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Abstract

Given a set of pseudosegments in the plane or a topological graph, we ask for an
orientation of the pseudosegments or edges which induces an acyclic orientation on the
corresponding planar map. Depending on the maximum number of crossings on a pseu-
dosegment or an edge, we provide algorithms and hardness proofs for this problem.

1 Introduction

Let G be a topological graph, that is, a graph drawn in the plane such that its vertices are
distinct points, and its edge set is a set of Jordan arcs, each connecting two vertices and
containing no other vertex. In this work we further assume that G is a simple topological
graph, i.e., every pair of its edges intersect at most once, either at a common vertex or at a
crossing point.

An orientation of (the edges of) a graph is an assignment of a direction to every edge
in the graph. We say that an orientation is acyclic if the resulting directed graph does not
contain a directed cycle. Finding an acyclic orientation of a given undirected (abstract) graph
can be easily computed in linear time by performing a depth-first search on the graph and
then orienting every backward edge from the ancestor to the descendant. However, is it always
possible to find an orientation of the edges of a topological graph, such that a traveler on
that graph will not be able to return to his starting position even if allowed to move from
one edge to the other at their crossing point? Rephrasing it in a more formal way, let M(G)
be the planar map induced by G. That is, the map obtained by adding the crossing points of
G as vertices, and subdividing the edges of G accordingly. Then we ask for an orientation of
the edges of G such that the induced directed planar map M(G) is acyclic.

Clearly, if the topological graph is x-monotone, that is, every vertical line crosses every
edge at most once, then one can orient each edge from its endpoint with the smaller x-
coordinate towards its endpoint with the greater x-coordinate. Traveling on the graph under
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Figure 1: A non-orientable topological graph

such orientation, one always increases the value of one’s x-coordinate and therefore cannot
form a directed cycle. Fig. 1(a) provides an example for a topological graph for which there
is no acyclic orientation: The edges e1, e2, e3 cannot be all oriented clockwise or counter-
clockwise, so assume w.l.o.g. that e1 and e2 are oriented clockwise, while e3 is oriented counter-
clockwise as in Fig. 1(b). To prevent a cycle with e1 and e3, e6 must be oriented downwards.
Similarly, e5 must be directed leftwards to prevent a cycle with e2 and e3 (see Fig. 1(c)).
However, this yields the cycle shown in Fig. 1(d). Note that the degree of every vertex in this
example is one. This gives rise for considering the orientation problem in the special case the
degree of each vertex is one, or in other words, when one looks for an acyclic orientation of
a set of pseudosegments embedded in the plane. Recall that a set of pseudosegments is a set
curves such that every pair of curves intersects in at most one point.

It turns out that determining whether a topological graph (resp., a set of curves) has
an acyclic orientation depends crucially on the maximum number of times an edge in the
graph (resp., a pseudosegment) can be crossed. Given a (simple) topological graph G on n
vertices, such that each edge in G is crossed at most once, we show that one can find an
acyclic orientation of G in O(n) time. When four crossings per edge are allowed, deciding
whether there exists an acyclic orientation becomes NP-complete. Topological graphs with
few crossings per edge were considered in several works in the literature [5, 8, 9]. For a set of
n pseudosegments in which every pseudosegment is crossed at most k times, we describe an
O(n)-time orientation algorithm for the case k ≤ 3. When k ≥ 5 finding an acyclic orientation
of the set of pseudosegments is NP-complete.

The rest of this paper is organized as follows. In Section 2 we study the problem of finding
an acyclic orientation for a set of pseudosegments. Then, in Section 3 we consider the more
general case where the input is a topological graph. Finally, we give some concluding remarks
in Section 4, and mention a few related open problems.

2 Acyclic orientation of a set of pseudosegments in the plane

Throughout this paper we assume the intersections between the pseudosegments are known in
advance. Given a set of pseudosegments C, the vertices of the planar map M(C), induced by C,
are the crossing points between the pseudosegments. The edges of M(C) are segments of the
pseudosegments that connect two consecutive crossing points on a pseudosegment. As we have
mentioned above, the maximum number of crossings per pseudosegment plays an important
role when we ask for an acyclic orientation of a set of pseudosegments. If every pseudosegment
is crossed at most once, then M(C) contains no edges, and therefore any orientation of C is
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acyclic. If C is a set of pseudosegments with at most two crossing points per pseudosegment,
then M(C) is a union of cycles and paths and thus finding an acyclic orientation of C is also
easy in this case. Hence, the first non-trivial case is where each pseudosegment is crossed at
most three times. In this case we have:

Theorem 1. Let C be a set of n pseudosegments, such that each pseudosegment has at most
three crossings. Then, there exists an acyclic orientation of C, and such an orientation can
be found in O(n) time.

