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Abstract

The degenerate crossing number cr∗(G) of a graph G is the minimum number of crossing
points of edges in any drawing of G as a simple topological graph in the plane. This notion
was introduced by Pach and Tóth who showed that for a graph G with n vertices and e ≥ 4n
edges cr∗(G) = Ω(e4/n4). In this paper we completely resolve the main open question about
degenerate crossing numbers and show that cr∗(G) = Ω(e3/n2), provided that e ≥ 4n. This
bound is best possible (apart for the multiplicative constant) as it matches the tight lower bound
for the standard crossing number of a graph.
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1 Introduction

The graphs considered in this paper contain no loops or parallel edges. A topological graph is a
drawing of a graph in the plane such that the vertices are drawn as distinct points and the edges
are drawn as Jordan arcs connecting corresponding points without passing through other vertices
of the graph. Two edges in a topological graph may intersect at a finite number of points, where in
each intersection point they either share a common endpoint or properly cross each other. If every
pair of edges intersect at most once, then the topological graph is called simple. One sometimes
assumes that in a topological graph there are no three edges that cross each other at the same
point. However, in this paper we are interested in topological graphs in which such crossings are
allowed.

For a topological graph D we denote by cr(D) the number of crossings of pairs of edges in D.
The crossing number of an abstract graph G, denoted by cr(G), is the minimum value of cr(D)
taken over all drawings D of G as a topological graph. It is not hard to see that if cr(G) = cr(D),
then D is a simple topological graph.

Ajtai, Chvátal, Newborn, Szemerédi [1] and, independently, Leighton [4] proved that there is
an absolute constant c > 0 such that for every abstract graph G with n vertices and e edges
cr(G) ≥ c e3

n2 , provided that e ≥ 4n. This result is referred to as the Crossing Lemma and has
numerous applications in combinatorial and computational geometry, number theory, and other
fields of mathematics.
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Several works have considered different crossing numbers (see [2, 6, 8] and also [3, § 9.4], [5,
§ 5.3], and the references therein). One such example is the degenerate crossing number. This
notion was first introduced in [7] following questions by G. Rote, M. Sharir, and others who asked
what happens if we count crossing points, rather than crossings of pairs of edges? For example, if
k ≥ 2 edges in a topological graph D cross each other at the same point, then we count this point
only once, instead of

(
k
2

)
times as in cr(D).

Pach and Tóth [7] proved that in any drawing of a graph G with n vertices and e edges the
number of crossing points is at least 1

3e − n + 2, and that this bound cannot be improved by
much. Namely, they showed that any graph G with e edges can be drawn as a topological graph
containing at most e− 1 crossing points. However, in their construction a pair of edges may cross
many times. Therefore, they have also considered the minimum number of crossing points in any
possible drawing of a graph as a simple topological graph.

For a simple topological graph D, denote the number of crossing points of edges of D by cr∗(D).
For an abstract graph G, we denote by cr∗(G) the degenerate crossing number of G. That is, the
minimum value of cr∗(D) taken over all possible drawings of G as a simple topological graph D.

In [7] it is shown that cr∗(G) = Ω( e4

n4 ), and the question remained whether the behavior of cr∗(G)
is very much different from cr(G). Or, in the words of [5], “it is a challenging question to decide

whether the e4

n4 term can be replaced by e3

n2 , just like in the Crossing Lemma.” In this paper we
answer this question in the affirmative.

Theorem 1. Let G be a simple topological graph with n vertices and e ≥ 4n edges. Then the
number of points in which two or more edges of G cross each other is at least Ω( e3

n2 ).

2 The Proof

For a (simple) topological graph G and an integer k ≥ 2, we denote the number of crossing points of
precisely k edges in G by tk(G). Therefore, cr(G) =

∑
k

(
k
2

)
tk(G) and cr∗(G) =

∑
k tk(G). Roughly

speaking, the idea of the proof is to show that
∑

k tk(G) ≥ Ω(
∑

k ktk(G)) and to also give a lower

bound for
∑

k ktk(G) in terms of
∑

k

(
k
2

)
tk(G)).

Lemma 1. Let G be a (connected) simple topological graph with n > 2 vertices and e edges. Then
t2(G) + t3(G) ≥ 1

8

∑
k≥2 ktk(G).

Proof. Denote by d1, . . . , dn the degrees of the n vertices of G. Consider the planar map obtained
by adding the crossing points of G as new vertices and subdividing the edges accordingly. Let V,E,
and F , be the numbers of vertices, edges, and faces, respectively, of this planar map, and let fk
denote its number of faces with precisely k edges. Then: V = n+

∑
k tk(G),

∑
i di+

∑
k 2ktk(G) =

2E =
∑

k kfk, and F =
∑

k fk.

From Euler’s polyhedral formula in the plane (V − E + F = 2) we have:

6 = 3V − 3E + 3F = 3n + 3
∑
k

tk(G)− 1

2

∑
i

di −
∑
k

ktk(G)−
∑
k

kfk + 3
∑
k

fk.

