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Abstract

Let G be a geometric graph on n vertices that are not necessarily in general position.
Assume that no line passing through one edge of G meets the relative interior of another
edge. We show that in this case the number of edges in G is at most 2n− 3.

1 Introduction

A geometric graph is a graph drawn in the plane such that its vertices are distinct points
and its edges are straight-line segments connecting corresponding vertices. It is assumed
that no edge of a geometric graph passes through a vertex of the graph (other than its
endpoints). Two edges in a geometric graph are called avoiding (sometimes also parallel) if
they form opposite sides of a convex quadrilateral. It was shown by Katchalski and Last [6]
and Valtr [11] (see also [9]) that the maximum number of edges in a geometric graph on n
vertices with no pair of avoiding edges is 2n− 2. Many such bounds on the size of geometric
graphs avoiding certain geometric patterns were studies in the past years (see [5, §9.5 and
§9.6] for some examples).

In most (perhaps even all) of these works the notion of a geometric graph usually refers
to a graph on a set of vertices drawn as points in general position, that is, no three of the
vertices are on a line. In this paper we will particularly be interested in the case where the
vertex set of the graph may contain more than two points on a line, and investigate the
following question: What is the maximum number of edges in a geometric graph G on n
vertices in which every pair of edges are virtually avoiding?

Definition 1.1 (virtually avoiding edges). Let e1 and e2 be two edges in a geometric graph,
and let `1 and `2 be the lines containing them, respectively. Then e1 and e2 are called
virtually avoiding if `1 does not intersect the relative interior of e2 and `2 does not intersect
the relative interior of e1. Otherwise, e1 and e2 are called virtually crossing.

See Figure 1 for examples of these notions. Notice that when the points are in general
position two edges are virtually avoiding if and only if they are avoiding or have a common
vertex. However, for points that are not necessarily in general position, these notions are
even further apart, as it may happen that a line containing one of two virtually avoiding
edges meets a vertex of the other edge (see for example e1 and e6 in Figure 1).
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Figure 1: Both pairs of edges (e1, e4) and (e2, e6) are avoiding. Both (e1, e3) and (e1, e6) are
virtually avoiding. (e1, e5), (e2, e3), and (e1, e7) are all virtually crossing.

Observe that virtually avoiding edges cannot be collinear and cannot cross each other.
The latter property implies that a graph with pairwise virtually avoiding edges is planar and
hence has at most 3n − 6 edges, for n ≥ 3. Note also that in a triangulation of a set of n
vertices in (strictly) convex position every pair of edges are virtually avoiding and there are
2n− 3 edges. It is easy to show by induction that no other graph G with pairwise virtually
avoiding edges has more edges if its vertices are in general position.

To see the inductive argument observe that we may assume that the degree of each vertex
is at least 3, or else we may conclude by the induction hypothesis. Let x be a vertex of G
that is also extreme on the convex hull of the set of vertices of G. Because the degree of x
is at least 3, there must be an edge e adjacent to x that is not an edge of the convex hull of
the set of vertices of G. The line ` through e divides the rest of the vertices of G into two
non-empty sets of cardinalities n1 and n2, respectively. Notice also that no edge of G crosses
`, as this will contradict our assumption that every pair of edges in G are virtually avoiding.
We can therefore conclude the theorem by the induction hypothesis on the two parts of G
defined by ` where the vertices of e are common to both parts: The number of edges in G is
therefore at most

(2(n1 + 2)− 3) + (2(n2 + 2)− 3)− 1 = 2n− 3,

where the −1 in the left hand side is due to the fact that e is counted in both parts of G.
Perhaps somewhat surprisingly the same question becomes significantly less trivial if we

allow the set of vertices of G to be not in general position. The simple inductive argument
will fail now if we wish to prove the same bound, because the line ` may contain more than
just two vertices and these vertices will be taken into account when considering both parts
of the graph.

The main result in this paper is that the same bound 2n − 3 is valid also in the case
where the set of vertices of G may not be in general position. Nicely enough, the proof is
still elegant and at the same time non-trivial.

Theorem 1. Let G be a geometric graph on n vertices that are not necessarily in general
position. If every pair of edges of G are virtually avoiding, then G has at most 2n− 3 edges
for n ≥ 2.

