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Abstract

We consider graphs that admit polyline drawings where all crossings occur at the same
angle α ∈ (0, π

2 ]. We prove that every graph on n vertices that admits such a polyline
drawing with at most two bends per edge has O(n) edges. This result remains true when
each crossing occurs at an angle from a small set of angles. We also provide several extensions
that might be of independent interest.

1 Introduction

Graphs that admit polyline drawings with few bends per edge and such that every crossing
occurs at a large angle have received some attention lately, since cognitive experiments [8, 9]
indicate that such drawings are almost as readable as planar drawings. That is, one can easily
track the edges in such drawings, even though some edges may cross.

A topological graph is a graph drawn in the plane where the vertices are represented by
distinct points, and edges by Jordan arcs connecting the incident vertices but not passing through
any other vertex. A polyline drawing of a graph G is a topological graph where each edge is
drawn as a simple polygonal arc between the incident vertices but not passing through any bend
point of other arcs. In a polyline drawing, every crossing occurs in the relative interior of two
segments of the two polygonal arcs, and so they have a well-defined crossing angle in (0, π2 ].

Didimo et al. [6] introduced right angle crossing (RAC) drawings, which are polyline drawings
where all crossings occur at right angle. They proved that a graph with n ≥ 3 vertices that
admits a straight line RAC drawing has at most 4n − 10 edges, and this bound is the best
possible. A different proof of the same upper bound was later found by Dujmović et al. [7]. It
is not hard to show that every graph admits a RAC drawing with three bends per edge (see
Figure 1 for an example). Arikushi et al. [4] have recently proved, improving previous results
by Didimo et al. [6], that if a graph with n vertices admits a RAC drawing with at most two
bends per edge, then it has O(n) edges.

Dujmović et al. [7] generalized RAC drawings, allowing crossings at a range of angles rather
than at right angle. They considered αAC drawings, which are polyline drawings where every
crossing occurs at some angle at least α. They showed that any straight line αAC drawing of a
graph with n vertices has at most π

α(3n−6) edges, by partitioning the graph into π
α planar graphs.
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Figure 1: A RAC drawing of K6 with 3 bends per edge.

They also proved that their bounds are essentially optimal for α = π
k − ε, with k = 2, 3, 4, 6 and

sufficiently small ε > 0.

Results for polyline drawings. We first consider polyline drawings where every crossing
occurs at the same angle α ∈ (0, π2 ]. An αAC=

b drawing of a graph is a polyline drawing where
every edge is a polygonal arc with at most b bends and every crossing occurs at angle exactly
α. It is easy to see that every graph with n > 2 vertices that admits an αAC=

0 drawing has at
most 3(3n− 6) edges (see Lemma 2.1 below). Every graph admits an αAC=

3 drawing for every
α ∈ (0, π2 ]: Didimo et al. [6] constructed a RAC drawing of the complete graph with three bends
per edge (see also Figure 1), where every crossing occurs between a pair of orthogonal segments
of the same orientation, so an affine transformation deforms all crossing angles uniformly. It
remains to consider graphs that admit αAC=

1 or αAC=
2 drawings. We prove the following.

Theorem 1.1. For every α ∈ (0, π2 ], a graph on n vertices that admits an αAC=
2 drawing has

O(n) edges. Specifically, a graph on n vertices has

(a) at most 27n edges if it admits an αAC=
1 drawing; and

(b) at most 385n edges if it admits an αAC=
2 drawing.

For α = π
2 , slightly better bounds have been derived by Arikushi et al. [4]: they proved that

if a graph on n vertices admits a RAC drawing with at most one (resp., two) bends per edge,
then it has at most 6.5n (resp., 74.2n) edges. Their proof techniques, however, do not generalize
to all α ∈ (0, π2 ].

A straightforward generalization of αAC=
1 and αAC=

2 drawings are polyline drawings where
each crossing occurs at an angle from a list of k distinct angles.

Theorem 1.2. Let A ⊂ (0, π2 ] be a set of k angles, k ∈ N, and let G be a graph on n vertices
that admits a polyline drawing with at most b bends per edge such that every crossing occurs at
some angle from A. Then,

(a) G has O(kn) edges if b = 1;

(b) G has O(k2n) edges if b = 2.

Generalizations to topological graphs. Suppose that every edge in a topological graph
is partitioned into edge segments, such that all crossings occur in the relative interior of the
segments. The bends in polyline drawings, for example, naturally define such edge partitions.
An end segment is an edge segment incident to a vertex of the edge, while a middle segment
is an edge segment not incident to any vertex. The key idea in proving Theorems 1.1 and 1.2
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is to consider the crossings that involve either two end segments, or an end segment and a
middle segment. This idea extends to topological graphs whose edge segments satisfy a few
properties, which automatically hold for polyline drawings with same angle crossings (perhaps
after removing a constant fraction of the edges). We obtain the following results, which might
be of independent interest.

(a) (b)

Figure 2: (a) A 3-regular topological graph satisfying the conditions of Theorem 1.3 for k = 2.
(b) A 3-regular topological graph satisfying the conditions of Theorem 1.4 for k = 2.

Theorem 1.3. Let G = (V,E) be a topological graph on n vertices, in which every edge can
be partitioned into two end segments, one colored red and the other colored blue, such that (see
Figure 2(a))

(1) no two end segments of the same color cross;

(2) every pair of end segments intersects at most once; and

(3) no blue end segment is crossed by more than k red end segments that share a vertex.

Then G has O(kn) edges.

We show that the above theorem implies the following stronger result.

Theorem 1.4. Let G = (V,E) be a topological graph on n vertices. Suppose that every edge of
G can be partitioned into two end segments and one middle segment such that (Figure 2(b))

(1) each crossing involves one end segment and one middle segment;

(2) each middle segment and end segment intersect at most once; and

(3) each middle segment crosses at most k end segments that share a vertex.

Then G has O(kn) edges.

Note that Theorem 1.4 implies Theorem 1.3. Indeed, given a graph that satisfies the con-
straints in Theorem 1.3, one can partition every edge e into three parts as follows: its two
end segments are the red segment and a crossing-free portion of the blue segment incident to a
vertex, while the rest of the blue segment is the middle segment of e. Such a partition clearly
satisfies the constraints in Theorem 1.4 with the same parameter k.

