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Abstract

The adoption of everyday decisions in public affairs, fashion, movie-going, and consumer
behavior is now thoroughly believed to migrate in a population through an influential network.
The same diffusion process when being imitated by intention is called viral marketing. This
process can be modeled by a (directed) graph G = (V,E) with a threshold t(v) for every vertex
v ∈ V , where v becomes active once at least t(v) of its (in-)neighbors are already active. A
Perfect Target Set is a set of vertices whose activation will eventually activate the entire graph,
and the Perfect Target Set Selection Problem (PTSS) asks for the minimum such initial set. It is
known [6] that PTSS is hard to approximate, even for some special cases such as bounded-degree
graphs, or majority thresholds.

We propose a combinatorial model for this dynamic activation process, and use it to represent
PTSS and its variants by linear integer programs. This allows one to use standard integer
programming solvers for solving small-size PTSS instances. We also show combinatorial lower
and upper bounds on the size of the minimum Perfect Target Set. Our upper bound implies that
there are always Perfect Target Sets of size at most |V |/2 and 2|V |/3 under majority and strict
majority thresholds, respectively, both in directed and undirected graphs. This improves the
bounds of 0.727|V | and 0.7732|V | found recently by Chang and Lyuu [5] for majority and strict
majority thresholds in directed graphs, and matches their bound under majority thresholds
in undirected graphs. Furthermore, our proof is much simpler, and we observe that some of
these bounds are tight. One interesting and perhaps surprising implication of our lower bound
for undirected graphs, is that it is easy to get a constant factor approximation for PTSS for
“relatively balanced” graphs (e.g., bounded-degree graphs, nearly regular graphs) with a “more
than majority” threshold (that is, t(v) = ϑ ·deg(v), for every v ∈ V and some constant ϑ > 1/2),
whereas no polylogarithmic-approximation exists for “more than majority” graphs.

1 Introduction

Social Networks, modeled by graphs with individuals or organizations as vertices, and relationships
or interactions as edges, have long been a major scientific object in many science fields, including
most social sciences [11, 19, 18], life sciences [7, 27] and medicine [7, 18, 22]. Social Network
play a critical role in determining the way problems are solved, organizations are run, and the
degree to which individuals succeed in achieving their goals. The adoption of everyday decisions in
public affairs, fashion, movie-going, and consumer behavior is now thoroughly believed to migrate
in a population through an influential network. The same diffusion process when being imitated
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by intention is called viral marketing. This have roots in [13] where serendipitous discovery that
messages from the media may be further mediated by informal ’opinion leaders’ who intercept,
interpret, and diffuse what they see and hear to the personal networks in which they are embedded.

Viral Marketing has recently became a widespread technique for promoting novel ideas, mar-
keting new products, or spreading innovation [8, 14]. In this method, one wishes to find a good set
of individuals in a network, persuade them to adopt the idea, product or innovation, and wait for
the ’word-of-mouth’ process to take care of ’spreading the rumor’.

One model for Viral Marketing is the threshold model [12], where a graph represents the social
network, and a threshold value for every vertex represents the influence its neighbors have on it.
Initially, a subset of vertices, the Target Set, is selected to be active. Then, repeatedly, every non-
active vertex whose number of active neighbors is at least its threshold becomes active itself, and,
thus, can activate neighboring vertices in the following iterations of this process.

Formally, let G = (V,E) be a directed graph, S ⊆ V , and let t : V → N be a threshold function
associated with the vertices of G. An activation process in G starting at S is a chain of vertex
subsets Active[0] ⊆ Active[1] ⊆ . . . ⊆ V , with Active[0] = S, and for all i > 0, Active[i] = {u | u ∈
Active[i− 1] or t(u) ≤ |{v ∈ Active[i− 1] | (v, u) ∈ E}|}. We say that v is activated at iteration i if
v ∈ Active[i] \ Active[i− 1], i > 0. Since the graph is finite and Active[i− 1] ⊆ Active[i], there is an
integer z for which Active[z] = Active[j], for every j > z. Let z be the smallest such integer, then
clearly z < n. We define Active[S] = Active[z] and say that S activates Active[S] in G.

There are several interesting computational and combinatorial problems related to this activa-
tion process. The first is the Target Set Selection Problem, which is defined as follows.

Target Set Selection (TSS):

Input: Two integers k, l and a digraph G = (V,E) with thresholds t : V → N.

Problem: Find a set S ⊆ V , such that |S| ≤ k and |Active[S]| ≥ l.

