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Abstract

Guillotine partitions play an important role in many research areas and application
domains, e.g., computational geometry, computer graphics, integrated circuit layout, and
solid modeling, to mention just a few. In this paper we present an exact summation
formula for the number of structurally-different guillotine partitions in d dimensions by n

hyperplanes, and then show that it is Θ
((

2d− 1 + 2
√

d(d− 1)
)n

/n3/2
)
.
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1 Introduction

Given a d-dimensional box B in Rd, a guillotine partition of B is a subdivision of B into
smaller d-dimensional boxes obtained by first cutting B into two d-boxes by a hyperplane
that is parallel to its axes, then recursively cutting these boxes in the same manner (changing
the direction of the cut at will). Clearly, there are infinitely-many guillotine partitions with
a given number of hyperplanes; however, if we look at the structure of the hierarchy that is
formed by the hyperplanes, i.e., we care merely about the directions of the cuts rather than
their exact positions, then we can count the finitely-many (structurally) different guillotine
partitions by n hyperplanes in d dimensions. In this paper we are interested in finding this
number, denoted gd(n); to the best of our knowledge, this problem for d > 2 has not been
investigated to date (see [14] for a discussion of the case d = 2). For example, Figure 1 lists
the g2(2) = 6 possible guillotine partitions by n = 2 lines in the plane (d = 2). Table 1
provides the values of gd(n) for d = 2, 3, 4 and n ≤ 20.

The hierarchical structure of guillotine partitions is useful in many areas, such as inte-
grated circuit layout [8] (where d = 2) and approximation algorithms in computational geom-
etry [3, 5, 6, 9]. Guillotine partitions are also the underlying structure of orthogonal binary
space partitions (BSPs) which are widely used in computer graphics (e.g., for hidden-surface
removal [4] and shadow generation [2]), solid modeling [13], motion planning [1], etc.
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Figure 1: Guillotine partitions by two lines in the plane.

n d = 2 d = 3 d = 4
0 1 1 1
1 2 3 4
2 6 15 28
3 22 93 244
4 90 645 2,380
5 394 4,791 24,868
6 1,806 37,275 272,188
7 8,558 299,865 3,080,596
8 41,586 2,474,025 35,758,828
9 206,098 20,819,307 423,373,636

10 1,037,718 178,003,815 5,092,965,724
11 5,293,446 1,541,918,901 62,071,299,892
12 27,297,738 13,503,125,805 764,811,509,644
13 142,078,746 119,352,115,551 9,511,373,563,492
14 745,387,038 1,063,366,539,315 119,231,457,692,284
15 3,937,603,038 9,539,785,668,657 1,505,021,128,450,516
16 20,927,156,706 86,104,685,123,025 19,112,961,439,180,588
17 111,818,026,018 781,343,125,570,515 244,028,820,862,442,116
18 600,318,853,926 7,124,072,211,203,775 3,130,592,301,487,969,948
19 3,236,724,317,174 65,233,526,296,899,981 40,333,745,806,536,135,028
20 17,518,619,320,890 599,633,539,433,039,445 521,655,330,655,122,923,980

Table 1: First values of gd(n) for d = 2, 3, 4 and n ≤ 20. The series g2(n) is the sequence of
Schröder numbers [14].
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Two-dimensional guillotine partitions are equivalent to what is known in integrated circuit
layout as slicing floor-plans [8], whose number was shown to be the nth Schröder number [14].
These numbers arise in numerous other enumerative combinatorial problems [12, pp. 239–240].
One example is the number of paths on an orthogonal grid from (0, 0) to (n, n) that do not
go above the line y = x and use only the steps (1, 0), (0, 1), and (1, 1).

Recall that gd(n) denotes the number of guillotine partitions of a d-dimensional box in
Rd by n hyperplanes. By analyzing the combinatorial properties of guillotine partitions, we
show that gd(n) = 1

n

∑n−1
k=0

(
n
k

)(
n

k+1

)
(d− 1)kdn−k. Then, we analyze the asymptotic behavior

of gd(n) and prove that it is Θ
((

2d− 1 + 2
√

d(d− 1)
)n

/n3/2
)

for a fixed value of d. In fact,
our analysis provides a rather accurate estimate of gd(n).

