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Abstract

Let G be a geometric graph on n vertices in general position in the plane. Suppose that
for every line ` in the plane the subgraph of G induced by the set of vertices in one of the
two half-planes bounded by ` has at most k edges (k ≥ 1 may be a function of n). Then G
has at most O(n

√
k) edges. This bound is best possible.
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1 Introduction

Let G be an n-vertex geometric graph. That is, a graph drawn in the plane such that its vertices
are distinct points and its edges are straight-line segments connecting corresponding vertices.
It is usually assumed, as we will assume in this paper, that the set of vertices of G is in general
position in the sense that no three of them lie on a line.

Let ` be a line that does not contain any vertex of G (unless stated otherwise, we consider
only such lines). Every edge of G either crosses `, or is contained in one of the two half-planes
bounded by `.1 We say that G has a k-light side with respect to `, if one of these half-planes
contains at most k edges of G. If G has a k-light side with respect to every line `, then G is
k-near bipartite. We consider the following problem: What is the maximum number of edges
of an n-vertex k-near bipartite geometric graph?

We will think of k as a function of n, that is k = k(n), so obviously this question is interesting
only when k(n) = o(n2). The following simple construction shows an n

√
k lower bound. Let

G be the geometric graph whose vertices are the vertices of a regular n-gon P . We denote
the vertices of P (and of G) by v0, . . . , vn−1, indexed in a clockwise order. The cyclic distance
between two vertices, vi, vj , i < j, is defined as min{j− i, i+n− j}. The edge set of G consists
of all edges (vi, vj) such that the cyclic distance between vi and vj is at least bn/2−

√
kc. The

number of edges in G is at least n
√
k as each vertex has degree at least 2

√
k. One can easily

verify that each half-plane bounded by a line that passes through the center of P contains at
most k edges of G. It follows that if ` is a line not passing through the center of P , then the
half-plane that is bounded by ` and does not contain the center of P must contain at most k
edges. Therefore, G is k-near bipartite.

Our main result shows that this construction is essentially best possible.

Theorem 1. Let n and k be positive integers. Every n-vertex k-near bipartite geometric graph
has at most O(n

√
k) edges.
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1Since we only consider lines that do not contain vertices, it makes no difference if the half-planes are open

or closed.

1



Remark. The condition that k should be positive is merely technical. The case k = 0 is
equivalent to the case of geometric graphs in which there is no pair of disjoint edges. This is
because once there are two disjoint edges in a geometric graph, this graph cannot be 0-near
bipartite, as witnessed by any line separating the two disjoint edges. It is a well known classical
result that such graphs in which there are no two disjoint edges contain at most n edges and
that this bound can indeed be attained ([2, 5]).

Related work. It is a common technique when studying Turán-type problems in geometric
graphs to split the edge set into ones that are crossed by a certain line and to ones that are
not and then claim (usually by induction) that the number of edges not crossed by the line
is small (see, e.g., [1, 3, 4, 6, 7, 8]). Fulek and Suk [1] studied geometric graphs that do not
contain two disjoint copies of a certain geometric pattern. If there is a constant c such that an
n-vertex geometric graph with at least cn edges must contain one copy of a certain geometric
pattern, then a graph avoiding two disjoint copies of this pattern is cn-near bipartite and hence
by Theorem 1 has O(n3/2) edges. However, this bound is inferior to the O(n log n) bound found
for this case in [1].

2 Proof of Theorem 1

First we show that every k-near bipartite graph has a subgraph in which the degree of every
vertex is O(k) and the number of edges is high. When k(n) = Ω(n) the graph itself satisfies
this property. For k(n) = o(n) we use the following lemma, whose proof we postpone.

Lemma 2.1. There are constants c, d > 0 such that the following holds. Let G = (V,E) be a
geometric graph on n vertices that is k-near bipartite. Then there exists a subgraph of G that
has at least c|E| −O(n) edges and the degree of each of its vertices is at most dk.

Theorem 1 follows immediately from Lemma 2.1 and the following theorem.

Theorem 2. Let d > 0 be a constant and let G be an n-vertex k-near bipartite graph such that
the degree of every vertex in G is at most dk. Then there is another constant a = a(d) such
that G has at most an

√
k edges.