A simple reduction from Vertex Cover shows that it is NP-hard to decide whether such a
target set exists [15]: set l = n and t(v) = deg(v). Now G has a vertex cover of size k if and only if
it has a target set of size k. Usually, one would like to have a small target set (since, for example,
they will get a product for free) that will activate a large number of vertices. This motivates the
following optimization versions of Target Set Selection.

Minimum Target Set:

Input: An integer l and a digraph G = (V,E) with thresholds t : V → N.

Problem: Find the smallest set S ⊆ V , such that |Active[S]| ≥ l.

Maximum Active Set:

Input: An integer k and a digraph G = (V,E) with thresholds t : V → N.

Problem: Find a set S ⊆ V of size k, such that any other set S′ ⊆ V of size k satisfies
|Active[S′]| ≤ |Active[S]|.
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Given that Target Set Selection is NP-hard, one would like to obtain good approximations
for Minimum Target Set and Maximum Active Set. However, both problems turned out to be
hard to approximate. Kempe, Kleinberg and Tardos [15, 16] studied Maximum Active Set (under
the name Target Set Selection) and showed that it is NP-hard to approximate within a factor
of n1−ε, for any constant ε > 0. For the special case where the thresholds are taken uniformly
at random, they obtained a constant-factor approximation algorithm (see also [21]). Minimum
Target Set was studied by Chen [6] (again, under the name Target Set Selection) when l is
a constant fraction of all the vertices, and, again, inapproximability results, even for very special
cases, were shown. In particular, no O(2log1−ε |V |)-approximation algorithm exists, for any constant
ε > 0, under some reasonable complexity assumption, even when all thresholds are set to 2 and
the graph is of constant degree. On the positive side, exact algorithms exist if the input graph is a
tree [6] or has bounded tree-width [2].

Our first contribution is a combinatorial model for Target Set Selection, that is, a model
in which no iterative process is involved. We then use this model to represent the optimization
problems as binary integer linear programs (IP). Integer programs for NP-hard problems are useful
because one can use standard and powerful IP solvers (e.g., CPLEX, MINTO, lp solve) in order to
solve small-size problems. Moreover, linear programming relaxations for IP are a common tool for
obtaining approximation algorithms for NP-hard problems [26].

A target set is called perfect if it activates the entire graph. The term irreversible dynamic
monopoly (dynamo) usually refers to a perfect target set under majority or strict majority thresh-
olds.1 Optimal or almost optimal bounds on the size of a minimum dynamo were obtained over
the years for some special graph classes such as butterfly, cube-connected cycles, hypercube, and
rings to name a few (see [9, 10, 17] and the references within). These classes are usually stem from
networks topologies and were considered since the activation process described above also models
the propagation of faults in a fault-tolerant majority-based distributed system. Chang and Lyuu
have recently studied the size of a minimum dynamo in directed and undirected graphs. In [4] they
gave an upper bound of 23|V |/27 under strict majority thresholds in directed graphs. Later, in [5],
they improved this bound to 0.7732|V | and b|V |/2c in directed and undirected graphs, respectively.
For (simple) majority thresholds, they proved a 0.727|V | bound for directed graphs, and a b|V |/2c
bound for undirected graphs.

Using our new combinatorial formulation, and a straightforward randomized argument we derive
some bounds on the size of the minimum perfect target set. We give a much simpler proof that
the size of the minimum perfect target set is at most 2|V |/3 under strict majority thresholds. This
proof applies for both directed and undirected graphs, thus, it improves the bound of Chang and
Lyuu in the case of directed graphs under strict majority thresholds. The same proof gives an upper
bound of |V |/2 on the size of the minimum perfect target set under majority thresholds, both for
directed and undirected graphs. This is an improvement over the 0.727|V | bound of Chang and
Lyuu [5] for directed graphs, and basically matches their bound for undirected graphs.

We show some more bounds on the size of the minimum perfect target set for undirected graphs,
using a potential function argument. Some of these bounds seem counter-intuitive in light of the
hardness of approximation results of Chen [6]. For example, when t(v) = d3/4 · deg(v)e, for every
v ∈ V , it can be shown that Chen’s inapproximability result holds. However, our combinatorial
bounds imply that a trivial constant factor approximation exists if ∆(G)/δ(G) is bounded (∆(G)

1 In a majority threshold for every v we have t(v) = ddegin(v)/2e, while in a strict majority threshold we have
t(v) = d(degin(v) + 1)/2e.
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and δ(G) are the maximum and minimum degrees in G, respectively).
Finally, we remark that the activation process we described is monotone in the sense that an

active vertex remains active throughout the process. Non-monotone settings were also studied in
the literature, see for example [3, 20, 23, 24].

