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ABSTRACT
We show that the maximum number of edges in a topological
graph on n vertices and with no four pairwise crossing edges
is O(n).

1. INTRODUCTION
A topological graph is a graph drawn in the plane with its

vertices as points and its edges as Jordan arcs that connect
corresponding points and do not contain any other vertex
as an interior point. We consider simple graphs, that is,
graphs that do not contain loops or parallel edges. We also
assume that any two arcs of a topological graph have a finite
number of intersection points, that are either endpoints or
crossing points. A planar graph is a graph that can be
drawn in the plane without any pair of crossing edges. One
possible generalization of the notion of planar graphs are k-
quasi-planar graphs. A k-quasi-planar graph is a topological
graph with no k pairwise crossing edges. We denote by fk(n)
the maximum number of edges in such a graph on n vertices.

Since 2-quasi-planar graphs are planar graphs, it follows
from Euler’s Polyhedral Formula that f2(n) ≤ 3n − 6. It is
conjectured that for any fixed k, there is a constant Ck such
that fk(n) ≤ Ckn. Agarwal, Aronov, Pach, Pollack, and
Sharir [2] were the first to prove this conjecture for k = 3.
Later, Pach, Radoičić, and Tóth [3] simplified their proof
and showed that f3(n) ≤ 65n. Recently, Ackerman and
Tardos [1] proved that 7n − O(1) ≤ f3(n) ≤ 8n − Ω(1), and
provided a tight bound of 6.5n − Ω(1) for simple topolog-
ical graphs (graphs in which every pair of edges intersect
at most once). For a fixed k ≥ 4, the best upper bound
for topological graphs is O(n log4k−12 n) [3], while for topo-
logical graphs with x-monotone edges, Valtr [4] showed an
upper bound of O(n log n). In the following section we prove
that f4(n) = O(n).

2. PROOF OF THE MAIN THEOREM
Since the (underlying abstract) graphs we consider are

simple, we have f4(1) = 0 and f4(2) = 1. For greater values
of n we prove the following theorem.

Theorem 1. For any integer n > 2, every topological
graph on n vertices with no four pairwise crossing edges has
at most 36(n − 2) edges.

Proof. It is easy to see that f4(3) = 3 < 36(3 − 2). Let
G be a topological graph on n > 3 vertices and without four
pairwise crossing edges. We denote by V (G) the vertex set of

G, and by E(G) the edge set of G. Given an edge e ∈ E(G)
and two points p and q on e, we will use the notation e|p,q to
denote the segment of e between p and q. For a vertex v we
denote by d(v) the degree of v. If there is a vertex v ∈ V (G)
such that d(v) = 1, then we can conclude the theorem by
induction. Hence, we assume the degree of every vertex in
G is at least two. Assume, w.l.o.g., that G is drawn with
the least possible number of crossings, such that there are
no four pairwise crossings, and that there are no three edges
crossing at the same point. Let e1 and e2 be two edges of G

that intersect at least twice. A region bounded by segments
of e1 and e2 that connect two consecutive intersection points
is called a lens. We observe, as in [3], that G has no empty
lenses, that is, lenses which do not contain a vertex of G. If
there were empty lenses, then the number of crossings in G

could be reduced. For the same reason G does not contain
self-intersecting edges.

Let G′ be the (drawing of the) planar graph induced by
G. That is, V (G′) = V (G)∪X(G), where X(G) is the set of
crossing points in G; and e′ ∈ E(G′) if e′ is a segment of an
edge of G that connects two vertices in V (G′) and contains
no other vertex from V (G′). We refer to the edges of G′ as
p-edges, in order to distinguish them from the edges of G.
Denote by F (G′) the set of faces of G′, and let |f | be the
number of p-edges along the boundary of a face f ∈ F (G′).1

Given a face f , we denote by v(f) the number of vertices
from V (G) along the boundary of f (we call these vertices
original vertices). We will use the terms triangles, quadrilat-
erals, pentagons, and hexagons to refer to faces of size 3,4,5,
and 6, respectively. An integer m before the name of a face,
denotes the number of original vertices on its boundary. For
example, a 2-pentagon is a face of size 5 that has 2 original
vertices on its boundary. We proceed, as in [1], by assigning
charges to the faces of G′, such that each face f receives a
charge of |f |+ v(f)− 4. Summing the total charges over all
the faces of G′ we have