The paper is organized as follows. In Section 2 we compute a binomial-sum formula for
gd(n) and provide its generating function, while in Section 3 we obtain an asymptotic value
for gd(n) directly as well as by using the generating function. We end in Section 4 with some
concluding remarks and a suggestion for a related open problem.

2 The Exact Number of Guillotine Partitions

In this section we derive a recursive formula, a binomial-sum formula, and a generating func-
tion for gd(n), the number of guillotine partitions by n hyperplanes in Rd. We first define
formally the notion of structurally-different guillotine partitions.

Let B be an axis-parallel d-dimensional box in Rd. A partition (or subdivision) of B is
a set S of k > 0 interior-disjoint axis-parallel boxes b1, b2, . . . , bk whose union equals B. A
partition S = {b1, b2, . . . , bk} of B is guillotine if k = 1 or there are a hyperplane h and two
disjoint non-empty subsets S1, S2 ⊂ S such that:

1. h splits B into two interior-disjoint boxes B1 and B2;

2. S1 is a guillotine partition of B1; and

3. S2 is a guillotine partition of B2.

Clearly, the hyperplane h must be orthogonal to some axis xi. We will assume without loss
of generality that the interior of B1 is below h with respect to xi, and the interior of B2 is
above h. The definition of a guillotine partition implies a method by which one can obtain the
partition of the box B into the small boxes b1, b2, . . . , bk: if k = 1 then do nothing, otherwise
cut B into two boxes B1 and B2 according to h, then continue by cutting recursively B1 and
B2. One way to describe this cutting procedure is by a binary tree: The tree is a single node
(and no edges) in case the d-dimensional box is not partitioned. Otherwise, the root of the
tree contains the details of the hyperplane h; the left child of the root is the binary tree that
corresponds to the guillotine partition of B1; and the right child of the root is the binary tree
that corresponds to the guillotine partition of B2.

A guillotine partition can be represented by several trees: For example, an n × 1 two-
dimensional box (a rectangle) that is partitioned into n 1×1 boxes (squares) can be represented
by Cn−1 different trees (where Cn is the nth Catalan number). Another example is the
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two different trees representing a 2 × 2 two-dimensional box (square) partitioned into four
1 × 1 boxes (squares). For a canonical tree representation of a guillotine partition S of
a box B, consider all the hyperplanes h that split B into two boxes B1 and B2 with the
respective subpartitions S1, S2 ⊂ S such that S1 (respectively S2) is a guillotine partition of
B1 (respectively B2). Among these hyperplanes consider only those that are orthogonal to
the axis xi with the smallest index i, and among them choose the one which is above all the
others with respect to xi. The canonical tree will have this hyperplane as its root and the
canonical trees representing guillotine partitions of the resulting two sub-boxes as children.

The hierarchy structure of a guillotine partition is then the canonical tree representing
this partition, in which each node that corresponds to a hyperplane h only records the index
i such that h is orthogonal to the axis xi. We refer to this tree as the structure-tree of the
guillotine partition.

Definition 1 Two guillotine partitions by n hyperplanes of a d-dimensional box in Rd are
structurally equivalent if they have the same structure-tree representation.

Clearly, the number of different guillotine partitions of a box B ⊂ Rd by n hyperplane
does not depend on the dimensions of B. Hence, the notation gd(n) is used for this number.

Observation 2 Let Td(n) be the set of binary trees with n nodes, such that every node has a
label ` ∈ {1, 2, . . . , d} and the label of every right child is different from the label of its parent
node. Then |Td(n)| = gd(n).

Proof: Clearly, two (structurally) different guillotine partitions are represented by two differ-
ent binary trees such that each node in a tree has a label from {1, 2, . . . , d}. Additionally, it
follows from the canonical tree representation of a guillotine partition that a structure-tree of
a guillotine partition cannot have a node whose right child has the same label as its parent.
Therefore, gd(n) ≤ |Td(n)|. On the other hand, given t ∈ Td(n), one can easily construct a
guillotine partition of a d-dimensional box B whose structure-tree is t: Let r be the root of t
and let i be the label of r. Cut B into two equal halves by a hyperplane h orthogonal to xi.
Then, cut recursively the half of B below h according to the subtree whose root is the left
child of r, and similarly cut the half of B above h according to the subtree whose root is the
right child of r. Thus, |Td(n)| ≤ gd(n). 2

From this observation we can deduce that

gd(n) =
n−1∑

k=0

Nn,k(d− 1)kdn−k,

where Nn,k is the number of binary trees with n nodes, k of which are right children. (Nn,k =
1
n