This result is proved in Section 2.1, while in Section 2.2 we show:

Theorem 2. Let C be a set of pseudosegments, such that each pseudosegment has at most
five crossings. Then deciding whether C has an acyclic orientation is NP-complete.

2.1 Pseudosegments with at most three crossings per pseudosegment

Proof of Theorem 1. Let C be a set of n pseudosegments, such that each pseudosegment has
at most three crossings. In this section we describe an algorithm for obtaining an acyclic
orientation of C. We start by constructing M(C), the planar map induced by C. Clearly, an
(acyclic) orientation of C induces an (acyclic) orientation of the edges in M(C).

Every connected component of M(C) can be oriented independently, therefore we describe
the algorithm assuming M(C) is connected. Suppose C contains a pseudosegment c which is
crossed less than 3 times. By removing c we obtain a set of n − 1 pseudosegments in which
there must be at least two pseudosegments (the ones crossed by c) which are crossed at most
twice. We continue removing the pseudosegments, until none is left. Then we reinsert the
pseudosegments in a reverse order (the last to be removed will be the first to be reinserted
and so on). During the insertion process we reconstruct M(C) and define a total order of
its vertices. For this purpose we store the vertices of M(C) in a data structure suggested by
Dietz and Sleator [2]. This data structure supports the following operations, both in O(1)
worst-case time:

1. INSERT(X,Y ): Insert a new element Y immediately after the element X.

2. ORDER(X,Y ): Compare X and Y .

Note that by inserting Y after X and then switching their labels we can also use this data
structure to insert a new element immediately before an existing element in a constant time.
We also keep a record of the maximal element in the order, MAX (that is, we update MAX
when a new element is added after it or when switching the labels takes place for two elements
one of which is MAX).

We now describe the way a pseudosegment c is reinserted. If c has no crossing points with
pseudosegments that have already been added, then we orient it arbitrarily. Otherwise, for
every pseudosegment c′ that has already been added and is crossed by c (recall that there
are at most two such pseudosegments) we take the following actions. Let x be the crossing
point of c and c′. If c′ has no other crossing points, then x is inserted after MAX. In case c′

has exactly one other crossing point x′, we insert x after x′ when c′ is oriented from x′ to x,
and before x′ otherwise. Otherwise, suppose c′ has two crossing points x′

1 and x′
2, such that

x′
1 < x′

2. Then we insert x before x′
1 if x′

1 is the middle point on c′ among the three points;
after x′

1 if x is the middle point; and after x′
2 if x′

2 is the middle point. Finally we orient c
arbitrarily if it has less than two crossings, or from the smaller crossing to the greater one, in
case it has two crossings. We refer to the algorithm described above as Algorithm 1.
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Figure 2: Orienting the pseudosegments where there is a degree 3 crossing point

Lemma 3. Let C be a set of n pseudosegments such that every pseudosegment is crossed at
most three times and there is a pseudosegment that is crossed at most twice. Then Algorithm 1
finds an acyclic orientation of C in O(n) time.

Proof. Since a total order is defined on the vertices of M(C) and it is easy to verify that
every edge is oriented from its smaller vertex to its greater one, it follows that there is no
directed cycle in M(C). Computing the connected components of M(C) requires O(n) time.
Removing and adding a pseudosegment is performed in constant time, therefore the overall
time complexity is O(n).

The more complicated case is when all the pseudosegments in C are crossed exactly three
times. The general idea in this case is to:

1. find a set of pseudosegments S that form an undirected cycle in M(C);

2. orient C \ S using Algorithm 1;

3. orient S such that:

(a) the pseudosegments in S do not form a directed cycle; and

(b) it is impossible to ‘hop’ on S from C \ S, ‘travel’ on S, and ‘hop’ off back to C \ S.

Henceforth, we assume that every pseudosegment in C is crossed three times. A crossing
point x on a pseudosegment c is extreme if in any orientation of c it is either the first or the
last crossing point on c. Otherwise x is non-extreme.