Organization. In Section 2 we present a combinatorial and static model for Target Set Se-
lection. Based on this model we suggest 0-1 integer linear programs for the two optimization
problems that derive from Target Set Selection. Some combinatorial bounds for the minimum
perfect target set are discussed in Section 3. All graphs in this paper are finite and simple. For
a graph G = (V,E) we use n to denote the number of vertices, that is n = |V |. We use degin(v)
to denote the in-degree of a vertex v in G, and deg(v) to denote the degree of v in an undirected
graph G.

2 A Combinatorial Model for TSS

Recall the Target Set Selection Problem.

Target Set Selection (TSS):

Input: Two integers k, l and a digraph G = (V,E) with thresholds t : V → N.

Problem: Find a set S ⊆ V , such that |S| ≤ k and |Active[S]| ≥ l.

For a set U ⊆ V , G[U ] denotes the subgraph of G induced by U . Following is an equivalent
formulation of TSS.

Combinatorial Target Set Selection:

Input: Two integers k, l and a digraph G = (V,E) with thresholds t : V → N.

Problem: Find a set S ⊆ V , such that |S| ≤ k and there is a set A ⊆ V such that S ⊆ A,
|A| ≥ l, and one can remove edges such that G[A] is acyclic and degin(v) ≥ t(v)
for every vertex v ∈ A \ S.

Lemma 2.1. S ⊆ V is a solution of Target Set Selection if and only if it is a solution of
Combinatorial Target Set Selection.

Proof. let S be a solution of Target Set Selection. Set A = Active[S] and remove every edge
(u, v) for which there is no i such that u ∈ Active[i] and v /∈ Active[i]. Clearly, G[A] contains no
cycles. Consider a vertex v ∈ A \ S. When v became active at least t(v) of its in-neighbors were
already active. Thus, by construction v has at least t(v) incoming edges in G[A].

Let S be a solution of Combinatorial Target Set Selection, and consider the correspond-
ing A and G[A]. Since G[A] is acyclic, the vertices of A can be topologically sorted. Denote them
by a0, a1, . . . , ar according to this order. We prove by induction on i that ai ∈ Active[i]. For every
vertex v ∈ A we have t(v) > 0, therefore degin(v) = 0 if and only if v ∈ S = Active[0]. Thus,
a0 ∈ Active[0]. Assume that the claim holds for every aj , 0 ≤ j < i, and consider ai, i > 0. By
the induction hypothesis all of the at least t(ai) in-neighbors of ai are in Active[i − 1], therefore
ai ∈ Active[i].
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We will now use the new formulation of TSS to derive 0-1 integer linear programs for Minimum
Target Set and Maximum Active Set.

Let G = (V,E) be a digraph, and let E′ be the set of non-edges, i.e., the set {(u, v) | (u, v) /∈ E}.
For every vertex v ∈ V the variable sv encodes whether v is selected to the target set. The threshold
of a vertex v is tv = t(v). We would like to have a subset of E ∪ E′ that yields a tournament (an
acyclic digraph whose underlying undirected graph is complete). For every (non-)edge (u, v) ∈
E ∪ E′ the variable euv encodes whether (u, v) belongs to this subset. The integer linear program
for Minimum Target Set is then:

min
∑

v∈V sv
s.t.

∑
(u,v)∈E euv ≥ tv · (1− sv) ∀v ∈ V

euv + evu = 1 for every distinct u, v ∈ V
euv ∈ {0, 1} ∀(u, v) ∈ E ∪ E′
sv ∈ {0, 1} ∀v ∈ V
euv + evw + ewu ≤ 2 for every distinct u, v, w ∈ V

(Min Target Set)

The last constraint ensures that the graph induced by the edges and non-edges we pick is acyclic.
Indeed, any maximal acylic subgraph of G can be extended to a tournament using the non-edges
(this is basically a linear extension of a partial order of the vertices). Otherwise, if the edges we
picked from E already induce a directed cycle, then there must be a directed cycle on three vertices
no matter which of the non-edges were picked. This follows from the fact that a chord in a directed
cycle creates a shorter cycle, no matter what is its orientation.

For Maximum Active Set we introduce another variable for every vertex v ∈ V , av, that
encodes whether v is in the set A.

max
∑

v∈V av
s.t.