�
f∈F (G′)

�
|f | + v(f) − 4 � =

2|E(G′)| +
�

f∈F (G′)

v(f) − 4|F (G′)| = 4n − 8, (1)

where the last equality follows from Euler’s formula and

1Note that a p-edge can sometimes appear twice along the
boundary of a face.
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Figure 1: Charging a 0-triangle

from the next equalities:�
f∈F (G′)

v(f) =
�

u∈V (G)

d(u) =
�

u∈V (G′)

d(u) −
�

u∈X(G)

d(u) =

2|E(G′)| − 4
�
|V (G′)| − |V (G)| � .

A wedge is a triplet w = (v, l, r), such that v ∈ V (G), l

and r are edges emerging from v, and l immediately follows
r in a clockwise order of the edges touching v. Our plan is
to re-distribute the charges, such that there will be no faces
with a negative charge and every wedge will be charged with
at least 1

18
units of charge. Then, the total charge over all

the wedges will be 2|E(G)|
18

≤ 4n − 8, and the theorem will
follow. (Note that the number of wedges in which a vertex
v ∈ V (G) participates is d(v). Here we use the assumption
that the degree of every vertex is at least two.) Since a
face of size one yields a self-intersecting edge, and a face of
size two yields an empty lens or two parallel edges, the only
faces with a negative charge are 0-triangles. We proceed by
describing a method to charge these faces. Then, we will
show how to charge the wedges of original vertices.

Charging 0-triangles. Let t be a 0-triangle, let e1 be one
of its p-edges, and let f1 be the other face incident to e1 (see
Figure 1(a)). It must be that |f1| > 3, for otherwise there
would be an empty lens. If v(f1) > 0 or |f1| > 4, we move
1
3

units of charge from f1 to t, and say that f1 contributed
1
3

units of charge to t through e1. Otherwise, f1 must be
a 0-quadrilateral. Let e2 be the opposite p-edge to e1 in
f1, and let f2 be the other face incident to e2. Applying
the same arguments as above, we conclude that either f2

contributes 1
3

units of charge to t through e2, or f is also a
0-quadrilateral. In the second case we continue to the next
face, that is, the other face that is incident to the opposite p-
edge to e2 in f2. However, at some point we must encounter
a face that is not a 0-quadrilateral. Denote by fi this face,
by fi−1 the face preceding fi, and by ei the edge incident
to both of these faces. Then fi will contribute 1

3
units of

charge to t through ei (see Figures 1(b,c)).
In a similar way t obtains 2

3
units of charge from its other

p-edges. Thus, after re-distributing charges this way, the
charge of every 0-triangle is 0. Note that a face can con-
tribute through each of its p-edges at most once. Therefore,
every face f such that |f |+v(f) ≥ 6 still has a non-negative
charge. It remains to verify that 1-quadrilaterals and 0-
pentagons, which had only one unit of charge to contribute,

Figure 2: A pentagon contributing to three 0-
triangles through non-consecutive p-edges implies

four pairwise crossing edges.

also have a non-negative charge. Indeed, a 1-quadrilateral
contributes to at most two 0-triangles, since the endpoints of
a p-edge through which it contributes must be vertices from
X(G). A 0-pentagon, on the other hand, can contribute to
at most three 0-triangles by the following easy observation.

Observation 2.1. A 0-pentagon contributes charge to at
most three 0-triangles. Moreover, if it contributes to three
0-triangles, then the contribution must be done through con-
secutive p-edges.

Proof. One can easily inspect that a contribution to
three 0-triangles through non-consecutive p-edges implies
four pairwise crossing edges (see Figure 2). In case a 0-
pentagon contributes to more than three 0-triangles, then
there must be three non-consecutive p-edges through which
it contributes.