Proof. Call a line ` almost balanced if each of the two half-planes bounded by ` contains at most
(d + 1)k edges of G. Notice that if ` is almost balanced, then there are at most k + (d + 1)k =
(d + 2)k edges of G not crossing `. We first show that there is an almost balanced line with
any given slope, and that for every almost balanced line there is another almost balanced line
separating almost the same subsets of vertices.

For a non-vertical line ` denote by A(`) and B(`) the vertices of G that are above and below
`, respectively. Let e(U) denote the number of edges of G in the subgraph induced by U ⊆ V .

Proposition 2.2. For every line ` there is a line `′ parallel to ` such that `′ is almost balanced.

Proof. The proof is in fact just a continuity argument. Without loss of generality assume that
` is horizontal and that e(B(`)) ≤ k. Start translating ` upwards keeping track of e(B(`)).
Clearly, this number only increases and changes only when ` goes past a vertex of G. There is a
first time where this number must be greater than k or else the number of edges of G is at most k
and the lemma follows trivially (recall that k = o(n2)). Assume therefore that e(B(`)) becomes
greater than k as ` goes above a vertex x. Observe that at that point e(B(`)) ≤ (d+ 1)k, since
the degree of x is at most dk. On the other hand because G is k-near bipartite and e(B(`)) > k,
it must be that e(A(`)) ≤ k. Hence, we can take `′ to be this translation of the line `. 2

Let `1, `2 be an ordered pair of lines (not necessarily avoiding the vertices of G) and let o be
their intersection point. The double wedge of (`1, `2), dw(`1, `2), is the set of vertices of G that
meet the line `1 when it is being rotated counterclockwise about o until it coincides with `2.
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Figure 1: An illustration for the proof of Proposition 2.3.

Proposition 2.3. Let ` be an almost balanced line. Then there exists an almost balanced line
`′ such that |dw(`, `′)| = 1.

Proof. Let m be the common tangent to the convex hulls of A(`) and B(`) that separates them
such that |dw(`,m)| = 2, refer to Figure 1. Let a ∈ A(`) and b ∈ B(`) be the points that
determine the line m (thus, dw(`,m) = {a, b}). By slightly rotating m counterclockwise and
translating it, one can obtain two lines m1,m2 such that dw(`,m1) = {b} and dw(`,m2) = {a},
see Figure 1.

Since G is k-near bipartite e(A(`)) ≤ k or e(B(`)) ≤ k. Suppose that e(A(`)) ≤ k. Then,
since ` is almost balanced e(B(`)) ≤ (d + 1)k. Observe that m1 separates A(`) ∪ {b} and
B(`) \ {b}. Since the degree of b is at most dk it follows that m1 has at most (d + 1)k edges on
each of its sides and therefore it is almost balanced. Similarly, if e(B(`)) ≤ k then m2 is almost
balanced. 2

The strategy in the rest of the proof is to find almost balanced lines `1, . . . , `t with distinct
directions, where t is at most n/

√
dk. The number of those edges that are not crossed by at least

one of these lines is at most (d + 2)kt. To estimate from above the number of those edges that
cross all lines `1, . . . , `t, observe that such edges have both of their vertices in two “opposite”
unbounded faces of the arrangement of lines `1, . . . , `t. We will choose the lines `1, . . . , `t so
that the number of such edges will be small.

We choose the lines `i one by one. Initially, all the edges and vertices of G are colored blue.
Recall that by Proposition 2.2 there is an almost balanced line with any given slope, and let `1
be an almost balanced line with a very small slope, such that there are no two vertices of G that
determine a line with smaller slope than the slope of `1 (we assume, without loss of generality,
that there is no vertical line containing two vertices of G). We recolor all the blue edges of G
not crossing `1 with red.

Suppose that we have already chosen the lines `1, . . . , `i. If the number of remaining blue
edges is less than (2d+2)k, we stop. Otherwise we choose a new line `i+1 such that the number
of blue edges with one endpoint in each of the wedges of the double wedge dw(`i, `i+1) is Θ(kn)
(in a way that is specified below). All those edges are then colored green. The blue vertices in
dw(`i, `i+1) are colored red, as well as any blue edge that is adjacent to one of them (note that
if such an edge was not colored green, then it does not cross `i+1). See Figure 2 for an example.
It is not hard to see that the following invariants are maintained after `i+1 is added:

(1) The endpoints of any remaining blue edge are blue.

(2) Every remaining blue edge crosses all the lines `1, . . . , `i+1.