Observe that the degree in M(C) of a crossing point is 2, 3, or 4. We tackle the orientation
problem based on whether or not there is a crossing point whose degree in M(C) is 3. Suppose
x0 is a crossing point of degree 3, that is, it is the crossing point of two pseudosegments, c0

and c, such that x0 is an extreme crossing point on c and a non-extreme crossing point on c0.
Denote by a0 and a1 (resp., a and b) the other crossing points on c0 (resp., c), see Fig. 2(a).

We proceed by temporarily removing x0 and looking for an undirected path in M(C)
between a0 and a1. If there is no such path, then suppose that there is no path from a1 to
a (the case there is no path from a0 to a is handled in a similar way). We can solve the
orientation problem of C by solving two sub-problems: first orienting the pseudosegments
reachable from a1 (without going through x0), then orienting the rest of the pseudosegments
(including c0). Note that both sub-problems can be solved using Algorithm 1.

Now assume we have found a simple path p between a1 and a0. Denote by c1, c2, . . . , ck

the pseudosegments on this path from a1 to a0. Let C be the cycle formed by p, (a0, x0) and
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(x0, a1), and let S = {c0, c1, . . . , ck}. Our algorithm proceeds by finding an acyclic orientation
of C \ S (using Algorithm 1) and then orienting the pseudosegments in S. If c /∈ S and the
direction of c in the acyclic orientation of C \ S is from x0 to a, then we switch the direction
of every pseudosegment in C \ S. It is easy to see that the pseudosegments in C \ S still do
not form a directed cycle.

Next we provide the details of the orientation of the pseudosegments in S. Denote by ai

the crossing point of ci−1 and ci, i = 1, . . . , k − 1, and let a0 = ak+1 be the crossing point
of c0 and ck. Suppose we traverse C starting at x0 along the pseudosegments c0, c1, . . . , ck,
then the pseudosegment ci is traversed from the point ai to the point ai+1, i = 1, . . . , k.
Every pseudosegment has a third crossing point, that we denote by xi, and refer to as the
connection point of ci. Note that xi may or may not be on C, and that it is possible that
xi = xj for i 6= j. We say that xi is a before-connection point if ai is between xi and ai+1 on
ci; xi is an after -connection point if ai+1 is between xi and ai on ci; and we say that xi is a
middle-connection point if it is not an extreme crossing point on ci.

We will orient the pseudosegments in S such that there will be no directed path between
two connection points through S (apart from some cases that will be discussed later on). We
start by orienting c1 from x1 to a1 (see Fig. 2(b)), thus making it impossible to “walk” from
x0 to x1 using c0 and c1. Next, we assign an orientation to c2. Note that the orientation of
c1 already prevents walking on c1 and c2 either from x1 to x2, or from x2 to x1. We assign
orientation to c2 such that both directions are impossible (see Fig. 2(c) for an example). We
continue orientating the pseudosegments c3, . . . , ck in a similar way, making it impossible to
reach xi from xi+1 and the other way around, by using the pseudosegments ci and ci+1, for
i = 1, 2, . . . , k − 1. Finally, we set an orientation to c0 as follows: In case xk is already
unreachable from x0 (using the pseudosegments c0 and ck), we set the orientation of c0 such
that x0 is unreachable from xk. Otherwise, we make sure xk is unreachable from x0. Orienting
S this way guaranties that for i = 1, . . . , k− 1 one cannot reach from xi to xi+1 or vice versa,
using ci and ci+1. It also guaranties that x1 is unreachable from x0 using c0 and c1, and that
xk is unreachable from x0 using c0 and ck.

Observation 1. For every i = 1, . . . , k there is no connection point xj 6= xi such that there
is a directed path on the pseudosegments in S from xj to xi.

Proof. We prove the claim by induction on number of pseudosegments in the path between
the two connection points. If the two connection points are on two crossing (that is, adjacent)
pseudosegments, then the algorithm guaranties that there is no path from xj to xi (note that
xi 6= x0). Suppose that there are xi and xj such that there is a directed path from xj to
xi on S, and assume w.l.o.g. that cj+1 is the next pseudosegment on that path. Note that
cj+1 6= c0, for otherwise there is path from x0 to xi which is shorter (in the number of traversed
pseudosegments) than the path from xj to xi. Then, xj+1 must be a before-connection point,
since otherwise there is a path from xj to xj+1 using cj and cj+1. However, it follows that
there is a path from xj+1 to xi which is shorter than the path from xj to xi.