∑
v∈V sv ≤ k∑
(u,v)∈E euv ≥ tv · (av − sv) ∀v ∈ V

euv + evu = 1 for every distinct u, v ∈ V
euv ∈ {0, 1} ∀(u, v) ∈ E ∪ E′
av, sv ∈ {0, 1} ∀v ∈ V
euv + evw + ewu ≤ 2 for every distinct u, v, w ∈ V
av ≥ sv ∀v ∈ V

(Max Active Set)

Note that the second constraint guarantees that every vertex in A is in S or has enough incoming
edges, while the last constraint ensures that the vertices of S are also counted as vertices in A. In
both programs the number of variables is Θ(n2) and the number of constraints is Θ(n3).

3 Combinatorial Bounds for Perfect TSS

In this section we derive some combinatorial bounds on the size of the minimum perfect target set
in terms of the vertices’ degrees and thresholds.

Consider the definition of Combinatorial Target Set Selection and assume that a set A
is known, but S is not known. We can find a set S that activates A as follows: start by taking a
random permutation π of the vertices in A, then remove the edges in G[A] that violate this order
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of the vertices, that is, edges (u, v) such that π(u) > π(v). Now for a vertex v ∈ A, it should be in
S or have at least t(v) incoming edges in G[A]. Let S denote the set of vertices in A that do not
satisfy the latter, then clearly A ⊆ Active[S].

The expected number of vertices in S is

E[|S|] =
∑
v∈A

t(v)
degin(v) + 1

(1)

since there are t(v) ‘bad’ spots for v out of the degin(v) + 1 possible spots it has in the permutation
of v and its in-neighbors. Therefore (1) gives an upper bound on the size of S in terms of t(·) and
degin(·). However, in general we do not know the set A, and thus, cannot compute such a set S,
that activates it.

The Minimum Perfect Target Set Problem asks for a minimum target set that activates
the entire graph, i.e., it is a special case of Minimum Target Set with l = n or, equivalently,
A = V . Applying (1) we get an upper bound on S for this case as well. Moreover, since A is known
in this case, we can compute a target set S whose size is at most the guaranteed bound. Since
the conditional expectations can easily be computed, we can also do that deterministically, by the
method of conditional expectation (see [25] for an introduction of the method).

Recall that under strict majority thresholds t(v) = ddegin(v)+1
2 e for every v ∈ V , and observe that

in this case the ratio (ddegin(v)+1
2 e)/(degin(v)+1) in (1) gets its worst value, 2/3, when degin(v) = 2.

Similarly, with majority thresholds we have (ddegin(v)
2 e)/(degin(v) + 1) ≥ 1/2.

Corollary 3.1. Let G be a (directed) graph with strict majority thresholds, such that every vertex
has a positive (in-)degree. Then there is an algorithm which finds in polynomial time a target set
of size at most 2n/3.

Corollary 3.2. Let G be a (directed) graph with majority thresholds, such that every vertex has a
positive (in-)degree. Then there is an algorithm which finds in polynomial time a target set of size
at most n/2.

Remark: The upper bound described in (1) is tight, as can be seen by the following construction:
Take an undirected graph with n/k non-adjacent k-cliques and thresholds k − 1. A perfect target
set S contains at least k − 1 vertices from every clique. Thus, |S| ≥ n(k−1)

k , which is the upper
bound from (1) in this case. In particular, for strict (resp., simple) majority thresholds, the bound
in Corollary 3.1 (resp., 3.2) is tight as is demonstrated by a set of disjoint triangles (resp., edges).

3.1 More-than-majority thresholds

Chen [6] studied Minimum Target Set for various threshold functions. If the threshold of a vertex
is equal to its degree, for all the vertices, then, as mentioned in the Introduction, the problem is
equivalent to the Vertex Cover problem, and hence has a good approximation factor [1]. On the
other side of the scale, in the case where all thresholds are equal to 1, it is trivial to see that one
vertex will activate its connected component, thus, the problem can be solved in linear time. When
all the threshold are 2, the problem becomes hard to approximate within a polylogarithmic factor.
The same lower bound applies for majority thresholds, i.e., when t(v) = ddeg(v)/2e, for all v ∈ V .
However, here we show that for undirected graphs, when the thresholds are only slightly bigger,
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namely when t(v) ≥ deg(v)/2 + 1 for every v ∈ V , then the size of the minimum perfect target set
is at least n/T , where T = maxv∈V t(v). This implies that the algorithm from the previous section
that in this case finds a perfect target set of size at most 2n/3 is a 2T/3-approximation. Moreover,
it follows that for every graph with polylogarithmic average degree, Chen’s hardness result does
not apply.

Theorem 3.3. Let G = (V,E) be a graph and t : V → N a threshold function on its vertices,
such that t(v) ≥ deg(v)/2 + 1 for every v ∈ V . If S ⊆ V is a set such that Active[S] = V , then
|S| ≥ n/T , where T = maxv∈V t(v).

