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Abstract

A graph is 1-planar if it can be drawn in the plane such that each of its edges is
crossed at most once. We prove a conjecture of Czap and Hudák [6] stating that the
edge set of every 1-planar graph can be decomposed into a planar graph and a forest.
We also provide simple proofs for the following recent results: (i) an n-vertex graph that
admits a 1-planar drawing with straight-line edges has at most 4n − 9 edges [7]; and
(ii) every drawing of a maximally dense right angle crossing graph is 1-planar [12].

1 Introduction

In a drawing of a graph in the plane its vertices are represented as distinct points and
its edges as Jordan arcs that connect corresponding points and do not contain any other
vertex as an interior point. Any two edges in a drawing of a graph have a finite number of
intersection points. Every intersection point of two edges is either a vertex that is common
to both edges, or a crossing point at which one edge passes from one side of the other edge
to its other side. A drawing of a graph is 1-planar if each of the edges is crossed at most
once. If a graph has a 1-planar drawing then it is 1-planar.

The notion of 1-planarity was introduced in 1965 by Ringel [18], and since then many
properties of 1-planar graphs have been studied (see, e.g., [1, 2, 3, 4, 5, 6, 7, 11, 13, 15, 16]).
It is known that the maximum number of edges in an n-vertex 1-planar graph is 4n −
8 [13, 17, 19], and that this bound is tight, that is, for any n ≥ 12 there exists an n-vertex
1-planar graph with 4n− 8 edges [17].

Czap and Hudák [6] showed that if an n-vertex 1-planar graph has the maximum number
of edges, namely 4n−8, then its edge set can be decomposed into two subsets, such that one
of them induces a planar graph and the other induces a forest. We prove their conjecture
that this holds for every 1-planar graph.

Theorem 1. Let G = (V,E) be a 1-planar graph. Then there is a partition of E into two
subsets A and B such that A induces a planar graph and B induces a forest.

Note that it is not always possible to add an edge to a 1-planar graph with less than
4n − 8 edges. Indeed, Brandenburg et al. [2] showed that there are 1-planar graphs with n
vertices and only 45

17n+O(1) edges, such that adding an edge to any such graph results in a
graph that is no longer 1-planar. Therefore, one cannot conclude Theorem 1 simply because
it holds for 1-planar graphs with the maximum possible number of edges.

Apart from Theorem 1, this note contains simple proofs of two recent results related to
1-planar graphs. The first result is due to Didimo [7]:
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Theorem 2 ([7]). A graph on n ≥ 3 vertices that can be drawn in the plane with straight-line
edges such that every edge is crossed at most once has at most 4n− 9 edges.

The second result, due to Eades and Liotta [12], concerns drawing of graphs with right
angle crossings. A right angle crossing (RAC) drawing of a graph is a drawing with straight-
line edges that may cross each other only at a right angle. A RAC graph is a graph that
admits a RAC drawing. The class of RAC graphs was introduced by Didimo et al. [8],
following experiments showing that large angle crossings are visually appealing [14]. They
proved that an n-vertex RAC graph has at most 4n− 10 edges and that this bound is tight,
namely, there are RAC graphs with that many edges. We say that such RAC graphs are
maximally dense.

Eades and Liotta [12] recently showed that every RAC drawing of a maximally dense
RAC graph must be 1-planar. They also showed that there are RAC graphs that do not
admit 1-planar RAC drawings, and that there are graphs with 4n − 10 edges that admit
1-planar drawings but no RAC drawing. For further results on RAC graphs and related
problems see a recent survey of Didimo and Liotta [9]. Here we provide a different and
shorter proof of the main theorem in [12]. Moreover, our result is a bit more general.

Theorem 3. Let D be a RAC drawing of an n-vertex graph G = (V,E), n ≥ 3, such that
there is an edge e ∈ E which is crossed k ≥ 1 times in D. Then |E| ≤ 4n− 9− k.
Corollary 4 ([12]). If G is a maximally dense RAC graph then every RAC drawing of G is
1-planar.

Organization. Theorem 1 is proved in Section 2, while Theorems 2 and 3 are proved in
Section 3.