Note that every face in the planar map has at least 3 edges because G is simple and n > 2.
Therefore, after rearranging the above equality, we get

2t2(G) + 2t3(G) = t2(G) + 2t3(G) +
∑
k≥4

(k − 3)tk(G) +
∑
k≥3

(k − 3)fk + e− 3n + 6 ≥ 1

4

∑
k≥2

ktk(G),
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and the lemma is proved.

We have thus showed that
∑

k tk(G) ≥ Ω(
∑

k ktk(G)). Our next goal is to give lower bound for∑
k ktk(G) in terms of

∑
k

(
k
2

)
tk(G). To this end, we first prove an upper bound on the number of

incidences between edges of a topological graph and (crossing) points.

Lemma 2. Let G be a simple topological graph with e edges and let X be a set of |X| distinct
points. The number of incidences I(X,E(G)) between the points of X and the edges of G satisfies
I(X,E(G)) = O(|X|2/3(cr(G))1/3 + |X|+ e).

Proof. We define a simple topological graph H whose vertices are the points of X. We connect two
points of X by an edge if they are consecutive points of X along an edge w of G. We draw this
edge along the portion of w delimited by these two vertices.

Clearly, we have I(X,E(G)) ≤ |E(H)| + e. Observe that H is a simple topological graph on
|X| vertices and has at most cr(G) pairs of crossing edges. It follows from the Crossing Lemma
that (|E(H)| − 4|X|)3/|X|2 = O(cr(G)). Therefore,

I(X,E(G)) ≤ |E(H)|+ e = O(|X|2/3cr(G)1/3 + |X|+ e),

as claimed.

The following lemma is a direct corollary of Lemma 2 and the fact that cr(G) =
∑

k≥2
(
k
2

)
tk(G).

Lemma 3. There is a constant c1 such that for every simple topological graph G with e edges and
for every integer k′ ≥ 2 we have:

∑
k≥k′

tk(G) ≤ c1 ·

(∑
k≥2

(
k
2

)
tk(G)

k′3
+

e

k′

)
.

Proof. Let X denote the set of all intersection points of edges of G through which at least k′ edges
of G pass. We have |X| =

∑
k≥k′ tk(G). Therefore,

k′|X| ≤ I(X,E(G)) = O(|X|2/3cr(G)1/3 + |X|+ e) = O

|X|2/3
∑

k≥2

(
k

2

)
tk(G)

1/3

+ |X|+ e

 .

From here we deduce:

∑
k≥k′

tk(G) = |X| = O

(∑
k≥2

(
k
2

)
tk(G)

k′3
+

e

k′

)
.

Using Lemma 3, we can now give a lower bound for
∑

k ktk(G) in terms of
∑

k

(
k
2

)
tk(G) and

the maximum number of edges in G that cross at the same point.
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Lemma 4. If G is a simple topological graph with e edges and B ≥ 2 is an integer such that no
more than B edges of G cross at the same point, then∑

k

ktk(G) ≥ 1

8c1

∑
k

(
k

2

)
tk(G)− eB,

where c1 is the constant from Lemma 3.

Proof. Recall that by Lemma 3 for every k′ ≥ 2 we have∑
k≥k′

tk(G) ≤ c1

(∑
k≥2

(
k
2

)
tk(G)

k′3
+

e

k′

)
.

Let s = 8c1. We have

∑
k≥2

(
k

2

)
tk(G) =

2blog2 sc∑
k=2

(
k

2

)
tk(G) +

dlog2 Be∑
i=blog2 sc

2i+1∑
k=2i+1

(
k

2

)
tk(G)

≤ s

2

∑
k≥2

ktk(G) +

dlog2 Be∑
i=blog2 sc

(
2i+1

2

)∑
k≥2i

tk(G)

≤ s

2

∑
k≥2

ktk(G) +

dlog2 Be∑
i=blog2 sc

22i+2

2
c1

(∑
k≥2

(
k
2

)
tk(G)

23i
+

e

2i

)

≤ s

2

∑
k≥2

ktk(G) + 4c1

∑
k≥2

(
k
2

)
tk(G)

s
+ 4c1eB

≤ 4c1
∑
k≥2

ktk(G) +
1

2

∑
k≥2

(
k

2

)
tk(G) + 4c1eB. (1)

From (1) we conclude: ∑
k≥2

(
k

2

)
tk(G) ≤ 8c1

∑
k≥2

ktk(G) + 8c1eB,

and the lemma follows.

For technical reasons we will have to assume that the number of edges in the graphs that we
consider is at least eight times the number of their vertices. For sparser graphs we will use the
following weak bound on the degenerate crossing number.

Lemma 5. Let G be a simple topological graph with n > 2 vertices and e edges. Then cr∗(G) ≥
e− 3n + 6.