Observation 2. C is not a directed cycle.

Proof. Assume our orientation results in a directed cycle a0 → a1 → · · · → ak+1 = a0 (for a
directed cycle in the other direction the proof is similar). According to the rules by which c0 is
oriented, it follows that xk is an after-connection point (otherwise one can walk from xk to x0

on ck and c0). Considering the orientation of ck and ck−1 and the fact there is no path using

5



C

Figure 3: A set of pseudosegments whose planar map contains no degree 3 vertices. We orient
it by first finding a cycle C and orienting its pseudosegments in an alternating manner along
C. Then the remaining pseudosegments are oriented using Algorithm 1.

them from xk−1 to xk or vice versa, one concludes that xk−1 is also an after-connection point.
Proceeding in a similar manner implies that x1 is also an after-connection point. However,
in this case c1 should have been oriented in the reverse direction in order to prevent a path
from x0 to x1 using c0 and c1.

Since C is not a directed cycle and Algorithm 1 finds an acyclic orientation of the pseu-
dosegments in C \ S, it remains to verify that there is no cycle that involves pseudosegments
from S and from C \ S. If there is such a cycle then, when traversing it, one must ‘hop’ on S
at some connection point, ‘travel’ on S for a while, and then ‘hop’ off S. However, it follows
from Observation 1 that one can ‘hop’ off S only at x0. Since c is directed from a to x0 and
x0 is an extreme crossing point on c, the way from x0 on c cannot be part of a directed cycle.

Finally, we have to consider the case where every pseudosegment in C is crossed exactly
three times, but there is no crossing point whose degree is three (see Fig. 3 for an example).
In this case we first look for an undirected cycle (there must be one as the degree of every
vertex in M(C) is at least 2). During our search, after arriving at a vertex v through one of
the two pseudosegments defining v, we leave through the other pseudosegment. Let C be the
undirected cycle found, and denote by c1, c2, . . . , ck the pseudosegments forming C (in that
order). Again, we first orient the pseudosegments in C \ {c1, c2, . . . , ck} using Algorithm 1,
and then assign orientation to the pseudosegments c1, c2, . . . , ck. Let a1, a2, . . . , ak be the
vertices of C, and let x1, x2, . . . , xk be the connection point of c1, c2, . . . , ck, respectively.
Note that two crossing points of the same degree cannot be adjacent. Thus, the degree of
the points a1, a2, . . . , ak must alternate between 2 and 4, and k must be even. It also follows
from the way we search for a cycle, that the connection points x1, x2, . . . , xk are alternating
‘before’ and ‘after’-connection points. By orienting the pseudosegments c1, c2, . . . , ck in an
alternating manner (see Fig. 3) we make sure that C is not a directed cycle, and that it is
impossible to ‘hop’ on C at some connection point and then ‘hop’ off at another connection
point. Therefore, the resulting orientation is acyclic. Let us refer to the algorithm describe
above for the case every pseudosegment is crossed exactly three times as Algorithm 2.
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Lemma 4. Let C be a set of n pseudosegments such that every pseudosegment is crossed
exactly three times. Then Algorithm 2 finds an acyclic orientation of C in O(n) time.

Proof. It follows from the correctness of Algorithm 1 and from the discussion above that
Algorithm 2 finds an acyclic orientation of C. Note that a cycle is removed only once, and
then it is guarantied that there will be some pseudosegments with less than three crossings
(in each connected component), and therefore we can apply Algorithm 1 on the remaining
pseudosegments. All the operations concerning finding the cycle, removing it, and orienting
the involved pseudosegments can be performed in O(n). Thus the overall time complexity is
linear in the number of pseudosegments.

Combining lemmata 3 and 4 completes the proof of Theorem 1.

2.2 Pseudosegments with at most five crossings per pseudosegment

In this section we show that deciding whether there exists an acyclic orientation of a set of
pseudosegments with at most 5 crossings per pseudosegment is intractable. We will reduce this
problem from the problem of 2-coloring 3-uniform hypergraphs. A hypergraph H = (V,E)
is 3-uniform if every edge in E contains exactly three vertices. A (legal) 2-coloring of H is a
function f : V → {1, 2} such that no edge in E contains only vertices of the same color. The
problem of deciding whether a 3-uniform hypergraph has a legal 2-coloring is NP-complete [7].