Charging wedges. After the previous step, the faces with
a zero charge, apart from 0-triangles and 0-quadrilateral,
are 0-pentagons that contributed to three 0-triangles, and
0-hexagons that contributed to six 0-triangles. We call such
faces bad faces. Faces that have a positive charge are called
good faces. Our goal now, is to find some extra charge for
each wedge. This extra charge will be found next to a far-
thest uncut A-crossing or X -crossing of the wedge. We be-
gin with a few definitions.

Let w = (v, l, r) be a wedge, and let e be an edge crossing
l at p and r at q, such that e|p,q does not cross l or r. We
denote by w|e,p,q the area to the left of the closed curve
formed by traversing from v on l|v,p, e|p,q, and r|q,v.

Definition 2.2 (uncut A-crossing). Let w = (v, l, r)
be a wedge. An A-crossing of w is a triplet cr = (e, p, q) such
that e is an edge crossing l at p and r at q such that: (1)
e|p,q does not intersect l or r; and (2) the endpoints of e are
not in w|e,p,q. We say that cr is an uncut A-crossing of w,
if e|p,q is a p-edge. For examples, refer to Figure 3(a).

Let cr = (e, p, q) be an A-crossing of a wedge w = (v, l, r).
We use the notation w|cr as an abbreviation for w|e,p,q, and
say that cr is an empty A-crossing of w, if there are no
original vertices in w|cr. Given another A-crossing of w,
cr′ = (e′, p′, q′), we say that cr is farther than cr′ (and cr′

is closer than cr), if p′ ∈ l|v,p and q′ ∈ r|v,q. Clearly, not
every two A-crossings of a wedge are comparable, but uncut
A-crossings are.

Definition 2.3 (X -crossing). Let w be a wedge, and
let cr1 = (e1, p1, q1) and cr2 = (e2, p2, q2) be two A-crossings
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Figure 3: Crossing patterns of a wedge
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tion 2.4

of w. Then (cr1, cr2) is an X -crossing of w if e1|p1,q1 and
e2|p2,q2 intersect exactly once.

Let x = � cr1 = (e1, p1, q1), cr2 = (e2, p2, q2) � be an X -
crossing of a wedge w = (v, l, r). We say that x is empty if
both cr1 and cr2 are empty A-crossings. The notation w|x
represents the area w|cr1

∪w|cr2
. Assuming p2 ∈ l|v,p1

(and
therefore, q1 ∈ r|v,q2), the boundary of w|x is the closed
curve formed by l|v,p1

, e1|p2,y, e2|y,q2 , and rq2,v, where y is
the intersection point of e1|p1,q1 and e2|p2,q2 . We call the
curve e1|p1,y ∪e2|y,q2 the visible part of w|x and denote it by
Vis(x), when it is clear to which wedge we refer. We denote
by Vis(x)l and Vis(x)r the two components of Vis(x), e1|p1,y

and e2|y,q2 , respectively. See Figure 3(b) for an example.
The next observation will be useful in the sequel.

Observation 2.4. Suppose x = � cr1 = (e1, p1, q1), cr2 =

(e2, p2, q2) � is an empty X -crossing of a wedge w = (v, l, r),
such that Vis(x)l ⊂ e1. Then an edge e′ that crosses Vis(x)l

(resp., Vis(x)r) must cross l (resp., r) and must not cross
e2 (resp., e1).

Proof. Let y be the crossing point of e1|p1,q1 and e2|p2,q2 ,
and let z be the crossing point of e′ and e1|p1,y (see Fig-
ure 4). Since x is an empty X -crossing of w, e′ must cross
the boundary of w|x at least one more time. If it crosses
e1|p1,q1 at another point different from z, then we have an
empty lens. Therefore e′ cannot cross Vis(x) at another
point. Otherwise, if e′ crosses r|v,q2 then it must also cross

e2|p2,y. This implies four pairwise crossing edges: e′, e1,
e2, and r. Thus e′ must cross l. Moreover, it must not
cross e2 since this also yields four pairwise crossing edges.
The proof for an edge crossing Vis(x)r is similar and is thus
omitted.

Let x and x′ be two X -crossings of a wedge w. we say
that x is a farther X -crossing of w than x′, if one A-crossing
of x is farther than one A-crossing of x′ and the other A-
crossing of x′ is not farther than the other A-crossing of x.
In a similar way, we say that an uncut A-crossing is farther
(resp., closer) than an X -crossing of the same wedge, if it
is farther (resp., closer) than both A-crossings of the X -
crossing.