3



Organization. We begin with a few preliminary observations in Section 2. In Section 3,
we consider polyline drawings with one possible crossing angle and prove Theorem 1.1. Then
we extend the proof of Theorem 1.1(a) allowing up to k possible crossing angles and prove
Theorem 1.2(a). We also show that Theorem 1.1(b) can be generalized to a weaker version of
Theorem 1.2(b) with an upper bound of O(k4n) (rather than O(k2n)). In Section 4, we generalize
the crossing conditions from angle constraints to colored segments in topological graphs, and
prove Theorems 1.3 and 1.4. Theorem 1.2(b) is derived from these general results at the end of
Section 4. We conclude with some lower bound constructions and open problems in Section 5.

2 Preliminaries

In a polyline drawing of a graph, the edges are simple polygonal paths, consisting of line seg-
ments. We start with a few initial observations about line segments and polygonal paths. We
say that two line segments cross if their relative interiors intersect in a single point. (In our
terminology, intersecting segments that share an endpoint or are collinear do not cross.)

The following lemma is about the crossing pattern of line segments: if any two crossing
segments cross at the same angle α ∈ (0, π2 ], then a constant fraction of the segments are
pairwise noncrossing. This lemma will be instrumental when applied to specific edge segments
of an αAC=

∞ drawing D.

Lemma 2.1. Let α ∈ (0, π2 ] and let S be a finite set of line segments in the plane such that
any two segments may cross only at angle α. Then S can be partitioned into at most three
subsets of pairwise noncrossing segments. Moreover, if π

α is irrational or if π
α = p

q , where p
q

is irreducible and q is even, then S can be partitioned into at most two subsets of pairwise
noncrossing segments.

Proof. Partition S into maximal subsets of pairwise parallel line segments. Let S denote the
subsets of S. We define a graph GS = (S, ES), in which two subsets S1, S2 ∈ S are joined by
an edge if and only if their respective directions differ by angle α. Clearly, the maximum degree
of a vertex in GS is at most two, and so GS is 3-colorable. In any proper 3-coloring of GS , the
union of each color class is a set of pairwise noncrossing segments in S, since they do not meet
at angle α.

If π
α is irrational, then GS is cycle-free. If π

α = p
q , where

p
q is irreducible and q is even, then

GS can only have even cycles. In both cases, GS is 2-colorable, and S has a partition into two
subsets of pairwise noncrossing segments. �

The first claim in Lemma 2.1 can easily be generalized to finite sets of crossing angles [5].

Lemma 2.2 ([5]). Let A ⊂ (0, π2 ] be a set of k angles, k ∈ N, and let S be a finite set of line
segments in the plane such that any two segments may cross only at an angle in A. Then S can
be partitioned into at most 2k + 1 subsets of pairwise noncrossing segments.

Proof. Partition S into maximal subsets of pairwise parallel line segments. Let S denote the
subsets of S. We define a graph GS = (S, ES), in which two subsets S1, S2 ∈ S are joined by
an edge if and only if their respective directions differ by an angle in A. Clearly, the maximum
degree of a vertex in GS is at most 2k, and so GS is (2k+ 1)-colorable. In any proper (2k+ 1)-
coloring of GS , the union of each color class is a set of pairwise noncrossing segments in S, since
they do not meet at an angle in A. �
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Polylines with restricted turning angles. In the proof of Theorem 1.1, rather than count-
ing the edges in an graph with an αAC=

1 (resp., αAC=
2 ) drawing, we estimate the number of

edges in an auxiliary multigraph, called a red graph. The edges of the red graph closely follow
the edges of the αAC=

1 (resp., αAC=
2 ) drawing, and each bend lies at a crossing point. This

ensures that the red graph has a polyline drawing where the angle between any two consecutive
segments of an edge is exactly α. Since we direct the red edges, it will be necessary to distinguish
between counterclockwise angles α and clockwise angles −α.

Consider a simple open polygonal path γ = (v0, v1, . . . , vn) in the plane. Refer to Figure 3(a).
At every interior vertex vi, 1 ≤ i ≤ n − 1, the turning angle ∠(γ, vi) is the directed angle in
(−π, π) (the counterclockwise direction is positive) from ray −−−→vi−1vi to

−−−→vivi+1. The turning angle
of the polygonal path γ is the sum of turning angles over all interior vertices

∑n−1
i=1 ∠(γ, vi). We

say that two line segments have a common tail if they share an endpoint and one of them is
contained in the other (e.g., segments pu1 and pv1 have a common tail in Figure 3(c)).

(a)

p q

v0

v1

v2

v3

v4

v5

v6

(b) (c)

u1

u2

u3

u4

v1

v2

v3

v4

v5

p q

u1

u2

u3

u4

v1

v2

v3

v4
v5

Figure 3: (a) The turning angles of a polygonal path. (b) Two crossing polygonal paths with
the same turning angle between p and q. (c) Two noncrossing polygonal paths with the same
turning angle between p and q.

We will use the next lemma to bound the maximal multiplicity of an edge in a red multigraph.

Lemma 2.3. Let p and q be two points in the plane. Let γ1 and γ2 be two directed simple
polygonal paths from p to q. If γ1 and γ2 have the same turning angle and they do not cross,
then the first segment of γ1 shares a common tail with the first segment of γ2 and the last segment
of γ1 shares a common tail with the last segment of γ2.

Proof. Let γ1 = (u0, u1, . . . , um) and γ2 = (v0, v1, . . . , vn), with p = u0 = v0 and q = um = vn.
Let β be their common turning angle. Since γ1 and γ2 do not cross, they enclose a weakly simple
polygon P with m+n vertices (Figure 3(c)). Suppose w.l.o.g. that the vertices of P in clockwise
order are v0 = u0, u1, . . . , um = vn, vn−1 . . . , v1. Every interior angle of P is in [0, 2π], and the
sum of interior angles is (m + n− 2)π. The sum of interior angles at the vertices u1, . . . , um−1

is (m − 1) · π + β; and the sum of interior angles at v1, . . . , vn−1 is (n − 1) · π − β. Hence the
interior angles at p and q are both 0. �

Overlapping edges. Let G be a topological multigraph. We say that two edges overlap
if their intersection contains a connected set of more than one point. A maximal connected
component of the intersection of two edges is called an overlap of the two edges. A common
tail is an overlap of two edges that contains a common endpoint of the two edges. In Sections 3
and 4, we construct topological multigraphs whose edges may overlap, but only in common tails.