Given a 3-uniform hypergraph H we draw in the plane a (not necessarily planar) bipartite
graph representing the vertex-edge incidences of H as is shown in Fig. 4(a), with vertices
aligned on a horizonal line and the edges aligned on a vertical line. To distinguish the
crossings in this drawing from crossings of pseudosegments, we call them extra-crossings.
The rectangles representing vertices, edges and extra-crossings will be replaced by sets of
pseudosegments which we call vertex-, edge- and crossing-gadgets. We refer to the part of
the gadget inside of its bounding rectangle as inside, and to the remainder as outside. For
each of the gadgets some of the pseudosegments are partially outside of the gadget and are
used to connect gadgets; we call these pseudosegments wires. We refer to (the orientation of)
the wires as ingoing or outgoing relative to the corresponding gadget. Thus, a wire is always
ingoing for one of the gadgets it connects to and outgoing for the other.

The basic idea of the reduction is the following: a vertex-gadget will have the property
that in an acyclic orientation of its pseudosegments either all wires are ingoing or all wires
are outgoing. Thus, the color of a vertex is represented by the orientation of the wires of its
gadget. An edge-gadget will have the property that it can be oriented acyclically if and only
if not all wires have the same orientation. A crossing-gadget propagates the orientations, i.e.,
an ingoing wire on one side should have an outgoing one on the other, and vice-versa. If
we would ignore extra-crossings and would let wires between vertex- and edge-gadgets cross,
then pseudosegments might have more than 5 crossings, and the extra-crossings might induce
unintended oriented cycles. The purpose of crossing-gadgets is to ensure that this does not
happen.

The simplest gadget is the edge-gadget shown in Fig. 4(b). The pseudosegments of an
edge-gadget form an undirected cycle. There are exactly two cases in which this cycle is also
a directed cycle: it might be directed clockwise in which case all wires are ingoing, or it might
be directed counterclockwise in which case all wires are outgoing.
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Figure 4: Constructions with pseudosegments in the reduction from 2-coloring 3-uniform
hypergraphs
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Lemma 5. The pseudosegments of an edge-gadget form a directed cycle if and only if either
all wires are ingoing or all wires are outgoing. Each of the wires has 2 crossings inside the
gadget.

Next we construct the vertex-gadget. We first give a construction for a vertex-gadget hav-
ing 3 wires in Fig. 4(c). Up to reorienting all pseudosegments, the three orientations shown
are exactly the acyclic orientations. This can be easily verified by orienting the pseudoseg-
ments in the order bottom to top in the figure; after three (left and middle case) or two (right
case) pseudosegments, the previous pseudosegments already force the orientation of the next
one and so on. We can connect several of these gadgets as shown in Fig. 4(d) to obtain a
vertex-gadget with any number of wires by repeating the construction in the figure.

Lemma 6. In an acyclic orientation of the pseudosegments of a vertex-gadget either all wires
are ingoing or all wires are outgoing. Each of the wires has 2 crossings inside the gadget, and
the wires do not cross each other inside the gadget.

We construct the crossing-gadget by connecting vertex gadgets as shown in Fig. 4(d). All
small rectangles in the figure are vertex-gadgets.

Lemma 7. In an acyclic orientation of the pseudosegments of a crossing-gadget an ingoing
wire has an outgoing wire on the opposite side and vice-versa. Each of the wires has 2 crossings
inside the gadget, and the wires do not cross each other inside the gadget.

Next we observe that we do not introduce unintended directed cycles. For a vertex-gadget
this is a direct consequence of Lemma 6. For a crossing-gadget this follows from the fact that
any such cycle would go through a vertex-gadget in the inside of a crossing-gadget.

Lemma 8. If a set C of oriented pseudosegments includes a vertex- or crossing-gadget that
has no directed cycle inside, then C has no directed cycle going through the inside of the
gadget.

Proof of Theorem 2. An acyclic orientation can be verified in polynomial time, therefore the
problem is in NP. The problem is shown to be NP-hard by reduction from 2-coloring 3-
uniform hypergraphs to the acyclic orientation problem using the construction described
above. All pseudosegments are polygonal chains of constant complexity. The edge- and the
crossing-gadget use a constant number of pseudosegments, and the vertex-gadget of a vertex
of degree k has complexity O(k). For a 3-uniform hypergraph the set of pseudosegments
can be constructed in polynomial time using polynomial coordinates for the vertices. By
construction all pseudosegments have at most 5 crossings and cross pairwise at most once. It
remains to prove that the set of pseudosegments has an acyclic orientation if and only if the
hypergraph is 2-colorable.