Given a wedge w = (v, l, r), we look for an empty uncut
A-crossing or X -crossing of w, such that there are no empty
uncut A-crossing or X -crossing, farther than it. If there is no
such uncut A-crossing or X -crossing, then the face incident
to v,l, and r, is not a 1-triangle. Thus, its charge is at least
1
3

units, from which we use 1
18

units to charge w. If there is
such an empty uncut A-crossing cr = (e, p, q), then let f be
the face incident to e|p,q outside w|cr. f is not a triangle as
this would yield an empty lens or parallel edges. Nor can it
be a 0-quadrilateral since this would imply an empty uncut
A-crossing farther than cr. If f is a bad pentagon, then
it follows from Observation 2.1 that there is an empty X -
crossing, farther than cr. Therefore, f must be a good face
which will contribute 1

18
units of charge to w through e|p,q.

It remains to consider the case in which there is an empty
X -crossing x, such that there is no empty uncut A-crossing
or X -crossing, farther than x.

Denote by cr1 = (e1, p1, q1) and cr2 = (e2, p2, q2) the two
A-crossings forming x, such that Vis(x)l = e1|p1,y, where y

is the intersection point of e1|p1,q1 and e2|p2,q2 . Let f1 be
the face that is incident to y and outside w|x. Suppose f1 is
a 0-triangle and let e3 be the third edge incident to it (see
Figure 5(a)). It follows from Observation 2.4 that e3 must
cross l, thus l, e1, e2, and e3 are pairwise crossing. If f1 is a
bad pentagon, then we consider the possible cases, according
to whether none, one, or both of e1|p1,y and e2|y,q2 are p-
edges. In case both of them are p-edges (see Figure 5(b)),
then there is an empty uncut A-crossing of w that is farther
than x. In case one of them, say e2|y,q2 , is a p-edge (see
Figure 5(c)), then there is an empty X -crossing farther than
x. If none of them is a p-edge (see Figure 5(d)), then there
must be four pairwise crossing edges. In a similar way, if f1

is a bad hexagon then there must be four pairwise crossing
edges, or an X -crossing of w farther than x.

Therefore, if f1 is not a good face, then it must be a 0-
quadrilateral. Suppose f1 is a 0-quadrilateral and let f2 be
the face outside of w|x that shares a p-edge with f1 and is
incident to Vis(x)l (see Figure 5(e)). If there is no such face,
or there is no face outside w|x that shares a p-edge with f1

and is incident to Vis(x)r, then there is an empty X -crossing
farther than x. Examining f2, one can see by inspection
that it cannot be a 0-triangle, as this implies four pairwise
crossing edges. If f2 is a bad pentagon (see Figure 5(f,g)),
or a bad hexagon, then again there must be four pairwise
crossing edges or an empty X -crossing farther than x. Thus,
either f2 is a good face or it is a 0-quadrilateral. In the
second case, we examine the next face, that is, the face
f3 6= f1 such that f3 is outside w|x, shares a p-edge with f2,
and is incident to Vis(x)l. If there is no such a face, then
we have an empty X -crossing farther than x. Otherwise, we
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Figure 5: Obtaining charge near a farthest X -crossing

can apply the same arguments we used for f2 on f3, proceed
to the next face, if f3 is not a good face, and so on. Thus, at
some point we must encounter a good face, for otherwise we
have an empty X -crossing farther than x (see Figure 5(h)).
Let fi be the first good face we encounter along Vis(x)l, and
let ei be the p-edge of fi that is contained in Vis(x)l. Then
fi contributes 1

18
units of charge to w through ei.

Next, we prove that after charging every wedge of an orig-
inal vertex, as above, there are no faces with a negative
charge. For that, we need to show that a face cannot con-
tribute to “too many” wedges. For a (good) face f and one
of its p-edges m, we say that f is a possible X -contributor
to a wedge w through m, if there is an empty X -crossing of
w, x, such that f is outside w|x and m ⊂ Vis(x)l.

