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Abstract. We consider the number of different ways to divide a rect-
angle containing n noncorectilinear points into smaller rectangles by n
non-intersecting axis-parallel segments, such that every point is on a
segment. Using a novel counting technique of Santos and Seidel [12], we
show an upper bound of O(20n/n4) on this number.

1 Introduction

Given a set P of n points within an axis-parallel rectangle R, a rectangulation
of (R, P ) is a set of non-intersecting segments that partitions R into smaller
rectangles, such that every point in P is on a segment. See Figure 1 for examples
of rectangulations.

The problem of finding a rectangulation with a minimum total length of
the segments has attracted considerable attention in the literature. Lingas, Pin-
ter, Rivest, and Shamir [10] introduced it as a special case of a problem with
applications to VLSI design, and showed that it is NP-hard. Since then, sev-
eral approximation algorithms have been suggested (e.g., [7–9]), including a
polynomial-time approximation scheme [11]. De Meneses and de Souza [6] sug-
gested integer-programming formulations and techniques to find exact solutions
for medium sized instances of the problem.

When the points are noncorectilinear, i.e., no two points share the same x
or y coordinate, the complexity class of the minimization problem is unknown.
However, it can be shown [3] that the optimal solution in this case consists
of exactly n segments. Hereafter, we consider only such rectangulations and
investigate the following question:

Given a set P of n noncorectilinear points within a rectangle R, how
many different rectangulations (by n segments) of (R, P ) are there?

A similar question, that of the number of triangulations of the convex hull
of a set of n points in the plane, has attracted considerable attention in the
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Fig. 1. Rectangulations of (R, P )
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Fig. 2. Point sets in separable permutations

literature. The first singly-exponential upper bound on the number of trian-
gulations, O(173, 000n), was given by Smith [15]. The upper bound was im-
proved by Seidel [13] to O(212.245113n−Θ(log n)) ≈ O(4, 855n) and by Denny
and Sohler [5] to O(28.2n+O(log n)) ≈ O(294n). The best currently-known up-
per bound, O(59n/n6), is due to Santos and Seidel [12].

In a previous paper [1] we observed that the number of rectangulations of
a point set P depends only on the relative order of the points in P , which can
be represented by a permutation on n. We proved that if the permutation of
the points is separable [2]1, then the number of rectangulations is exactly the
(n + 1)st Baxter number, which is [4, 14]:

B(n + 1) =
n∑

r=0

(
n+2

r

)(
n+2
r+1

)(
n+2
r+2

)
(
n+2

1

)(
n+2

2

) = Θ(8n/n4).

(In [1] we also observed that the number of separable permutations on n is the
(n−1)st Schröder number rn =

∑n
k=0 2k

(
n
k

)(
n

k−1

)
/n = Θ((3+

√
8)n/n1.5). Thus,

1 A separable permutation is either a permutation on one element or the concatenation
of two separable permutations. Formally, let π1 = (α1, α2, α3, . . . , αn) and π2 =
(β1, β2, β3, . . . , βm) be two permutations on n and m, respectively. We say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating π2 above π1 if σi = αi for
1 � i � n and σn+i = n + βi for 1 � i � m (see Figure 2(a)). Likewise, we say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating π2 below π1 if σi = m + αi

for 1 � i � n and σn+i = βi for 1 � i � m. (see Figure 2(b)). Then, a permutation
π is a separable if 1. π = (1); or 2. There are two separable permutations π1 and π2

such that π is the the concatenation of π2 above or below π1.
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the portion of separble permutations out of the n! permutations is asymptotically
zero.)

We observed empirically that the number of rectangulations of all other sets
of n points in non-separable permutations is strictly larger than the (n + 1)st
Baxter number. This was done by counting systematically all the rectangulations
of sets of up to 10 points in all possible permutations. Nevertheless, we were
unable to prove that this is true, that is, that the (n + 1)st Baxter number is a
lower bound on the number of rectangulations of all point sets of size n.

It is easy to show super-exponential upper bounds. For example, assume
(without loss of generality) that there are fewer vertical segments than horizontal
segments in any rectangulation. Then choose the endpoints of the at most n/2
vertical segments; for each such segment there are no more than

(
n+1

2

)
options.

After determining the vertical segments, all the horizontal segments are unique:
they extend on both sides of the yet unused points until hitting the interior
of the first vertical segment (or the bounding rectangle). This yields the upper
bound O(

(
n+1

2

)n/2
), which is O(nn).

Another method uses the fact that the number of “point-free” rectangulations
(also known as floor-plans – subdivisions of a rectangle into smaller isothetic
rectangles) is also related to Baxter numbers [16] and is thus Θ(8n/n4). Each
such floor-plan can be trivially associated with at most n! permutations, hence
we obtain the slightly upper bound O(n! 8n/n4).