In other words, we prove that a geometric graph on n vertices with no pair of virtually
crossing edges has at most 2n−3 edges. It would be interesting to consider geometric graphs
in which there are no k pairwise virtually crossing edges, for some fixed number k (put
differently, every set of k edges contains a pair of virtually avoiding edges). In particular,
such a graph does not contain k pairwise crossing edges and therefore has at most O(n log n)
edges by a result of Valtr [10]. It is a well-known conjecture that any graph with no k
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pairwise crossing edges has at most O(n) edges [7, Problem 3.3]. However, this conjecture
was only verified for k ≤ 4 [1, 2, 3]. Therefore, it might be easier to prove:

Conjecture 2. Let G be a geometric graph on n vertices (in general position). If G does
not contain k pairwise virtually crossing edges, then G has at most ckn edges, where ck is a
constant that depends only on k.

Indeed, it is not hard to show that every complete n-vertex geometric graph has Ω(n)
pairwise virtually crossing edges, whereas it is conjectured that such a graph also contains
Ω(n) pairwise crossing edges, however, the best known bound is only Ω(

√
n)[4].

Let us sketch the proof that a complete n-vertex geometric graph has bn2 c pairwise vir-
tually crossing edges, which is based on ideas from [8]. Assume that n is even and let ` be
a directed line halving the set of vertices of the graph. Denote the two sets of vertices into
which ` divides the graph by A0 and B0. Rotate ` clockwise until it touches the convex
hulls of both A0 and B0 at two points a and b, respectively. Pick the edge (a, b) and define
A1 = A0 \ {a}, B1 = B0 \ {b}. Now repeat the same procedure for A1 and B1. Continuing
this way, after n

2 steps we pick n
2 edges of G that are pairwise virtually crossing. We leave it

to the reader to verify this last assertion.

As an application of Theorem 1 we obtain the following:

Corollary 3. Let L be a set of n lines in the plane, and suppose that for every line L ∈ L
two consecutive intersection points on L are marked. Then at least n+3

2 intersection points
are marked overall.

Proof. Let V be the set of intersection points that are marked, and let E be the set of
segments connecting two consecutive intersection points in V , that were marked on the same
line. Observe that G = (V,E) is a geometric graph in which every pair of edges are virtually
avoiding. Thus, n = |E| ≤ 2|V | − 3. 2

2 Proof of Theorem 1

We prove the theorem by induction on n. The claim clearly holds for n = 2. Let G be a
geometric graph on n > 2 vertices with pairwise virtually avoiding edges, and assume that
the claim holds for any such graph with less than n vertices. If G has a vertex of degree
at most two, then we can conclude the theorem by removing this vertex and applying the
induction hypothesis. Therefore, we assume that the minimum degree of G is at least three.

We may also assume thatG is 2-connected. Indeed, ifG is not connected then we conclude
the theorem by applying the induction hypothesis on each of its connected components.
Otherwise, suppose that G has a cut vertex v. Let V1, . . . , Vk, k ≥ 2, be the vertex sets of
the connected components of G \ {v}, and let Gi be the subgraph of G induced by Vi ∪ {v},
for i = 1, . . . , k. Then by the induction hypothesis Gi has at most 2(|Vi| + 1) − 3 edges.
Thus, the number of edges of G is at most

k∑
i=1

(2(|Vi|+ 1)− 3) =
k∑

i=1

(2|Vi| − 1) = 2(n− 1)− k < 2n− 3.

Recall that G, viewed as a geometric graph drawn in the plane, is a planar map. Let m
be the number of its edges, let F be the number of its faces, and for every k ≥ 3 let fk be
the number of faces of G of size k, that is, faces with k edges (notice that no face can have
only two edges, as n ≥ 3). Then:

m = 3n− 6−
∑
k

(k − 3)fk. (1)
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Figure 2: Needy vertices.

Indeed, Equation (1) follows easily from Euler’s Formula, since:

3m = 3n+ 3F − 6 = 3n− 6 +
∑
k

k · fk −
∑
k

(k − 3)fk = 3n− 6 + 2m−
∑
k

(k − 3)fk.