Lemma 2.4. Let G be a topological multigraph in which some edges may overlap, but only in
common tails. Then the edges of G can be slightly perturbed such that all overlaps are removed
and no new crossings are introduced.
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Proof. We successively perturb G and decrease the number of edge pairs that have a common
tail. Let e = (u, v) be an edge in G, and let e1, e2, . . . , ek be edges in G that have a common tail
with e such that their overlaps with e contain the vertex u. Direct all these edges away from u.
Then every edge ei, i = 1, 2, . . . , k, follows an initial portion of e, and then turns either right or
left at some turning point pi. Assume without loss of generality that there is at least one right
turning point, and let pj be the last such point. (Observe that the common tails of e incident
to u and v, respectively, are disjoint, otherwise two edges that share common tails with e would
overlap in an arc that is not a common tail. It follows that the part of e between u and pj is
disjoint from any common tail incident to v.)

u

e

e1

p1

pj

ej

(a) before

u

e

e1

ej

(b) after

Figure 4: Removing overlaps.

Redraw all the edges ei with a right turning point such that they closely follow e on the
right. See Figure 4. We have removed the overlap between e and ej , and decreased the number
of edge pairs that have a common tail. �

In the sequel we will use the following upper bound (Theorem 2.5) for the maximum number
of edges in a simple quasi-planar graph by Ackerman and Tardos [1]. A topological graph is
simple if any two of its edges meet at most once, either at a common endpoint or at a crossing.
A topological graph is quasi-planar if it has no three pairwise crossing edges.

Theorem 2.5 ([1]). A simple quasi-planar graph on n ≥ 4 vertices has at most 6.5n−20 edges.

3 Polyline drawings with one crossing angle

In this section, we prove Theorem 1.1. Our proof technique can be summarized as follows.
Consider an αAC=

∞ drawing D of a graph G = (V,E), where each edge has an arbitrary number
of edge segments, and any two edges cross at angle α. For a constant fraction of the edges
(u, v) ∈ E, we draw a new directed “red” edge that connects u to another vertex in V (which is
not necessarily v). The red edges follow some edges in D, and they only turn at edge crossings
of D. Some of the red edges may be parallel (even though G is a simple graph), but none of
them is a loop, and some of them may have a common tail. The vertex set V and the red edges
form a topological multigraph, which we call the “red graph.” Every edge in the red graph is a
polyline where the turning angles at each bend is ±α or ±(π − α). The multiplicity of the red
edges can be bounded using Lemma 2.3. By Lemma 2.1, a constant fraction of the red edges
form a crossing-free multigraph, and overlaps can be removed using Lemma 2.4. We continue
with the details.

An αAC=
∞ drawing of a graph G is a polyline drawing with an arbitrary number of bends

where every crossing occurs at angle α. Every edge is a polygonal arc that consists of line
segments. The first and last segments of each edge are called end segments, all other segments
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are called middle segments. Note that each end segment is incident to a vertex of G. Let
G = (V,E) be a graph with an αAC=

∞ drawing. It is clear that G has at most 3n− 6 crossing-
free edges, since they form a plane graph. All other edges have some crossings. We distinguish
several cases below depending on whether the edges have crossings along their end segments.

3.1 Crossings between end segments

Lemma 3.1. Let α ∈ (0, π2 ] and G = (V,E) be a graph on n ≥ 4 vertices that admits an αAC=
∞

drawing such that an end segment of every edge e ∈ E crosses an end segment of some other
edge in E. Then |E| ≤ 36n. Moreover, the number of edges in E whose both end segments cross
some end segments is at most 18n.

Proof. Let D be an αAC=
∞ drawing of G as above. Let S be the set of end segments that cross

some other end segments in D. We have |E| ≤ |S| ≤ 2|E|. Direct each segment s ∈ S from an
incident vertex in V to the other endpoint (which is either a bend point or another vertex in
V ). For a straight line edge, choose the direction arbitrarily.

We construct a directed multigraph G′ = (V,Γ). We call the edges in Γ red, to distinguish
them from the edges of E. For every end segment s ∈ S, we construct a red edge γ(s), which is
a polygonal path with one bend between two vertices in V . For a segment s ∈ S, the path γ(s)
is constructed as follows (refer to Figure 5).

Let us ∈ V denote the starting point of s (along its direction). Let cs be the first crossing
of s with an end segment, which we denote by ts. Let vs ∈ V be a vertex incident to the end
segment ts. Now let γ(s) = (us, cs, vs).

s

cs γ(s)

vs

us

α

ts

Figure 5: Construction of a red edge γ(s) = (us, cs, vs).

Note that for every s ∈ S, the first segment of γ(s) is part of the segment s and does not
cross any segment in S. Hence the first segments of the red edges γ(s) are distinct and do not
cross other red edges. However, the second segment of γ(s) may cross other red edges. Since
the edges of G cross at angle α and cs is a crossing, the turning angle of γ(s) is ±α or ±(π−α).
Note also that red edges may have common tails (which can be removed using Lemma 2.4).

We show that for any two vertices u, v ∈ V , there are at most 4 directed red edges from u
to v. The red edges from u to v cannot cross, since their first segments are crossing-free, and
their second segments are all incident to the same point v. By Lemma 2.3, any two noncrossing
paths of the same turning angle between u and v must overlap in the first and last segments,
however, the first segments of the red edges are pairwise non-overlapping. Since the red edges
may have up to 4 distinct turning angles, there are at most 4 red edges from u to v.

We distinguish two types of red edges. Let Γ1 ⊆ Γ be the set of red edges whose second
segment crosses some other red edge, and let Γ2 = Γ \ Γ1 be the set of red edges where both
segments are crossing-free.
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Note that two edges in Γ1 cannot follow the same path γ in opposite directions because the
first segments of every red edge is crossing-free. Hence, there are at most 4 red edges in Γ1

between any two vertices in V . Let S1 be the set of second segments of the red edges in Γ1. By
Lemma 2.1, there is a subset S′

1 ⊆ S1 of pairwise noncrossing segments of size at least 1
3 |Γ1|.