An even better – but still super-exponential – upper bound can be obtained
from the fact that in any rectangulation there always exists a segment s that
touches at most three other segments. By removing s and the point p on it (and
extending the segment supported by s, if such segment exists), we obtain a rect-
angulation of n− 1 points. Now, there are exactly six possible ways of inserting
s into this rectangulation. Suppose s was horizontal. Then, if s touched exactly
two vertical segments, we stretch a horizontal segment from p, in both directions,
until hitting a vertical segment. If s touched exactly three vertical segments, then
there are two possibilities: s must “chop” the first vertical segment either to its
right or to its left. Since s might be vertical, we have a total of six possibilities.
To be able to construct the rectangulation all we need to store is the way every
point and segment are added and the order of the points. Thus the number of
rectangulations is O(n! 6n).

In the following section we show that the number of rectangulations of a set of
n noncorectilinear points (arranged in any arbitrary permutation) is O(20n/n4).
This is the first proven singly-exponential upper bound on the number of rect-
angulations of any point set.

2 The Upper Bound

Our main result is:

Theorem 1. The maximum number of rectangulations of n noncorectilinear
points (by n segments) is O(20n/n4).
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Proof. The proof follows the structure of the proof of the upper bound on the
number of triangulations of a planar point set, given in [12]. We denote by
f(n) the maximum number of rectangulations of n points. Let P be a set of n
noncorectilinear points within a rectangle R, and let r be a rectangulation of
(R, P ). A T-junction is an endpoint of a segment on another segment, or on the
boundary. The degree of a point p ∈ P in r is the number of T-junctions on the
segment that contains p. For example, the rightmost point in P in Figure 1 has
degree 2 in r1 and degree 3 in r2. Let nr

i be the number of points with degree i
in r, then clearly n =

∑
i nr

i .
Every segment is bounded by two T-junctions, thus every segment s con-

tributes at most four to the total sum of degrees: two to the point it contains,
and one to every point that is contained in a segment bounding s (if it is not
a boundary segment). Note that the point on s might have a degree greater
than four, however we charge other segments for their contribution to this de-
gree. Therefore, the total sum of degrees is 4n − b, where b is the number of
T-junctions on the boundary of R in r. It is easy to verify that if n ≥ 3, then
b ≥ 4. Thus, for n ≥ 3 we have

4n− 4 ≥
∑

i

i · nr
i .

Easy manipulations show that

4
∑

i

nr
i ≥ 4 +

∑

i

i · nr
i ,

∑

i

(4 − i)nr
i ≥ 4, and

∑

i

(5 − i)nr
i ≥ 4 +

∑

i

nr
i = n + 4.

Considering only the positive summands on the left-hand side of the last
equation we have:

3nr
2 + 2nr

3 + nr
4 ≥ n + 4. (1)

Denote by hi the maximum number of rectangulations of (R, P ) that one can
obtain by adding some point p ∈ P to a rectangulation r′ of (R, P \ {p}) and
“stretching” the segment through p such that the degree of p in the resulting
rectangulation is i. Clearly, h2 = 2, since the segment through p can be either
vertical or horizontal and we must stop “stretching” it as soon as it hits another
segment in each direction. Similarly, h3 = 4, since when the orientation of the
segment through p is horizontal (resp., vertical), then we must “chop” the first
segment either to the left (resp., below) or to the right (resp., above) of p. Note
that segments that were supported by the chopped part of the segment are
extended until they hit another segment or the boundary (see Figures 3(d,e) for
examples). Likewise, h4 ≤ 6 and in general hi ≤ 2(i − 1).

Let Ni be the number of points with degree i in all the rectangulations of
(R, P ). Then,

Ni ≤ n · hi · f(n − 1),
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r′ p p p
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p p
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Fig. 3. Four possible ways of adding p to r′ such that the degree of p is 3

Table 1. Empirical results of the maximum number of rectangulations

n B(n + 1) Maximum number
of rectangulations

4 92 93
5 422 428
6 2,074 2,122
7 10,754 11,092
8 58,202 60,524
9 326,240 342,938

10 1,882,960 2,000,856

and specifically N2 ≤ 2n · f(n − 1), N3 ≤ 4n · f(n − 1), and N4 ≤ 6n · f(n− 1).
We now prove by induction on n that f(n) ≤ 20n/

(
n+4

4

)
. For n = 0, 1, 2

the claim holds trivially (f(0) = 1 = 200/
(
4
4

)
, f(1) = 2 < 4 = 201/

(
5
4

)
, and

f(2) = 6 < 26.666... = 202/
(
6
4

)
). Now assume that the claim holds for all n′ < n,

for n ≥ 3. By summing Equation 1 over all possible rectangulations, we have:

3N2 + 2N3 + N4 ≥ (n + 4)f(n) (2)

On the left-hand side of Equation 2 we have:

20n · f(n − 1) ≤ 20n
20n−1

(
n+3

4

) = (n + 4)
20n

(
n+4

4

) .

Hence f(n) = O(20n/n4), and the claim follows.
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3 Conclusions

We have showed that the number of rectangulations of a set of n noncorectilinear
points is O(20n/n4). However, according to our experiments for small values of
n (see Table 1), it seems that the maximum number of rectangulations is much
closer to the B(n + 1) = Θ(8n/n4) lower bound from [1]. As mentioned in the
introduction, we also believe that for every set of n (noncorectilinear) points,
the number of rectangulations is at least the (n + 1)st Baxter number.
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