(3) Every red edge does not cross at least one of the lines `1, . . . , `i+1.
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Figure 2: An example for adding a new line. Solid edges are green, dashed edges are blue,
and red edges are dotted. Red and blue vertices are represented by empty and full circles,
respectively.

(4) Each vertex in
⋃i

j=1 dw(`j , `j+1) is red. The rest of the vertices are blue.

The line `i+1 is chosen using the following proposition.

Proposition 2.4. Suppose that the number of remaining blue edges is at least (2d+ 2)k. Then
there exists an almost balanced line `i+1 such that the number of blue edges in the subgraph
induced by the vertices in dw(`i, `i+1) is at least dk and at most 2dk.

Proof. We repeatedly apply Proposition 2.3 and find lines mj , j = 1, 2, . . ., that are almost
balanced and at each step the number of vertices of G in dw(`i,mj) changes by one. Since the
maximum degree is dk, it follows that the number of blue edges in the subgraph induced by
dw(`i,mj) changes at each step by at most dk. Once the number of these blue edges is at least
dk (and is therefore at most 2dk), we stop and set `i+1 = mj . Notice that upon stopping the
number of blue vertices in dw(`i, `i+1) is at least

√
dk. This is because the vertices of every blue

edge are both blue.
It remains to show that, unless the number of blue edges is smaller than (2d+2)k, we indeed

stop at some point and pick `i+1. Suppose we do not, then it follows from Proposition 2.3 that
there is an index j such that mj has a positive slope while mj+1 has a negative slope. Let j be
the smallest index satisfying this.

Let Ei be the set of blue edges at that point. Notice that all the edges in Ei must cross `1
and `i by Invariant (2). Denote by E

′
i ⊆ Ei the edges that do not cross mj . Then |E′i | ≤ (d+2)k

since mj is almost balanced. Let E
′′
i ⊆ Ei be the blue edges with an endpoint in each of the two

wedges of dw(`i,mj). Since mj was not picked as the next line `i+1 it follows that |E′′i | < dk.
We claim that Ei = E

′
i ∪ E

′′
i . Suppose there is an edge e ∈ Ei \ (E

′
i ∪ E

′′
i ). Then either e

has one endpoint in each wedge of dw(`1, `i) or e has one endpoint in each wedge of dw(mj , `1).
Suppose that the latter holds. If e has a negative slope, then its slope is smaller than the slope
of `1, contradicting the choice of `1. If e has a positive slope, then so does the common tangent
that separates A(mj) and B(mj) in the proof of Proposition 2.3, and so mj+1 should also have
a positive slope. Suppose now that e has one endpoint in each of the wedges of dw(`1, `i), i > 1.
Consider the left endpoint of e, denote it by v. Then v ∈ B(`1) and v ∈ A(`i). Therefore, there
must be an index 1 ≤ z < i, such that v ∈ B(`z) and v ∈ A(`z+1). But then v ∈ dw(`z, `z+1)
and should be colored red. We conclude that Ei = E

′
i ∪ E

′′
i and therefore |Ei| < (2d + 2)k and

we should have stopped picking lines after `i was picked. 2
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We are now ready to complete the proof of Theorem 2. Suppose that the process described
above stops after t lines have been chosen. Every edge of G is either blue, red, or green. The
number of blue edges is at most (2d + 2)k. The number of green edges is at most 2dkt. The
number of red edges is at most (d + 2)kt, since each of the lines we choose is almost balanced
and therefore there at most (d + 2)k edges that do not cross it. Because we color red at least√
dk vertices of G when adding a new line, it follows that t ≤ n√

dk
. Therefore, the number of

edges of G is at most (2d + 2)k + (3d + 2)
√

k
d · n = O(

√
kn), since k = o(n2). This concludes

the proof of Theorem 2. 2

It remains to prove Lemma 2.1.

Proof of Lemma 2.1: Let G = (V,E) be a geometric graph on n vertices that is k-near bipartite.
We will show that there exists a subgraph of G that has at least |E|/20 − 4n edges and the
degree of each of its vertices is at most 12k (in order to simplify the presentation we do not
attempt to optimize these constants).