Given a 2-colorable hypergraph H = (V,E) with a 2-coloring f : V → {1, 2} we orient
the pseudosegments in the following way. For a vertex v ∈ V , if f(v) = 1, we orient the
wires of the vertex-gadget representing v outgoing, otherwise ingoing. Using an orientation
as given in Fig. 4(b,c), we can orient the pseudosegments inside the vertex-gadget acyclically.
At crossings we propagate the orientations, i.e., for an ingoing wire we have an outgoing one
on the opposite site and vice-versa. Using orientations from Fig. 4(d) (and (a) for the vertex-
gadgets), we again obtain an acyclic orientation of the pseudosegments inside the gadget.
For an edge e ∈ E, since f is a 2-coloring, e contains vertices of both colors. Therefore,
the gadget for e has at least one ingoing and one outgoing wire. By Lemma 5 this induces
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an acyclic orientation inside the edge-gadget. Thus, we have no directed cycle in any of the
gadgets. Furthermore, by Lemma 8 there is no directed cycle using parts inside of a vertex-
or crossing-gadget. Thus, to see whether there is any directed cycle we can remove the insides
of these gadgets from the corresponding planar map. The remaining parts of the planar map
are isolated pseudosegments and acyclically-oriented edge-gadgets. Therefore, the orientation
is acyclic.

Now, assume we are given an acyclic orientation for the set of pseudosegments constructed
for a hypergraph H = (V,E) and want to construct a 2-coloring of H. At a vertex-gadget
either all wires are ingoing or all outgoing by Lemma 6. If for a vertex v ∈ V all wires at
its gadgets are outgoing we set f(v) = 1, otherwise we set f(v) = 2. Since the orientation
is acyclic, the orientation of a wire is propagated at a crossing-gadget by Lemma 7. Thus, a
wire at an edge-gadgets is ingoing if it was outgoing at the corresponding vertex-gadget, and
outgoing if it was ingoing at the vertex-gadget. Again using that the orientation is acyclic,
we can conclude from Lemma 5 that at any edge-gadget there are ingoing and outgoing wires,
corresponding to vertices with colors 1 and 2. Thus, f is a legal 2-coloring.

3 Acyclic orientation of topological graphs

Given a topological graph in which no edge is crossed, one can use the simple algorithm for
abstract graphs described in the Introduction to find an acyclic orientation. Thus, the first
non-trivial case is when every edge is crossed as most once. In Section 3.1 we show that in
this case we have:

Theorem 9. Let G be a topological graph on n vertices in which every edge is crossed at
most once. Then G has an acyclic orientation. Moreover, such an orientation can be found
in O(n) time.

In Section 3.2 we show:

Theorem 10. Let G be a simple topological graph on n vertices in which every pair of edges
crosses at most once and each edge has at most four crossings. Then deciding whether G has
an acyclic orientation is NP-complete.

3.1 Topological graphs with at most one crossing per edge

Before proving Theorem 9 we recall some basic terms and facts from graph theory.

Definition 3.1. An undirected graph G = (V,E) is biconnected if there is no vertex v ∈ V
such that G \ {v} is not connected.

Definition 3.2. A biconnected component (block) of a connected graph G is a maximal set
of vertices that induce a biconnected subgraph.

Observation 3. Let G be an undirected graph, let C be a simple cycle in G, and let B be the
block containing C. Then for every edge e /∈ C that connects two vertices of C, B is also a
block of G \ {e}.
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Definition 3.3. Given a biconnected graph G = (V,E) and an edge (s, t) ∈ E, an st-
numbering (or st-ordering) of G is a bijection ℓ : V → {1, 2, . . . , |V |} such that: (a) ℓ(s) = 1;
(b) ℓ(t) = |V |; and (c) for every vertex v ∈ V \ {s, t} there are two edges (v, u), (v,w) ∈ E
such that ℓ(v) < ℓ(u) and ℓ(v) > ℓ(w).

Given an st-numbering, we will not make a distinction between a vertex and its st-number.
An st-numbering of a graph G naturally defines an orientation of the edges of G: direct every
edge (u, v) from u to v if u < v and from v to u otherwise.