2 Proof of Theorem 1

Let G = (V,E) be a 1-planar graph drawn in the plane such that no edge is crossed more
than once. Henceforth we do not distinguish G from its drawing. We may assume without
loss of generality that if two edges cross in G, then they do not share a common vertex.
Indeed, otherwise these edges can be redrawn such that this crossing is eliminated and no
new crossing is introduced (and the abstract graph remains the same).

Therefore, every crossing involves two edges with four distinct endpoints. In such a case
we show that E can be partitioned into two subsets A and B, such that A induces a plane
graph and B induces a plane forest. Note that this proves a slightly stronger statement than
the one stated in Theorem 1.

Let p be a crossing point and let u and v be two vertices of the edges that cross at p,
such that (u, v) is not one of these edges. Then we can draw a new edge (u, v) such that it
is crossing-free by following the two edges that cross at p from u and v until they meet in a
close neighborhood of p. For every crossing point p and every such u and v, we draw a new
edge (u, v) as described. Note that the new drawing might contain parallel edges. Denote
the new (multi)graph by G′ = (V,E′) and let E′i ⊆ E′ be the edges in E′ that are crossed
exactly i times, for i = 0, 1.

Call a face whose boundary is a simple cycle of length four a quadrangle. A chord is a
new edge that is drawn within a face and connects two of its vertices that are not consecutive
on the boundary of the face. The proof of Theorem 1 follows from the next claim.

Proposition 2.1. For every plane multigraph H = (V,E) and every pair of adjacent vertices
x, y ∈ V it is possible to add a chord to every quadrangle in H, such that the graph induced
by the chords is a forest in which there is no path between x and y.
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Figure 1: Case 1 of Proposition 2.1

Indeed, denote by G′0 the plane multigraph induced by E′0. Then every pair of crossing
edges in G are the possible chords of a distinct quadrangle in G′0. Applying Proposition 2.1 to
G′0 we obtain a set B ⊂ E′1 of edges that induce a plane forest. Setting A = (E′0∩E)∪(E′1\B)
we obtain the subsets A and B as required. It remains to prove Proposition 2.1.

Proof of Proposition 2.1: We may assume without loss of generality that H does not contain
faces of size greater than four, for such faces can be triangulated without changing the set of
quadrangles in H. We prove the claim by induction on the number of quadrangles in H. If
there are no quadrangles then the claim trivially holds. Otherwise, let f be a quadrangle and
let v0, v1, v2, v3 be the vertices on the boundary of f , listed in their clockwise order around
f . We consider several cases.

Case 1: There is no other face but f that is incident to both v0 and v2. Note that this
implies that v0 and v2 are not adjacent. We add the edge (v0, v2) within f and immediately
contract it. Denote by H ′ the resulting graph, and let v be the vertex into which v0 and
v3 are merged. Comparing H and H ′ we observe that f was replaced by two faces of size
two, and the size of every other face and the number of vertices on its boundary have not
changed (see Figure 1). We now apply the induction hypothesis on H ′ with the same pair of
adjacent vertices x, y (if one of v0 or v2 is in {x, y}, then v ‘plays’ their role in H ′). Then, we
‘uncontract’ the edge (v0, v2) and add it to the set of chords (see Figure 1(c)). Since every
quadrangle in H except f is also a quadrangle in H ′, there is indeed a chord now in every
quadrangle. Note also that if the graph induced by the chords of H contains a cycle or an
x–y path, then so does the graph induced by the chords of H ′.

Note that if there was another face but f that is incident to both v0 and v2, then
merging them would change the number of (distinct) vertices on the boundary of that face.
Specifically, we could destroy two quadrangles instead of just one. Therefore, such a case
should be handled with care.

Case 2: There is a face different from f that is incident to both v0 and v2 and there is no
other face but f that is incident to both v1 and v3. This case is similar to the previous case.
The new chord will be (v1, v3).