Let Γ′
1 be the set of red edges containing the segments S′

1, with |Γ′
1| ≥ 1

3 |Γ1|.
If Γ2 contains two edges that follow the same path γ in opposite directions, then pick one

arbitrarily, and let Γ′
2 ⊆ Γ2 be the selected red edges, with |Γ′

2| ≥ 1
2 |Γ2|. Now (V,Γ′

1 ∪ Γ′
2) is a

crossing-free multigraph with maximum multiplicity 4, with at most 4(3n− 6) edges. Note that
any overlap between red end segments can be removed using Lemma 2.4, and so (V,Γ′

1 ∪ Γ′
2)

becomes a planar multigraph with maximum multiplicity 4. It follows that |Γ′
1∪Γ′

2| ≤ 4(3n−6),
hence |Γ| ≤ 3 · 4(3n− 6) = 36n− 72 for n ≥ 3.

For the last part of the statement observe that in the above argument, an edge in E is
counted twice if both of its end segments are in S. �

We are now ready to prove part (a) of Theorem 1.1.

Lemma 3.2. For any angle α ∈ (0, π2 ], a graph on n vertices that admits an αAC=
1 drawing has

at most 27n edges.

Proof. Let G = (V,E) be a graph with n ≥ 4 vertices drawn in the plane with an αAC=
1 drawing.

Let E1 ⊆ E denote the set of edges in E that have at least one crossing-free end segment. Let
G1 = (V,E1) and G2 = (V,E \ E1).

It is easy to see that if α ̸= π
3 , then G1 is a simple quasi-planar graph and so it has at most

6.5n − 20 edges by Theorem 2.5. If α = π
3 , let S1 be the set of crossed end segments of edges

in E1. By Lemma 2.1, there is a subset S′
1 ⊆ S1 of pairwise noncrossing segments of size 1

3 |E1|.
The graph G′

1 corresponding to these edges is planar, with at most 3n − 6 edges. Hence E1

contains at most 3 · (3n− 6) = 9n− 18 edges.
By Lemma 3.1, G2 has at most 18n edges. Hence, G has at most 24.5n edges if α ̸= π

3 and
at most 27n edges otherwise. �

Remark. It is easy to generalize the proof of Lemma 3.1 to the case that every two polyline
edges cross at one of k possible angles. The only difference is that the red edges may have up
to 2k different turning angles.

Lemma 3.3. Let G = (V,E) be a graph on n ≥ 4 vertices that admits a polyline drawing such
that an end segment of every edge e ∈ E crosses an end segment of some other edge in E at
one of k possible angles. Then |E| ≤ 36kn. Moreover, the number of edges in E whose both end
segments cross some end segments is at most 18kn. �

Corollary 3.4 (Theorem 1.2(a)). Let A ⊂ (0, π2 ] be a set of k angles. If a graph G on n vertices
admits a drawing with at most one bend per edge such that every crossing occurs at some angle
from A, then G has at most (18k + 3(2k + 1))n = (24k + 3)n edges. �

3.2 Polyline drawings with at most two bends per edge

In the proof of Lemma 3.1, we constructed red edges in an αAC=
1 drawing of a graph G such that

each red edge had a crossing-free first segment and one bend at a crossing. A similar strategy
works for αAC=

2 drawings, but the red edges may now have up to two bends.
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Lemma 3.5. Let α ∈ (0, π2 ] and G = (V,E) be a graph on n ≥ 4 vertices that admits an αAC=
2

drawing such that every crossing occurs between an end segment and a middle segment. Then
|E| ≤ 116.14n.

Proof. Let D be an αAC=
2 drawing of G where every crossing occurs between an end segment

and a middle segment. Every middle segment crosses at most two end segments incident to the
same vertex in V since every crossing occurs at the same angle α. Let M be the set of middle
segments that cross at least 3 end segments, and let S be the set of end segments that cross some
middle segment in M . We distinguish two types of edges in G: let E1 ⊆ E be the set of edges
with at least one end segment in S, and let E2 = E \E1 be the set of edges with no end segment
in S. Then G2 = (V,E2) has at most 2|E2| crossings in this drawing. The crossing number of
a graph with n vertices and m edges is at least 0.032m3/n2 − 1.06n by a recent variant of the
Crossing Lemma [10]. Applying this to (V,E2), we have 2|E2| ≥ 0.032|E2|3/n2 − 1.06n, which
gives |E2| ≤ 8.14n. In the remainder of the proof, we derive an upper bound for |E1|.

We have |E1| ≤ |S| ≤ 2|E1|. Direct each segment s ∈ S from an incident vertex in V to
the other endpoint (which is either a bend or another vertex in V ). We construct a directed
multigraph (V,Γ), which we call the red graph. For every end segment s ∈ S, we construct a
red edge γ(s) ∈ Γ, which is a polygonal path with two bends between two vertices in V . It is
constructed as follows. Refer to Figure 6.

Let us ∈ V denote the starting point of s (along its direction). Let cs be the first crossing of
s with a middle segment in M , which we denote by ms. Recall that ms crosses at least three end
segments, at most two of which are incident to us. Let ds ∈ ms be the closest crossing to cs with
an end segment that is not incident to us. Let vs ∈ V be a vertex incident to the end segment
containing ds. If cs and ds are consecutive crossings along ms, then let γ(s) = (us, cs, ds, vs), see
Figure 6(a). Otherwise, there is exactly one crossing xs between cs and ds such that usxs is part
of some end segment, and ∠(uscs, usxs) = ±(π− 2α). In this case, let γ(s) = (us, xs, ds, vs), see
Figure 6(b).

α

(a) (b)

s

cs

γ(s)

ds
xs

vs

us

s

cs

γ(s)

ds

vs

us

αα
α

αms ms

α

(c)

s1

cs1

s0 vs1

αα

α

α

α

cs2

vs2

s2us

cs0

Figure 6: Construction of a red edge γ(s). (a) cs and ds are consecutive crossings along ms. (b)
there is a crossing xs between cs and ds. (c) The first segments of three red edges may overlap.