Lemma 11 ([10, Lemma 1]). Let G = (V,E) be a plane biconnected multi-graph such that
|V | > 2. Given an st-numbering, let G′ denote the corresponding directed plane multi-graph.
Let f be a face of G (and G′), and denote by G′

f (resp., Gf ) the graph induced by the edges
of G′ (resp., G) bounding f . Then G′

f has exactly one source and one sink and consists of
two directed paths from the source to the sink.

Input: A topological graph G with at most one crossing per edge.
Output: An acyclic orientation of G.

1: for each pair of crossing edges (a, b) and (c, d) do

2: add each of the edges (a, c), (a, d), (b, c), and (b, d);
3: end for

4: compute the blocks of the new graph;
5: for each block C do

6: temporarily delete all pairs of crossing edges in C;
7: compute an st-numbering of the remaining subgraph;
8: reinsert all pairs of crossing edges in C;
9: orient each edge of C according to the st-numbering;

10: end for

11: remove the edges added in line 2;

Algorithm 3: Acyclic orientation of a topological graph with at most one crossing per edge

Proof of Theorem 9. Let G be a simple topological graph in which every edge is crossed at
most once. Denote by n the number of vertices in G, and by m the number of its edges. We
will show that Algorithm 3 computes an acyclic orientation of G. Denote by G′ the graph
obtained after adding the edges in lines 1–3. Note that it is always possible to add the edges
listed in line 2 without introducing new crossings. After this step the vertices of each crossing
pair of edges lie on a simple 4-cycle. It is enough to verify that each block of G′ is acyclicly
oriented, since (a) every simple cycle in the underlying abstract graph is contained entirely in
some block; and (b) the crossings do not introduce any interaction between different blocks,
as all the vertices of a crossing pair of edges lie on a simple 4-cycle and therefore are in the
same block. Thus, for the rest of the proof we assume G′ is biconnected. We denote by
G′′ the graph obtained from G′ by removing all the pairs of crossing edges. It follows from
Observation 3 that G′′ is biconnected, therefore, in line (7) an st-numbering of G′′ is indeed
computed.

Clearly, one can obtain an acyclic orientation of an abstract graph by numbering the
vertices of the graph and directing every edge from its endpoint with the smaller number to
its endpoint with the larger number. Therefore, it is enough to verify that the crossing points
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(a) alternative
edge-gadget

(b) vertex-gadget (c) crossing-gadget

Figure 5: Constructions with graph edges in in the reduction from 2-coloring 3-uniform
hypergraphs

do not introduce a bad “shortcut”, that is a path from a vertex u to a vertex v such that
v < u. Let ((a, b), (c, d)) be a pair of crossing edges. Denote by f the 4-face a−c−b−d−a of
G′′. According to Lemma 11 the digraph induced by f and the computed st-numbering has
only one source and sink. Therefore, we have to consider only two cases based on whether
the sink and the source are adjacent in f . One can easily verify by inspection that in both
cases no bad shortcut is formed. Thus Algorithm 3 produces an acyclic orientation.

Note that Algorithm 3 can be implemented to run in time linear in the number of vertices:
Finding the blocks of a graph takes O(n + m) time [3], as does the computation of an st-
numbering [4]. Therefore the overall running time is O(n+m), however the maximum number
of edges in a topological graph in which every edge is crossed at most once is 4n− 8 [9], thus
the time and space complexity of Algorithm 3 is O(n).

Remark. We assume that G is a simple topological graph to simplify the presentation of
the algorithm and its proof, however, it is actually not needed. An almost exact algorithm
and proof will work for topological graphs in which every edge is crossed at most once, but
two edges may cross and also share a common vertex.

In the next section we show that deciding whether there exists an acyclic orientation of a
topological graph with at most four crossings per edge is NP-complete.

3.2 Topological graphs with at most four crossings per edge

Proof of Theorem 10. An acyclic orientation can be verified in polynomial time, therefore the
problem is in NP. As for the case of a set of pseudosegments with at most 5 crossings per
edge, we reduce from 2-coloring of 3-uniform hypergraphs. The reduction is the same as for
pseudosegments, except for the vertex- and the crossing-gadget. We use the same edge-gadget
but note that an edge-gadget with only one inside crossing per wire is possible (Fig. 5(a), see
Observation 4), arcs are used to highlight the symmetry.