(
n
k

)(
n

k+1

)
are the well-known Narayana numbers; see, for example, [7, pp. 1033–1034].) This

follows easily from the fact that every node that is a right child has one of d − 1 possible
labels, while every other node has one of d possible labels. Thus, we obtain the following
binomial-sum formula for the number of guillotine partitions in d dimensions:

Theorem 3

gd(n) =
1
n

n−1∑

k=0

(
n

k

)(
n

k + 1

)
(d− 1)kdn−k.
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Observation 2 also yields a recursive formula for gd(n):

gd(n) = d ·
(

gd(n− 1) +
n−1∑

k=1

d− 1
d

gd(k)gd(n− 1− k)

)
, gd(0) = 1, (1)

where k represents the number of nodes in the right subtree of the root, and the number of
these subtrees is d−1

d gd(k) since the root of such a subtree cannot have the same label as its
parent node. By rearranging terms is Equation (1), we have:

gd(n) = gd(n− 1) + (d− 1)
n−1∑

k=0

gd(k)gd(n− 1− k), gd(0) = 1.

From this recursive formula we can also easily compute fd(z), the generating function of
gd(n):

fd(z) =
∞∑

n=0

gd(n)zn

= 1 +
∞∑

n=1

(
gd(n− 1) + (d− 1)

n−1∑

k=0

gd(k)gd(n− 1− k)

)
zn

= 1 +
∞∑

n=1

gd(n− 1)zn + (d− 1)
∞∑

n=1

n−1∑

k=0

gd(k)gd(n− 1− k)zn. (2)

It is readily seen that

∞∑

n=1

gd(n− 1)zn = z
∞∑

n=1

gd(n− 1)zn−1 = zfd(z) (3)

and
∞∑

n=1

n−1∑

k=0

gd(k)gd(n− 1− k)zn = z

∞∑

n=0

n∑

k=0

gd(k)gd(n− k)zn = z(fd(z))2. (4)

By substituting Equations (3) and (4) in Equation (2), we obtain

fd(z) = zfd(z) + (d− 1)z(fd(z))2 + 1. (5)

One solution of Equation (5) is spurious, and thus we get

fd(z) =
1− z −

√
z2 − 2(2d− 1)z + 1
2(d− 1)z

.

Aside from the intrinsic interest of this generating function, knowing the generating func-
tion of a combinatorial sequence is useful for obtaining information on the asymptotics of the
sequence by the standard technique (which has been implemented in software) of analyzing
the singularities of the function — see Remark 2 in Section 3. Generating functions are also a
useful tool for manipulating combinatorial sequences, and for showing that they satisfy various
identities, recurrence equations, etc.
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3 The Asymptotic Number of Guillotine Partitions

In this section we compute the asymptotic number of guillotine partitions.

Theorem 4 For every d ∈ N, as n →∞

gd(n) = (1 + o(1))

√
2d(d− 1) + (2d− 1)

√
d(d− 1)

2(d− 1)
√

π
·

(
2d− 1 + 2

√
d(d− 1)

)n

n3/2
. (6)

Proof: Let gd(n) =
∑n−1

k=0 bd(n, k), where

bd(n, k) =
dn(n!)2((d− 1)/d)k(n− k)
(k!)2((n− k)!)2n(k + 1)

.

By Stirling’s formula, m! = (1 + O(m−1))
√

2πm(m/e)m. Therefore,

bd(n, k) = (1 + O(k−1 + (n− k)−1))
n

2πk2
exp(nQd(k/n)), (7)

where Qd : [0, 1] → [0,∞) is the function defined by

Qd(t) = log d + t log
d− 1

d
− 2t log t− 2(1− t) log(1− t).

Let us analyze the properties of Qd. Since

Q′
d(t) = log

d− 1
d

+ 2 log
1− t

t
= log

(d− 1)(1− t)2

dt2
,

it follows easily that Qd has a unique maximum at t = td :=
√

d(d− 1) − (d − 1), with the
value

Qd(td) = log(2d− 1 + 2
√

d(d− 1))

and second derivative

vd := Q′′
d(td) =

−2
1− td

− 2
td

= −2 · 2d(d− 1) + (2d− 1)
√

d(d− 1)
d(d− 1)

.