Every edge γ(s) ∈ Γ has three segments: the first and third segments of γ(s) lie along some
end segments of edges in E, and the second segment of γ(s) lies along a middle segment in
M . By construction, the middle segment of γ(s) is between two consecutive crossings along a
middle segment in M , and so it does not cross any red edges. The two end segments of γ(s)
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can cross only middle segments of red edges, however, the red middle segments are crossing-free.
We conclude that no two red edges cross.

Since the bends cs, ds, and xs are at crossings in an αAC=
2 drawing of G, the turning angle

of γ(s) must be among the 9 angles in {0,±π,±2α,±2(π − α),±(π − 2α)}. Note also that the
red edges may have common tails (which can be removed using Lemma 2.4). Furthermore, the
first segments of at most three red edges may overlap because the angle between s and the first
segment of γ(s) is 0 or ±(π−2α). However, if the first segments of three red edges overlap, then
at most two of these edges are parallel (that is, join the same two vertices in V ), see Figure 6(c).

We show that there are at most 36 directed red edges between any two vertices u, v ∈ V . By
Lemma 2.3, any two noncrossing paths of the same turning angle between u and v must overlap
in the first and last segments. As noted above, the first segments of at most two parallel red
edges overlap. Since the red edges may have up to 9 distinct turning angles, there are at most
18 red edges from u to v by Lemma 2.3. Hence there are at most 36 red edges between u and v
(in either direction).

Since (V,Γ) is a planar multigraph with edge multiplicity at most 36, it has at most |Γ| ≤
36(3n− 6) < 108n edges. Altogether, we have |E| = |E1|+ |E2| ≤ |E1|+ |Γ| ≤ 8.14n+ 108n =
116.14n. �

We can now prove part (b) of Theorem 1.1.

Lemma 3.6. For any angle α ∈ (0, π2 ], a graph G = (V,E) on n vertices that admits an αAC=
2

drawing has less than 385n edges.

Proof. Consider an αAC=
2 drawing of G. Let E0 be the set of edges which have an end segment

crossing the end segment of another edge. By Lemma 3.1, we have |E1| ≤ 36n.
Consider the edges E1 = E\E0. By Lemma 2.1, there is a partition E1 = E11∪E12∪E13 such

that the middle segments of the edges in each subset are pairwise noncrossing. Suppose without
loss of generality that |E11| = max(|E11|, |E12|, |E13|). By Lemma 3.5, we have |E11| ≤ 116.14.
It follows that |E| = |E0|+ |E1| ≤ |E0|+ 3|E11| ≤ (36 + 3 · 116.14)n = 384.42n. �

Remark. It is not difficult to generalize the proof of Lemma 3.5 to the case that every two
polyline edges cross at one of k possible angles. The only difference is that the red edges may
have up to (4k)2 different turning angles, and that the first segment of a red edge may overlap
at most (2k − 1) first segments of other red edges.

Lemma 3.7. Let α ∈ (0, π2 ] and G = (V,E) be a graph on n ≥ 4 vertices that admits a polyline
drawing such that every crossing occurs between an end segment and a middle segment at one
of k possible angles. Then |E| = O(k3n). �

Corollary 3.8. Let A ⊂ (0, π2 ] be a set of k angles. If a graph G on n vertices admits a drawing
with at most two bends per edge such that every crossing occurs at some angle from A, then G
has O(k4n) edges. �

The dependence on k can be improved. In the next section, we reduce the upper bounds in
Lemma 3.7 and Corollary 3.8 to O(nk) and O(nk2), respectively.

4 Crossing between end segments in topological graphs

In this section, we prove Theorems 1.3 and 1.4, and then deduce part (b) of Theorem 1.2 from
these general results. Our proof techniques are similar to the method in the previous section:
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we construct a topological multigraph (V,Γ) whose edges are drawn along some edges in a given
topological graph (V,E). The key difference is that we do not assume anything about the
crossing angles, and so we cannot use Lemma 2.3 for bounding the edge multiplicity in (V,Γ).
The greatest challenge in this section is to bound the edge multiplicity in the auxiliary graph
(V,Γ) using solely combinatorial and topological conditions.

4.1 Proof of Theorem 1.3

We start with the proof of Theorem 1.3, which is the topological analogue of our result for
αAC=

1 drawings.

Proof of Theorem 1.3: Let G = (V,E) be a topological graph on n vertices, and assume that
every edge in E is partitioned into a red end segment and a blue end segment, such that: (1) no
two end segments of the same color cross; (2) every pair of end segments intersects at most once;
and (3) no blue end segment is crossed by more than k red end segments that share a vertex.
Assume further that G is drawn so that the number of edge crossings is minimized subject to
the conditions (1)–(3). We show that G has O(kn) edges.

By Theorem 2.5 the graph G has at most 6.5n− 20 edges with a crossing-free end segment,
since these edges form a simple quasi-planar graph. Denote by E1 ⊆ E the set of the remaining
edges of G.

For every edge e ∈ E1 we draw a new edge γ(e) as follows. Let s denote the red end segment
of e, and let us ∈ V be the vertex incident to s. Direct s from us to its other endpoint, and
let cs be the first crossing point along s. By condition (2), cs is a crossing of s with a blue end
segment s′ of some edge e′, where s′ is incident to a unique vertex vs. It is clear that us ̸= vs,
since otherwise we can redraw the portion of e′ between vs and cs so that it closely follows e
and thereby reduce the total number of crossings in G without violating conditions (1)–(3). Let
γ(e) be the Jordan arc between us and vs that follows the red segment s from us to cs, and the
blue segment s′ from cs to vs. The new edges form a topological multigraph graph G′ = (V,Γ),
where Γ = {γ(e) : e ∈ E1}. We call the edges in Γ red-blue to distinguish them from the edges
in E.

Note that G′ is a plane multigraph. Indeed, crossings may occur only between a red end
segment and a blue end segment, however, the red end segment of every edge in G′ is crossing-
free. G′ might contain edges with a common tail, however, these overlaps may be removed using
Lemma 2.4.