Therefore, it is enough to prove that
∑

k(k − 3)fk ≥ n − 3. This is done using the
discharging method : First, we assign a charge of k − 3 to every face of size k. Then,
we redistribute the charges (discharge) such that every vertex has charge at least 1, the
unbounded face has charge −3, and every bounded face has a non-negative charge. This
implies that the initial charge

∑
k(k − 3)fk is at least n− 3.

Before describing the (dis)charging scheme, we first make some observations (we postpone
for later the proofs of some of which). Observe that since G is 2-connected and n ≥ 3, the
boundary of each of the faces of G is a simple polygon. Recall that a vertex v of a face f is
called a reflex vertex of f if the internal angle at v is greater than π. Otherwise v is called a
convex vertex of f . (Note that an internal angle that equals π implies two virtually crossing
edges.)

Definition 2.1 (needy vertex). Let v be a convex vertex of a bounded face f and let x and
y be its two neighbors on the boundary of f . If v has a neighbor u /∈ {x, y} such that x and
y are separated by the line through v and u, then we say that v is a needy vertex of f and
that u is a witness for that (see Figure 2(a)).

Proposition 2.2. Let f be a bounded face of G such that the number of convex vertices in
f is three. Then f has neither needy nor reflex vertices (in particular f must be a triangle).

Proposition 2.3. Let f be a bounded face of G such that the number of convex vertices in
f is four.

1. If f has a reflex vertex, then it has no needy vertices and no other reflex vertices (in
particular f is a pentagon in this case).

2. If f has a needy vertex, then f is a convex quadrilateral and has at most one other
needy vertex.

Charging and discharging. As mentioned above, for every k ≥ 3 we assign a charge of
k − 3 to every face of size k in G. In the discharging phase, the unbounded face sends one
unit of charge to each vertex on its boundary. Every bounded face sends one unit of charge
to every reflex vertex on its boundary, and 1

3 units of charge to each of its needy vertices.
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Proposition 2.4. After applying the discharging rules the following holds:

1. The charge at every vertex is at least 1;

2. The charge of the unbounded face of G is −3; and

3. The charge of every bounded face is non-negative.

Proof. Let v be a vertex in G. If v is on the unbounded face or v is a reflex vertex of
some bounded face, then its charge is clearly at least 1. Suppose that v is not on the
unbounded face and is not a reflex vertex of any bounded face. Then v lies in the convex
hull of its neighbors, and therefore (by Carathéodory’s Theorem) in the convex hull of three
of its neighbors which we denote by u1, u2, and u3. For i = 1, 2, 3 let fi denote the face to
which the ray −→uiv enters at v. Notice that f1, f2, and f3 are distinct faces (because G is
2-connected) and v is a needy vertex with respect to each fi (having ui as a witness to this,
see Figure 2(b)). Therefore, the final charge at v is at least one unit, as each fi donates 1

3 of
a unit of charge to v. This proves (1).

Observe that (2) holds by definition, therefore it remains to show (3) that the final charge
of every bounded face is non-negative. Let f be a bounded face of size k with r reflex vertices.
Thus, f sends at most r+ (k− r)/3 units of charge to its vertices. If r ≤ k− 5, then f sends
at most k − 5 + 5/3 < k − 3 units of charges and thus remains with a positive charge. Since
every face has at least three convex vertices, it remains to consider the cases r = k − 3 and
r = k − 4. If f has exactly three convex vertices, then by Proposition 2.2 it is a triangle
and it does not send any charge to its vertices and therefore ends up with its initial charge
(zero). Finally, suppose that f has exactly four convex vertices and it sends some charge
to its vertices. Then by Proposition 2.3 either f is a convex quadrilateral with at most two
needy vertices, or f is a pentagon with exactly one reflex vertex and no needy vertices. In
both cases f sends at most one unit of charge to its vertices and ends up with a non-negative
charge. 2

It remains to prove Propositions 2.2 and 2.3. To this end we first prove the next propo-
sition. Given two vertices u, v on the boundary of a polygon (or a face) P we denote by Pu,v

the clockwise path (polygonal chain) from u to v on the boundary of P .

Proposition 2.5. Let p and q be two adjacent vertices on a boundary of a simple polygon P .
If P contains exactly one convex vertex v different from p and q, then either P is a triangle,
or there are two edges of P different than pq that are virtually crossing.