Proof. Let z be the smallest integer such that Active[z] = V . For every i, 0 ≤ i ≤ z, define a
potential function

Φ(i) =
∑

v/∈Active[i]

t(v) + |E [Active [i]] |,

where E[U ] denotes the set of edges induced by a vertex set U ⊆ V .
Note that Φ(i + 1) ≥ Φ(i) and that Φ(z) = |E|, therefore, Φ(0) ≤ |E|. On the other hand,

clearly Φ(i) ≥
∑

v/∈Active[i] t(v) so together we have for the initial set
∑

v/∈S t(v) ≤ |E|. Applying
the assumption on t(v), together with the last inequality we get:

|E|+ |V | ≤
∑
v∈V

(deg(v)/2 + 1) ≤
∑
v∈V

t(v) ≤
∑
v/∈S

t(v) +
∑
v∈S

t(v) ≤ |E|+
∑
v∈S

t(v).

Thus, |V | ≤
∑

v∈S t(v).

Note: A similar function to this one appears already in Berger’s work [3].
The inequality

∑
v/∈S t(v) ≤ |E| can be extended for more general settings. For example, when

t(v) = dϑ · deg(v)e, for a constant ϑ ∈ (1/2, 1], we can obtain a lower bound on |S| of the form
|V |δ(G)(2ϑ−1)

∆(G)+δ(G)(2ϑ−1) , where δ(G) and ∆(G) are the minimum and maximum degrees in G, respectively.

This gives an approximation ratio of
ϑ
(

∆(G)+δ(G)(2ϑ−1)
)

δ(G)(2ϑ−1) = O(∆(G)
δ(G) ).

When G is d-regular, the lower bound on S becomes |V |(2ϑ−1)
2ϑ which gives an approximation ratio

of 2ϑ2

(2ϑ−1) . Once the ratio between ∆(G) and δ(G) can be linear, we get the same inapproximability
result as Chen’s.

Theorem 3.4. Assume that Minimum Perfect Target Set cannot be approximated within a
factor of f(n). Then for any constant ϑ ∈ [1/2, 1) Minimum Perfect Target Set cannot be
approximated within a factor of f(

√
n) when the threshold function is of the form t(v) = dϑ · deg(v)e,

for every v ∈ V ,

Proof. Assume that there is such a lower bound f(n). Let G = (V,E) be a graph and let t : V → N
be an arbitrary threshold function. We construct a new graph G′ with a new threshold function
t′ as follows. Consider a vertex v ∈ V . If t(v) > dϑ deg(v)e then add t(v)/ϑ− deg(v) new dummy
vertices all with threshold 1 and define t′(v) = t(v). Otherwise, if t(v) < dϑ deg(v)e then add
ϑdeg(v)−t(v)

1−ϑ new dummy vertices all with threshold ϑ
1−ϑ and define t′(v) = t(v) + ϑ

1−ϑ . We also add
ϑ

1−ϑ new vertices, connect each of them to all the dummy vertices that where added at the last
phase, and set their threshold to ϑ times their degree. Note that every vertex in G′ has threshold
t′(v) =

⌈
ϑ deg′(v)

⌉
, where deg′(v) is the degree of v in G′. The new graph G′ has at most n2

vertices, therefore, an f(
√
n)-approximation for Minimum Perfect Target Set on G′ with the

threshold function t′ would imply an f(n)-approximation on G.
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Remark. Note that the requirement that ϑ will be constant is just for simplicity of presentation.
We can actually have the same results as long as ϑ

1−ϑ does not exceed d− 1.

Acknowledgments

We would like to thank Ilan Newman for very fruitful discussions, and anonymous reviewers for
pointing some missing references.

References

[1] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2:198–203, 1981.

[2] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. An exact almost optimal algorithm
for target set selection in social networks. In J. Chuang, L. Fortnow, and P. Pu, editors, ACM
Conference on Electronic Commerce, pages 355–362. ACM, 2009.

[3] E. Berger. Dynamic monopolies of constant size. J. Comb. Theory, Ser. B, 83(2):191–200,
2001.

[4] C. Chang and Y. Lyuu. Spreading messages. Theor. Comput. Sci., 410(27-29):2714–2724,
2009.

[5] C. Chang and Y. Lyuu. Bounding the number of tolerable faults in majority-based systems.
In Algorithms and Complexity, 7th International Conference, CIAC 2010, Rome, Italy, May
26-28, 2010. Proceedings, pages 109–119, 2010.

[6] N. Chen. On the approximability of influence in social networks. In Proceedings of the 19th
annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 1029–1037, 2008.
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