We define a bundle of edges in G′ as a maximal set of parallel edges such that the interior
of the region enclosed by the edges does not contain any vertex of V . Recall that a plane
multigraph on n vertices has at most 3n edges if it has no face of size 2. Therefore, G′ has at
most 3n bundles.

Proposition 4.1. Every bundle of edges of G′ contains at most 4k + 6 edges.

Proof. Let B be a bundle of edges between vertices u, v ∈ V . Let B1 ⊆ B be the set of red-
blue edges in B whose red segment is incident to u, and assume without loss of generality that
|B1| ≥ |B|/2.

Label the red-blue edges in B1 by γ1, γ2, . . . , γℓ in the order they appear in the rotation
system at u such that the closed region R enclosed by γ1 and γℓ contains all other edges of B1.
For i = 1, 2, . . . , ℓ, let ei ∈ E be the edge of the original graph G incident to u whose red segment
contains the red segment of γi.
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Let Q = {e2, e3, . . . , eℓ−1} ⊆ E be a set of ℓ − 2 edges in E1 containing the red segments
of γ2, γ3, . . . , γℓ−1. By property (3), the red segments of at most k edges in Q cross the blue
segment of γ1. Similarly, the red segments of at most k edges in Q cross the blue segment of
γℓ. So the red segments of at least ℓ − (2k + 2) edges in Q cross neither the red nor the blue
segment of γ1 and γℓ. The relative interiors of these red segments lie in the interior of region R.
The blue segment of such an edge in Q cannot cross the boundary of R (since the red segments
of γ1 and γℓ are crossing-free, and blue segments do not cross each other), so this edge must
connect u and v. The graph G has at most one edge between u and v, and so ℓ− (2k + 2) ≤ 1.
It follows that |B1| = ℓ ≤ 2k + 3, as required. �

Therefore, G′ has at most 3(4k+6)n edges. We conclude that |E| ≤ |E1|+6.5n = |E′|+6.5n ≤
(4k + 6)3n+ 6.5n = (12k + 24.5)n. �

4.2 Proof of Theorem 1.4

We now prove Theorem 1.4.

Proof of Theorem 1.4: Let G = (V,E) be a topological graph on n vertices. Assume that
every edge of G is partitioned into two end segments and one middle segment such that (1) each
crossing involves one end segment and one middle segment; (2) each middle segment and end
segment intersect at most once; and (3) each middle segment crosses at most k end segments
that share a vertex. Assume further that G is drawn in the plane so that the number of edge
crossings is minimized subject to the constraints (1)–(3). We show that G has O(kn) edges.

Observe that G has at most 3n − 6 edges whose both end segments are crossing-free, since
two such edges cannot cross each other. Let E1 ⊂ E denote the set of edges with at least one
crossed end segment. Let S be the set of end segments with at least one crossing each. It is
clear that |E1| ≤ |S| ≤ 2|E1|. We construct a red edge for every end segment in S.

Constructing a red graph. For every end segment s ∈ S, let us ∈ V be the vertex incident
to s. Direct s from us to its other endpoint, and let cs be the first crossing along s. Direct every
middle segment arbitrarily. For every end segment s ∈ S, we construct a directed red edge γ(s),
which is a Jordan arc from us to another vertex in V . These edges form a directed topological
multigraph (V,Γ) with Γ = {γ(s) : s ∈ S}. The edges in Γ are called red to distinguish them
from the edges of E.

For s ∈ S, the red edge γ(s) is constructed as follows. See Figure 7(a) for an example. Point
cs is the crossing of s with some middle segment ms. Let ds be the first intersection point along
ms after cs (following the direction of ms) with an end segment s′ which is not adjacent to us.
That is, ds is either a crossing of ms with an end segment or it is the endpoint of ms (if cs is
the last crossing along ms or all segments that ms crosses after cs are incident to us). At any
rate, ds lies on a unique end segment, which is incident to a unique vertex vs ∈ V . Now let the
directed edge γ(s) follow segment s from us to cs, the middle segment ms from cs to ds, and the
end segment s′ from ds to vs.

Since G is drawn with the minimal number of crossings, we have us ̸= vs. Indeed, suppose
that us = vs. If ds is the endpoint of the middle segment ms, then we could redraw the edge
em ∈ E containing ms so that the middle segment of the edge em ends right before reaching
point cs and then em continues to us closely following along s without crossings. By redrawing
em this way, we reduce the total number of crossings without violating conditions (1)–(3).
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(a) (b)

s

cs

vs

ds

us

γ(s)
u v

R(B)

Figure 7: (a) Construction of a red edge γ(s). (b) A bundle of 7 red edges from u to v.

Every red edge γ(s) is naturally partitioned into three segments: a first, a middle, and a
third segment. We briefly summarize the properties we have established for the three segments
of the red edges.

(i) The first segments of the red edges are distinct, they lie along the end segments of G, and
they are crossing-free.

(ii) The middle segment of each red edge lies along a middle segment in G, following its
prescribed direction. A middle segment of a red edge γ(s) may be crossed by the last
segment of some other red edge γ(s′) if γ(s′) is incident to vertex us ∈ V .

(iii) The last segment of each γ(s) lies along an end segment of G, and it possibly has a common
tail with other red edges. The last segment of γ(s) may cross middle segments of other
red edges.

Observe that a crossing in the red graph can occur only between two red edges sharing a vertex.
Note also that two red edges in Γ cannot follow the same Jordan arc in opposite directions (e.g.,
(u, v) and (v, u)), since every red edge follows a prescribed direction along its middle segment.
We show that (V,Γ) contains a plane subgraph having at least |Γ|/4 edges.

Label each vertex in V by either 0 or 1 as described below, and let Γ1 ⊆ Γ denote the set of
red edges directed from a vertex labeled 0 to one labeled 1. If the labels are distributed uniformly
at random, then every edge in Γ is in Γ1 with probability 1/4. Hence there is a labeling such
that |Γ1| ≥ |Γ|/4. Fix such a labeling for the remainder of the proof. By the properties of red
edges noted above, no two edges in Γ1 cross. If two red edges in Γ1 overlap, then they have a
common tail. By Lemma 2.4, overlaps along common tails can be removed, and so (V,Γ1) is a
directed plane multigraph.