The vertex-gadget with three wires with all possible acyclic orientations (up to reorienting
all edges) is shown in Fig. 5(b). To see that these are indeed all acyclic orientations, first note
that the figure includes (up to reorienting both edges) all orientations of the two non-wire
edges. In the first case (left figure) an ingoing wire would yield a counter-clockwise cycle with
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these two edges. In the second case (middle and right figure) any two wires form triangles
with both of these edges. For one of the edges the corresponding triangle edge is oriented
from left to right and for the other of the edges from right to left. Therefore, if one of the
wires is ingoing and one is outgoing, for one of the non-wire edges we get a directed cycle.
Thus, either all wires are outgoing or all are ingoing. For vertex-gadgets with more wires
we connect several of these in the same way as for pseudosegments. For the crossing-gadget
we use the construction from Fig. 5(c) twice, once as shown and once rotated by 90 degrees.
The edge that is drawn fat and its counterpart in the rotated version are used for the actual
crossing. The remaining proof is then the same as for pseudosegments.

4 Discussion

We considered the problem of finding an acyclic orientation for a given topological graph or
a set of pseudosegments in the plane. For topological graphs with at most one crossing per
edge we showed an algorithm for finding an acyclic orientation in linear time. It follows from
our results that when the maximum number of crossings per edge is at least four, deciding
whether an acyclic orientation of the graph exists is NP-complete. An obvious open question
is what happens when the maximum number of crossings per edge is two or three.

Observation 4. There is a simple topological graph G, such that each edge has at most three
crossings, and there is no acyclic orientation of G.

Proof. Such a graph can be constructed with the gadgets of the NP-hardness proof in the
case of at most four crossings per edge. The vertex-gadget (Fig. 5(b)) with only three wires
uses at most three crossings per edge and two crossings for the wires. The wires all have
the same orientation. The alternative edge-gadget (Fig. 5(a)) has at most three crossings per
edge, and at most one crossing per wire.

To see that the edge-gadget works, consider the following argument. The three arcs
form an undirected cycle. Therefore, to avoid a directed cycle one must be directed in the
opposite direction of the other two. In the example of the figure this is the right arc, which
is oriented counter-clockwise. As shown in the figure, this forces one wire to be ingoing and
another one to be outgoing. The third can be chosen arbitrarily. Connecting one vertex-
gadget to one edge-gadget yields a graph with at most three crossings per edge and no acyclic
orientation.

It follows from Observation 4 that there are topological graphs with at most three crossings
per edge that do not have an acyclic orientation. However, deciding whether a topological
graph with at most three crossings per edge has an acyclic orientation is open. The situation
is worse for topological graphs with at most two crossings per edge: So far we were unable
to find an example which has no acyclic orientation, or to prove that every such graph is
acyclic-orientable.

A special case is where all the vertices in the topological graph have degree 1. This case
corresponds to asking the acyclic orientation question for a set of pseudosegments. Clearly,
if the problem can be solved (or decided) for topological graphs with at most k crossings per
edge, then it can be solved for pseudosegments with at most k crossings per pseudosegment.
It would be interesting to determine whether there is a construction that provides a reduction
from topological graphs with at most k crossings per edge to a set of pseudosegments with at
most k′ crossings per pseudosegment.

13



For pseudosegments with at most three crossings per pseudosegment we provided a linear
time algorithm that finds an acyclic orientation. For five crossings per pseudosegment we
showed that the problem becomes NP-complete. A set of pseudosegments with at most four
crossings per pseudosegment might not have an acyclic orientation, as Fig. 1 implies. However,
the decision problem for such sets of pseudosegments is also open. Two other interesting open
questions are: (1) What happens if we only require acyclic faces? and (2) What happens if
we look for an orientation such that for every pair of vertices, u, v, in the induced planar map
there is a directed path from u to v or vice versa?

For both graphs and sets of pseudosegments, one can look at the optimization prob-
lem where one wishes to find an orientation that minimizes the number of directed cycles.
Is it possible to approximate the optimal solutions, and does the number of crossings per
edge/pseudosegment also play a role when it comes to the approximation ratio one can ob-
tain?

Our original motivation for considering the acyclic orientation of pseudosegments does
not concern pseudosegments in the plane but in space. An important property [6, Lemma 10]
of arrangements of double pseudolines in the Möbius band can be formulated in terms of
the acyclicity of the 1-skeleton of a certain arrangement of oriented curves in a cylinder.
It would be interesting to obtain results concerning acyclic orientations of curves on other
surfaces. Also it would be interesting to study acyclic orientations of graphs with more general
dependencies between or constraints on the orientation of edges.
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