Proof. Let G′ be the plane graph we obtain by turning every crossing point of G into a new vertex
and subdividing the edges accordingly. Denote by n′ and e′ the number of vertices and edges of
G′, respectively, and let x = n′ − n be the number of crossing points in G. Then e′ ≥ e + 2x,
since every new vertex we add, subdivides at least two edges. The graph G′ has no parallel edges,
since G is a simple topological graph. Therefore, e + 2x ≤ e′ ≤ 3n′ − 6 = 3(n + x) − 6. Hence,
x ≥ e− 3n + 6.
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We note that Lemma 5 is also a slight improvement, for the case of simple topological graphs,
of the result in [7], where it is shown that the number of crossing points of edges in G is at least
1
3e− n + 2.

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let G be a simple topological graph with n vertices and e ≥ 4n edges. If
4n ≤ e < 8n, then the claimed bound in Theorem 1 follows from Lemma 5.

Therefore, from now on, assume that e ≥ 8n. Notice that we may also assume that G has at
least n distinct crossing points of edges. Indeed, otherwise turn all crossing points of edges in G
into vertices and G becomes a planar graph G′ with at most 2n− 1 vertices. The number of edges
in G is at most the number of edges in G′. This in turn is at most 3(2n− 1)− 6 < 8n contradicting
our assumption that the number of edges in G is at least 8n.

Let P1, P2, P3, . . . be the crossing points of edges in G, and let gi be the number of edges that
cross each other at Pi. Assume without loss of generality that g1 ≥ g2 ≥ g3 ≥ . . .. We start
by preforming the following change in the graph G: Each of the n crossing points P1, P2, . . . , Pn

becomes a vertex and subdivides the edges containing it accordingly. Denote the resulting graph
by G′ and note that the number n′ of vertices in G′ satisfies n′ = 2n. Notice also that with each
Pi we added at least B = gn new edges to the graph and therefore the number e′ of edges in G′

satisfies e′ ≥ e + nB. It is very important to notice that no more than B edges in G′ may cross at
the same point.

Observe that
∑

k≥2
(
k
2

)
tk(G′) =

∑B
k=2

(
k
2

)
tk(G′) counts the number of pairs of crossing edges of

G′ and therefore,

∑
k≥2

(
k

2

)
tk(G′) ≥ c

e′3

n′2
, (2)

where c is the constant from the Crossing Lemma (observe that e′ ≥ 4n′ as e′ ≥ e ≥ 8n = 4n′).

Let c0 > 0 be an absolute constant to be determined later. If B ≤ c0, then (2) implies that(
c0
2

)∑
k≥2

tk(G′) =

(
c0
2

) B∑
k=2

tk(G′) ≥
B∑

k=2

(
k

2

)
tk(G′) ≥ c

e′3

n′2
.

Hence,

cr∗(G) ≥ cr∗(G′) =
∑
k≥2

tk(G′) ≥ c(
c0
2

) e′3
n′2
≥ c(

c0
2

) e3

4n2

and thus Theorem 1 is proved in this case.

We therefore assume that B > c0. Lemmas 1 and 4 together with (2) imply:

t2(G
′) + t3(G

′) ≥ 1

8

∑
k≥2

ktk(G′) ≥ 1

64c1

∑
k≥2

(
k

2

)
tk(G′)− 1

8
e′B ≥ c

64c1

e′3

n′2
− 1

8
e′B. (3)

We claim that
1

8
e′B ≤ 1

2
· c

64c1

e′3

n′2
. (4)
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Indeed, if (4) is false, then e′ < 4n′
√
c1B/c. However, recall that e′ ≥ Bn = Bn′/2, and

therefore we get that B < 64c1/c. This leads to a contradiction once we choose c0 = 64c1/c, as we
assume that B > c0.

Once we established (4), then together with (3), we have

cr∗(G) ≥ t2(G) + t3(G) ≥ t2(G
′) + t3(G

′) ≥ c

128c1

e′3

n′2
≥ c

29c1

e3

n2
,

where the last inequality is because e′ ≥ e and n′ = 2n. �

Remarks. Note that if we had not added the new vertices P1, P2, . . . , Pn to G, then we would
have had to assume that e ≥ Ω(n3/2) for the proof to hold.

In our proof of Theorem 1 we did not make any use of the fact that G is a simple topological
graph except for when we argued that no face in the planar map induced by G is a digon, that
is, a face with two edges. This implies that our Theorem 1 is valid also for non-simple topological
graphs G, and cr∗(G) = Ω( e3

n2 ) also for those graphs, provided that there are no digons in the planar
map induced by G. It follows that the construction in [7] of a topological graph with at most e− 1
crossing points is possible only if many digons are introduced, and indeed, not very surprisingly,
this is the case there.

As an easy corollary of Theorem 1 we get:

Corollary 1. There is a constant c′ such that for every integer k > 0 the following holds. If G
is a simple topological graph with n vertices and e edges in which every edge contains at most k
crossing points, then e ≤ c′n

√
k.

Proof. By choosing c′ > 4 the upper bound holds trivially if e < 4n. Otherwise, it follows from
Theorem 1 that there is a constant c∗ such that cr∗(G) ≥ c∗ e

3

n2 . On the other hand, every edge of
G contains at most k crossing points, therefore cr∗(G) ≤ ke. Combining these two estimates, we
conclude that e ≤ n

√
k/c∗.
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