Bundles of red edges. In (V,Γ1), we define a bundle as a maximal set of directed parallel
edges such that the interior of the region enclosed by the edges does not contain any vertex of
V . See Figure 7(b). Let B denote the set of bundles of (V,Γ1). For a bundle B ∈ B, let R(B)
denote the region enclosed by the edges in B. Since Γ1 is planar and each edge goes from a
vertex labeled 0 to one labeled 1, the interior of the regions R(B), B ∈ B, are pairwise disjoint.
Recall that a plane multigraph on n vertices has at most 3n edges if it has no face of size 2.
Therefore, there are at most 3n bundles in B.
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Proposition 4.2. Let B = {γ1, γ2, . . . , γℓ} ⊆ Γ1 be a bundle in B from u to v appearing in
the rotation system at u in this order. For i = 1, 2, . . . , ℓ, let ei ∈ E be the edge of the original
graph G incident to u whose end segment contains the first segment of γi. Then there are at
least ℓ− (2k + 3) edges ei, 1 ≤ i ≤ ℓ, whose first segment lies entirely in the region R(B).

Proof. Let Euv = {e2, e3, . . . , eℓ−1} ⊆ E be a set of ℓ−2 edges in E containing the first segments
of γ2, γ3, . . . , γℓ−1 ∈ Γ1. By property (3), the first segments of at most k edges in Euv cross the
middle segment of γ1. Similarly, the first segments of at most k edges in Euv cross the middle
segment of γℓ. So at least ℓ− (2k+2) edges in Euv cross neither the first nor the middle segment
of γ1 and γℓ. At most one of these edges joins u and v, since G is a simple graph. So at least
ℓ− (2k+ 3) edges in Euv has to cross the last segment of γ1 or the last segment of γℓ. However
by property (1), only the middle segments of the edges in Euv can cross the last segment of γ1
or γℓ. Hence, for at least ℓ− (2k+3) edges in Euv, the first segment lies entirely in region R(B).
�

Partition Γ1 into two two subsets Γ1 = Γ2 ∪ Γ3 as follows. Let Γ2 contain all edges of all
bundles of size at most 2k + 3, as well as those edge γi ∈ B of any larger bundle B ∈ B such
that the first segment of the corresponding edge ei ∈ E is not contained in the region R(B).
Let Γ3 = Γ1 \ Γ2, that is, Γ3 contains all edges γi ∈ Γ1 such that γi is part of some bundle B of
size at least 2k + 4, and the first segment of the corresponding edge ei ∈ E lies entirely in the
region R(B). By Proposition 4.2, each bundle in B contains at most 2k + 3 edges of Γ2. Since
there are at most 3n bundles, we have |Γ2| ≤ (2k + 3)3n. It remains to bound the number of
edges in Γ3.

Label each region R(B) enclosed by a bundle B ∈ B by either 0 or 1 as described below.
Let Γ4 ⊆ Γ3 be the set of edges γ ∈ Γ3 such that the end segment of the edge e ∈ E containing
the first segment of γ lies in a region labeled 0, and the other end segment of e either lies in a
region labeled 1 (including its boundary) or it does not lie in any such region. If the labels are
distributed uniformly at random, then every edge in Γ3 will be in Γ4 with probability at least
1/4. Hence there is a labeling such that |Γ4| ≥ |Γ3|/4. Fix such a labeling for the remainder of
the proof. Let E4 ⊆ E denote the edges containing the first segments of the red edges in Γ4.

Edges traversing a bundle. Consider a bundle B ∈ B of edges from u to v, and suppose
that the region R(B) is enclosed by the edges γ1, γℓ ∈ B. We say that an edge e ∈ E traverses
R(B) if a connected component of e∩R(B) intersects the interior of R(B), but this component
is incident to neither u nor v. See Figure 8(a). Suppose that e ∈ E traverses R(B). Then e
crosses γ1 ∪ γℓ twice. The first segments of γ1 and γℓ are crossing-free by property (i) of the
red edges. The middle segments of γ1 and γℓ can cross only end segments incident to u by
property (ii) of the red edges. By condition (3), at most 2k edges traverse R(B) such that they
intersect the middle segment of γ1 or γℓ. Denote by T1 ⊂ E the set of edges in E that traverse
some bundle B ∈ B such that they cross a middle segment on the boundary of R(B). Summing
over all bundles, we have |T1| ≤ (3n)(2k) = 6kn.

Assume now that e ∈ E crosses the last segment of γ1 and γℓ. By conditions (1) and (2), the
middle segment of e crosses the last segment of γ1 and γℓ. That is, a connected component of
e∩R(B) is part of the middle segment of e. By condition (1) and (2), the middle segments that
traverse R(B) cannot cross each other inside R(B). Among all middle segments that traverse
R(B), let m(B) be the one whose intersection with γ1 (and γℓ) is closest to u. Recall that for a
red edge γi ∈ B ∩ Γ4, we denote by ei ∈ E4 the edge containing the first segment of γi. By the
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v

γ1

γℓ

γ1

γℓR(B)
R(B)

u v u

Figure 8: (a) Four edges traverse R(B), two of them cross some middle segments on the boundary
of R(B), and two of them cross end segments only. (b) Construction of two edges in Ê by
redrawing their portions within a region R(B).

choice of Γ4 ⊂ Γ3, an end segment of ei lies in the region R(B). If the first segment of ei crosses
any middle segment that traverses R(B), then ei must cross m(B). By condition (3), however,
at most k edges ei ∈ E4 cross m(B). Denote by T2 ⊂ E the set of edges in E such that one end
segment lies entirely in the region R(B) of some bundle B ∈ B, and this end segment crosses a
middle segment that traverses R(B). Summing over all bundles, we have |T2| ≤ (3n)k = 3kn.

Let Γ5 ⊆ Γ4 be the set of edges γi ∈ Γ4 such that the corresponding edge ei is neither in T1

nor in T2. Let E5 ⊆ E denote the edges containing the first segments of the red edges in Γ5.
By the above argument, we have |Γ4| ≤ |Γ5|+ |T1|+ |T2| ≤ |Γ5|+ 9kn. It remains to derive an
upper bound for |Γ5|.

