above
the pseudoline `n. Such an order can be derived from orienting every pseudoline
toward its intersection point with `n. The proof then shows that there is a
simple cycle that visits every pseudoline exactly once, and that such a cycle can
be found in polynomial time. In fact, the proof also works for pseudo-parabolas
(pseudo-parabolas are defined similarly to pseudolines, except that two curves
cross exactly twice). Here, a partial order of the intersection points can be defined
as in [7].

The second proof, given in Section 4, yields an O(n log n)-time algorithm for
finding an inducing simple polygon. We believe that this time complexity is the
best possible, but leave it as an open question.

An inducing simple polygon need not be unique. It would be interesting to
determine the maximum and minimum number of inducing simple n-gons of an
arrangement of n lines. Fig. 6 shows an arrangement with exponentially many
inducing simple n-gons.



Fig. 6. n lines with exponentially many inducing simple n-gons. At every “step” of the
“stairs” one can “climb” either from left or from right.
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