Observation 2.5. Let f be a face and let m be one of its
p-edges. Then f is a possible X -contributor through m to at
most one wedge.

Proof. Suppose there is a face f that is a possible X -
contributor through one of its p-edges, m, to two wedges,
w1 = (v1, l1, r1) and w2 = (v2, l2, r2). Let e be the edge con-
taining m, then there are four points p1, q1, p2, q2, such that
cr1 = (e, p1, q1) is an A-crossing of w1 and cr2 = (e, p2, q2) is
a A-crossing of w2. Denote by x1 = � (e, p1, q1), (e

′
1, p

′
1, q

′
1) �

the empty X -crossing of w1, such that m ⊂ Vis(x1)l, and
by x2 = � (e, p2, q2), (e

′
2, p

′
2, q

′
2) � the empty X -crossing of w2,

such that m ⊂ Vis(x2)l. Suppose we sort p1, q1, p2, q2 by
the order in which they appear when traversing e from one

of its endpoints to the other, such that when traversing m

the face f is to our right. Then, pi must precede qi, for
i = 1, 2, since f is outside of w|xi

. Assume, w.l.o.g., that p1

precedes p2. It follows from Observation 2.4 that l2 crosses
l1 (see Figure 6(a)). Since m ⊂ e|p1,q1 ∩ e|p2,q2 , the order of
the four points is either p1, p2, q1, q2 or p1, p2, q2, q1. Let us
consider these cases:
Case 1: Suppose q1 precedes q2 (see Figure 6(b)). Since
w1|x1

and w2|x2
do not contain any original vertex, l2 must

cross l1 (one more time) and r1 (see Figure 6(c)), or r2 must
cross l1 and r1 (see Figure 6(d)). The first case yields an
empty lens. In the second case, note that e′1 must cross ei-
ther l2 (see Figure 6(e)) or r2 (see Figure 6(f)), yielding four
pairwise crossing edges.
Case 2: Suppose q1 precedes q2 (see Figure 6(g)). Then the
edge e′2 must cross e twice, creating an empty lens, or cross
l1, yielding four pairwise crossing edges (see Figure 6(h)).

Since all the cases imply forbidden configurations (an empty
lens or four pairwise crossing edges) we conclude that f can-
not be a possible X -contributor through m to more than one
wedge.

It follows from Observation 2.5 that a face f , such that
|f | ≥ 7, ends up with a charge of at least |f | − 4 − |f |( 1

3
+

1
18

) > 0. Likewise, k-quadrilaterals, for k > 0, and good
pentagons and hexagons, end up with a non-negative charge,
as their charge after charging the 0-triangles was at least
1
3
. Summing up the charge over all the wedges we have

2|E(G)|
18

≤ 4n − 8, hence |E(G)| ≤ 36n − 72.
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Figure 6: Illustrations for the proof of Observation 2.5

3. DISCUSSION
We have shown that the maximum number of edges in a

topological graph on n vertices with no four pairwise cross-
ing edge is O(n). An interesting open problem is to de-
termine the exact constant hiding in the O-notation. By
noticing that it is impossible that all the faces incident to a
vertex of G are 1-triangles (as done in [1]), one can reduce
this constant to 28.8, but this is probably still not tight. The
bound we found, combined with the analysis in [2] and [3],
yields the following corollaries.

Corollary 1. For any fixed integer k > 4, a simple
topological graph on n vertices with no k pairwise crossing
edges has O(n log2k−8 n) edges.

Corollary 2. For any fixed integer k > 4, a topological
graph on n vertices with no k pairwise crossing edges has
O(n log4k−16 n) edges.

This improves the previous bounds by a factor of Θ(log2 n)
and Θ(log4 n), respectively. However, the conjecture that
fk(n) = O(n) for any fixed k > 4 remains open. It might be
possible to settle this conjecture for k = 5 using our method,
but it seems that for greater values, one should come up with
new ideas.

Acknowledgements. I am grateful to Rom Pinchasi for
introducing this problem to me, for many helpful sugges-
tions and discussions concerning it, and for his comments
on a draft of this paper. I also wish to extend my grati-
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