Bounding |Γ5|. In order to bound |Γ5|, we construct the new topological graph (V, Ê). For
each γi ∈ Γ5, we construct an edge êi ∈ Ê as follows. Suppose that γi is in a bundle B ∈ B
from u to v. Let ei ∈ E5 denote the edge that contains the first segment of γi. Suppose that
ei = (u,w). By construction, the first segment of ei lies in the region R(B), and it does not
cross any edge in E5 that traverses R(B). Indeed, the first segment of ei cannot cross any edge
in E5 that traverses R(B) since E5 ∩ T2 = ∅, and the middle segment of ei cannot cross any
edge in E5 that traverses R(B) since E5 ∩ T1 = ∅. Draw the edge êi = (u,w) as follows (refer
to Figure 8(b)): êi starts from the vertex u, it goes to the first intersection point ei ∩ ∂R(B)
inside the region R(B) as described bellow, then it follows ei to the endpoint w outside of R(B).
Due to the 0-1 labeling of the regions R(B), all edges of Ê that intersect the interior of a region
R(B) are incident to only one vertex of the bundle B. Therefore, the portion of the edges in Ê
in each region R(B), with B ∈ B, can be drawn without crossings. We can now partition each
edge êi ∈ Ê5 into two segments: its blue segment consists of its part inside a region R(B) and its
part along the middle segment of ei; its red segment is the last segment of ei. As noted above, êi
does not cross any other edge of Ê inside the region R(B). By property (3), every blue segment
crosses at most k red segments incident to the same vertex. We can apply Theorem 1.3 for the
graph (V, Ê). It follows that |Ê| = O(kn), hence |Γ5| = O(kn).

In summary, we have |E| < 3n + |E1| ≤ 3n + |Γ| ≤ 3n + 4|Γ1| = 3n + 4(|Γ2| + |Γ3|) ≤
3n+4(2k+3)3n+4|Γ3| ≤ (8k+39)n+16|Γ4| ≤ (8k+39)n+16(9kn+|Γ5|) = (152k+39)n+16|Γ5| ≤
(152k + 39)n+ 16|Ê| ≤ (152k + 39)n+ 16(12k + 24.5)n = (344k + 431)n, as required. �
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4.3 Completing the proof of Theorem 1.2

We are now ready to prove Theorem 1.2(b).

Proof of Theorem 1.2(b): Let A ⊂ (0, π2 ] be a set of k angles. Let G be a graph on n vertices
that admits a drawing with at most two bends per edge such that every crossing occurs at some
angle from A. Partition the edges into two subsets E = E1 ∪ E2, where E1 is the set of edges
which have an end segment crossing some other end segment, and E2 contains all other edges
in E. By Lemma 3.3, we have |E1| ≤ 36kn.

Let S2 be the set of middle segments of all edges in E2. By Lemma 2.2, there is a subset
S′
2 ⊆ S2 of at least 1

2k+1 |S2| = 1
2k+1 |E2| pairwise noncrossing segments. Let E′

2 ⊆ E2 be the
set of edges whose middle segments are in S′

2. Note that in the graph (V,E′
2), every crossing

is between an end segment and a middle segment. Moreover, no middle segment crosses more
than 2k end segments that share a vertex, since there are k possible crossing angles, and for
each angle α ∈ A, two end segments incident to a vertex that meet a middle segment at the
angle α form an isosceles triangle. Therefore, it follows from Theorem 1.4 that |E′

2| = O(kn).
Altogether, we have |E| = |E1|+ |E2| ≤ 36kn+ (2k + 1)|E′

2| = O(k2n). �

5 Discussion

We have shown that for every list A of k angles, a graph on n vertices that admits a polyline
drawing with at most one (resp., two) bends per edge in which all crossings occur at an angle
from A has at most O(kn) (resp., O(k2n)) edges. It is easy to construct a straight line graph
with n vertices and Ω(kn) edges such that the edges cross in at most k different angles: Let the
vertices v1, . . . , vn be equally spaced points along a circle in this order, add a straight line edge
vivj if and only if |i− j| ≤ k + 1.

With one bend per edge, one can construct slightly larger graphs on n vertices, but the
number of edges remains O(kn) by Theorem 1.2(a). However, we do not know whether the
upper bound of O(k2n) in Theorem 1.2 is the best possible for polyline drawings with two bends
per edge and k possible crossing angles.

v1 v2 v3

ℓ1

ℓ2

ℓ3

Figure 9: A straight line drawing of K3,3 satisfying the conditions of Theorem 1.3 for k = 2.

In Theorems 1.3 and 1.4, the upper bound O(kn) cannot be improved. For every k ≥ 0 there
is a straight line drawing of Kk+1,k+1 satisfying the conditions of Theorem 1.3, by the following
construction which is due to Rom Pinchasi [11]. Place k+ 1 vertices on a horizontal line. Then
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add k + 1 vertices v1, v2, . . . , vk+1 one by one on another horizontal line below the first line,
and connect each of them to all the first k + 1 vertices, as follows. Place v1 arbitrarily on the
bottom line, and partition each of its adjacent edges into red and blue segments such that the
red segments are adjacent to v1. For i = 2, . . . , k+1, add vi far enough to the right of vi−1 such
that the edges between vi and the first set of vertices cross only blue segments of previous edges.
Let (xi, yi) be the highest crossing point on edges adjacent to vi. Fix a horizontal line ℓi slightly
above the line y = yi and partition every edge e adjacent to vi into red and blue segments, such
that endpoints of the red segment are vi and e ∩ ℓi. See Figure 9 for an example. It is not hard

to verify that this drawing satisfies the condition of Theorem 1.3. By taking
⌊

n
2(k+1)

⌋
disjoint

copies of Kk+1,k+1 drawn as above, we obtain a graph on n vertices and Ω(kn) edges satisfying
the conditions of Theorem 1.3.

Finally, we mention a few related questions. How hard is it to determine whether a graph
admits a polyline drawing with few bends per edge and few crossing angles? Recently, it was
shown that recognizing straight line RAC graphs is NP-hard [3], so it is likely that recognizing
graphs that admit αAC2 drawings for a given α or just some α are hard as well. It might also be
interesting to find or approximate the minimum value t for a given graph G such that G admits
a polyline drawing with at most two bends per edge and t possible crossing angles.
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