For every vertex x of G denote by d(x) the degree of x in G. Divide the edges adjacent to
x into two sets, those that go to the left and those that go to the right. Color red the d 1

10d(x)e
edges going to the right from x that have the largest slopes, as well as the d 1

10d(x)e edges going
to the right from x that have the smallest slopes. Do the same for the edges going to the left from
x. The number of edges colored red is at most

∑
x 4d 1

10d(x)e ≤∑
x 4( 1

10d(x) + 1) = 4
5 |E|+ 4n.

Remove all the red edges from G to obtain a subgraph G1 = (V,E1) with at least |E|/5 − 4n
edges.

Let P denote the set of vertices whose degree in G1 is at least 12k and let Q = V \ P . Of
course, if P is empty, then we are done and G1 is the desired subgraph.

Proposition 2.5. There is no edge (x, y) ∈ E1 such that x, y ∈ P .

Proof. Assume to the contrary that x, y ∈ P are connected by an edge e in G1. Since
d1(x), d1(y) ≥ 12k it follows that d(x), d(y) ≥ 20k. Without loss of generality assume that
x is to the left of y and the slope of e is positive. Because e was not colored red as an edge adja-
cent to x nor as an edge adjacent to y, we can conclude that in G there are at least 20k/10 = 2k
edges adjacent to x going to the right with a greater slope than the slope of e and there are
at least 2k edges adjacent to y going to the left with a greater slope than the slope of e. Con-
sider the line ` containing e and slightly rotate it counterclockwise around the midpoint of e.
Then there are at least 2k edges of G in each of the two half-planes bounded by `. This is a
contradiction to the assumption that G is k-near bipartite. 2

We may assume, without loss of generality, that at least 1/4 of the edges in G1 that connect
a vertex p ∈ P and a vertex q ∈ Q are such that p is to the left of q and the edge (p, q) has a
positive slope. Thus, by removing all the other edges connecting a vertex in P and a vertex in
Q, we obtain a subgraph G2 = (V,E2) such that |E2| ≥ |E1|/4 ≥ (|E|/5− 4n)/4 = |E|/20− n.

We will show that by removing at most n edges from G2, we obtain the desired graph. To
this end, the following observation will be useful.

Proposition 2.6. Let (x, y), (x, y′), (x′, y′) be edges in G2 such that x, x′ ∈ P , y, y′ ∈ Q, and
the slopes of both (x, y) and (x′, y′) are greater than the slope of (x, y′). Then (x′, y′) has a
greater slope than (x, y).

Proof. Suppose that the slope of (x, y) is greater or equal to the slope of (x′, y′) (see Figure 3(a)).
Note that if we slightly rotate clockwise the line containing (x′, y′) around the midpoint of (x′, y′)
then the resulting line ` separates (red) edges in G going right from x with a slope that is greater
than the slope of (x, y) and edges going right from x′ with a slope is smaller than the slope of
(x′, y′). However, each of these two sets of edges contains at least 2k red edges since x, x′ ∈ P ,
and therefore G does not have a k-light side w.r.t. `, which is a contradiction. 2

5



`

y

x

y′

x′

(a) If the slope of (x, y) is greater or
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Figure 3: Illustrations for the proof of Lemma 2.1.

Next, for every vertex x in G2 we color blue the edge with the greatest slope that is adjacent
to x. Let G3 = (V,E3) be the subgraph we obtain by removing all the blue edges from G2.
Then |E3| ≥ |E2| −n ≥ |E|/20− 2n. Denote by d3(x) the degree in G3 of a vertex x. We claim
that d3(x) ≤ 12k for every vertex x and therefore G3 is the desired graph.

Suppose that G3 contains a vertex x such that d3(x) ≥ 12k. Therefore, x ∈ P . Let (x, y) be
the edge with the greatest slope that is adjacent to x in G3, and let (x, y′) be a different edge
(with a smaller slope). It follows from Proposition 2.6 that every edge (x′, y′) in G2 has a greater
slope than the slope of (x, y). Therefore, for every neighbor y′ of x there is at least one blue
edge (x′, y′) whose slope is greater than the slope of (x, y). If we slightly rotate counterclockwise
the line containing (x, y) around the midpoint of (x, y), then the resulting line ` separates these
edges and red edges in G that are going right from x and whose slope is greater than the slope
of (x, y) (see Figure 3(b)). However, each of these two sets of edges contains at least 2k edges,
therefore G does not have a k-light side w.r.t. `, which is a contradiction. This concludes the
proof of Lemma 2.1. 2
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