In other words, one has the Taylor expansion

Qd(t) =

log(2d− 1 + 2
√

d(d− 1))− 2d(d−1)+(2d−1)
√

d(d−1)

d(d−1) (t− td)2 + O((t− td)3),

which is valid in some neighborhood of td.

Let εn = n−5/12, and write

gd(n) =
n−1∑

k=0

bd(n, k) = σ1 + σ2,
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where
σ1 =

∑

|k−tdn|>nεn

bd(n, k), σ2 =
∑

|k−tdn|≤nεn

bd(n, k).

First, we show that the contribution of σ1 to gd(n) is negligible. Indeed, if k ≈ tn, then

bd(n, k − 1)
bd(n, k)

=
d(n− k − 1)k3

(d− 1)(n− k)(k + 1)(n− k + 1)2
≈ dt2

(d− 1)(1− t)2
.

Since td has precisely the property that dt2/((d−1)(1−t)2) < 1 for t < td and dt2/((d−1)(1−
t)2) > 1 for t > td, this implies in particular that bd(n, k− 1) < bd(n, k) for all k < (td− εn)n,
and bd(n, k − 1) > bd(n, k) for all k > (td + εn)n, and, therefore,

σ1 ≤ n ·max
(

bd(n, b(td − εn)nc), bd(n, d(td + εn)ne)
)

≤ O

[
exp(n max(Qd(td − εn), Qd(td + εn)))

]

= (2d− 1 + 2
√

d(d− 1))nO

[
exp

(
− vdnε2

n + O(nε3
n)

)]

= o

(
(2d− 1 +

√
d(d− 1))n/n3/2

)
.

Second, turn to σ2, which contributes the bulk of the value of gd(n). Use Equation (7), noting
that in this range of values of k, O(k−1 + (n − k)−1) = O(n−1), uniformly, and denoting
k = tdn + u

√
n:

σ2 = (1 + O(n−1))
∑

|k−tdn|<nεn

1
2π(td + u/

√
n)2n

exp(nQd(td + u/
√

n))

= (1 + O(n−1 + εn))
∑

|k−tdn|<nεn

(
2d− 1 + 2

√
d(d− 1)

)n

2πt2dn
· exp(−vdu

2 + O(nε3
n))

= (1 + O(n−1 + n−5/12 + n−1/4))

(
2d− 1 + 2

√
d(d− 1)

)n

2πt2dn
3/2

∫ ∞

−∞
e−vdu2

du

= (1 + o(1))

(
2d− 1 + 2

√
d(d− 1)

)n

2πt2dn
3/2

·
√

π√
vd

.

This, upon some simple manipulations, gives Equation (6). 2

Remarks:

1. More careful estimates can be used to improve the (1 + o(1)) term to (1 + O(n−1)). A
complete asymptotic expansion in powers of n−1 can also be obtained.

2. Relation (6) can be obtained from the generating function fd(z) using standard saddle-
point techniques, as described, e.g., in [10]. The Maple package gdev [11] produces such
asymptotic estimates automatically. Upon loading the package and typing the command

> equivalent(1-z-sqrt(z^2-2*(2*d-1)*z+1))/(2*(d-1)*z),z,n);
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(a) (b)

Figure 2: What is the number of guillotine partitions when these are considered different
partitions?

one obtains an output, which after some reformatting and simplification, is seen to
be equivalent to Equation (6).

When d is considered constant, Equation (6) readily yields:

Corollary 5 gd(n) = Θ

((
2d−1+2

√
d(d−1)

)n

n3/2

)
.

For example, there are Θ((3 + 2
√

2)n/n3/2) ≈ Θ(5.828n/n3/2) (resp., Θ((5 + 2
√

6)n/n3/2)
≈ Θ(9.900n/n3/2) structurally-different guillotine partitions with n lines (resp., planes) in the
plane (resp., in 3-space).

4 Conclusion

In this paper we give a tight asymptotic estimation of the number of guillotine partitions in
any dimension using any number of hyperplanes. This provides context to an enumeration of
all guillotine partitions, for example, for finding the one that optimizes a given measure.

An interesting related open problem arises when we also care about the relative order
between guillotine cuts on opposite sides of their parent cut; for example, we distinguish
between the partitions shown in Figures 2(a) and 2(b). This gives rise to new modeling and
enumeration problems which have some bearing on floor-planning of integrated circuits.
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