Proof. Let ` be the line passing through the two neighbors x and y of v on the boundary of
P . Assume without loss of generality that p, q, v is the clockwise order of p, q and v along
the boundary of P . Assume ` is horizontal and v lies below `. If P is not a triangle, then
one of p and q must lie above `, or else P has another convex vertex (the highest vertex of
P ). Without loss of generality assume that p lies above ` and that x follows v in Pv,p (refer
to Figure 3(a)). Let z denote the other neighbor of x on the boundary of P . The vertex
z must also lie above ` or else P has another convex vertex (the lowest vertex of P on the
clockwise path from x to p along the boundary of P ). Note the z must be a reflex vertex
since Pv,p does not contain any convex vertex apart from its endpoints. Now it is easy to see
that the edges xz and vy are virtually crossing (see Figure 3(a)). 2

Proof of Proposition 2.2: Let p, q, and w denote the three convex vertices of f and assume
that this is their clockwise order on the boundary of f . Replace fp,q with an edge and notice
that we are left with a simple polygon. Indeed, otherwise there are at least 4 convex vertices,
namely p, q, and the two vertices of f furthest from the line pq in each of the two half-planes
bounded by it. Keeping in mind that no two edges of G are virtually crossing, we conclude
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Figure 3: Illustrations for Propositions 2.5 and 2.2.
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Figure 4: Illustrations for Proposition 2.3.

from Proposition 2.5 that both p and q are neighbors of w. Similarly one shows that p is a
neighbor of q. Hence, f is a triangle.

Suppose that f has a needy vertex, say, p, and that u is a witness for that (see Fig-
ure 3(b)). Then pu and qw are virtually crossing, a contradiction. 2

Proof of Proposition 2.3: Let a, b, c, and d denote the four convex vertices of f and assume
that they appear in this cyclic clockwise order along the boundary of f . If f does not have
any reflex vertex, then f is a convex quadrilateral. In this case only one of every pair of
opposite vertices of f may be a needy vertex. Indeed, let x and y be two opposite vertices
of f . If both are needy, let u be the witness for x and v be the witness for y. Then ux and
vy must be collinear edges, which is a contradiction.

Suppose that f has a reflex vertex p, and assume without loss of generality that that p
lies on fa,b. We may assume that p is a neighbor of b. Let ~r be the ray through p with apex
at b, and let x be the first point on ~r in which it crosses fb,a.

We claim that x = d. Suppose for contradiction that x 6= d. Clearly x /∈ fb,c, for otherwise
there must be a convex vertex on fb,c different from b and c. Suppose that x ∈ fd,a. If we
slightly rotate ~r counterclockwise, then it will cross fd,a at a point x′ which slightly precedes
x on fd,a (see Figure 4(a)). By applying Proposition 2.5 on the polygon consisting of the
chain fx′,b and the segment bx′, we conclude that b and a are neighbors in this polygon,
which is a contradiction (note that in this case x is a reflex vertex and remains so in the new
polygon).

Therefore, x ∈ fc,d. If fb,x touches (but does not cross) ~r at a point y that is before x
on ~r, then the open chains fb,y and fy,x must both contain a convex vertex. However, c is
the only convex vertex in the open chain fb,x. Thus, the polygon consisting of fb,x and xb is
simple, and it follows from Proposition 2.5 that its vertices are b, c, and x. In a similar way
we can deduce that a and d are neighbors in f .
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Denote by y the other neighbor of x in f . The vertices y and c lie on different sides of
~r, since ~r crosses fb,a at x. If x 6= d then x must be a reflex vertex, and then yx and bc are
virtually crossing (see Figure 4(b)), which is a contradiction. Therefore, x = d.

By applying Proposition 2.5 to the polygon consisting of fb,d and bd, it follows that fb,d
consists of the segments bc and cd. Similarly, by applying Proposition 2.5 to the polygon
consisting of fd,p and dp, it follows that fd,p consists of the segments ad and ap. Therefore,
f must be a pentagon such that the edge ap is collinear with c and the edge bp is collinear
with d (see Figure 4(c)). Notice that in this case no vertex of f may be needy. 2
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