Case 3: There is a face f ′ 6= f that is incident to both v0 and v2, and there is a face f ′′ 6= f
that is incident to both v1 and v3. Observe that it must be that f ′ = f ′′. Indeed, otherwise
we could have drawn the edges (v0, v2) and (v1, v3) as chords in f ′ and f ′′, respectively, such
that they do not cross. Then add a vertex inside f and connect it to v0, . . . , v3, and thus get
a plane drawing of K5, which is impossible.
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Figure 2: Case 3 of Proposition 2.1: both pairs v0, v2 and v1, v3 are incident to another face
but f .

Note that f ′ is a quadrangle and that v0, v1, v2, v3 appear in this counter-clockwise order
around f ′. In order to simplify the presentation, we assume that f ′ is the outer face of H
(recall that a planar graph can always be redrawn such that any given face becomes the
outer face). For i = 0, . . . , 3, denote by ei and e′i the edges (vi, vi+1) (addition is modulo 4)
of f and f ′, respectively, and let Hi be the subgraph of H that is induced by all the vertices
that lie in the bounded region whose boundary consists of ei and e′i (including vi and vi+1).
Refer to Figure 2.

Since x and y are adjacent, there must some subgraph Hi that contains both of them.
Assume without loss of generality it is H0. We proceed by applying induction on each of
the graphs Hi: for H0 we apply induction with the vertices x and y, while for i = 1, 2, 3, we
apply induction on Hi with the vertices vi and vi+1. Finally, we add the new chords (v0, v2)
and (v1, v3) in f and f ′, respectively.

It is not hard to see that the set of chords does not induce a cycle or an x–y path. Indeed,
a cycle or an x–y path of chords cannot go through Hi, for i = 1, 2, 3, since by the induction
hypothesis there is no path of chords between vi and vi+1. Therefore, a cycle or an x–y path
of chords if exists must lie inside H0, but that also contradicts the induction hypothesis. 2

Algorithmic aspects. Note that the inductive proof of Theorem 1 implies a polynomial-
time (in fact, linear) algorithm for partitioning the edge set of an embedded 1-planar graph
into a plane graph and a forest.

3 Proof of Theorems 2 and 3

Both proofs of Theorems 2 and 3 use the discharging method and are very similar. Therefore,
we rephrase and prove Theorems 2 and 3 as a single theorem.

Theorem 5. Let G = (V,E) be an n-vertex graph, n ≥ 3, and let D be a drawing of G in
the plane with straight-line edges such that every edge is crossed at most k times. Then:

(1) if k = 1 then |E| ≤ 4n− 9;

(2) if D is a RAC drawing then |E| ≤ 4n− 9− k.

Proof. We follow and refine the proof of Theorem 4.1 in [10]. For completeness we repeat
some of the arguments therein.

We may assume without loss of generality that G is connected and maximal in the sense
that no crossing-free edges can be added to D. Let G′ = (V ′, E′) be the plane graph we
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obtain by adding the crossing points in D as vertices, and subdividing every crossed edge
accordingly. We denote by F ′ the set of faces of G′. Suppose that we assign charges to the
vertices and faces of G′, such that the charge of a vertex v, ch(v), is deg(v) − 4, and the
charge of a face f is ch(f) = |f | − 4, where |f | denotes the size of f . Note that the charge
of a new vertex (a crossing point in D) is zero. It now follows from Euler’s formula that the
total charge is −8:∑
v∈V ′

ch(v)+
∑
f∈F ′

ch(f) =
∑
v∈V ′

(deg(v)−4)+
∑
f∈F ′

(|f |−4) = 2|E′|−4|V ′|+2|E′|−4|F ′| = −8.

In the discharging phase every original vertex v ∈ V sends 0.5 units of charge to every face
it is incident to. Denote by ch′(·) the new charge function, and let ch′(F ′) =

∑
f∈F ′ ch

′(f).
Since the total charge has not changed we have:

−8 =
∑
v∈V ′

ch′(v) + ch′(F ′) =
∑
v∈V

(
deg(v)

2
− 4

)
+ ch′(F ′) = |E| − 4n+ ch′(F ′).

Therefore, |E| = 4n− 8− ch′(F ′). Observe that the charge of every face of size at least
four is non-negative and there are no faces of size smaller than three, since n ≥ 3. Denote
by fout the outer face of G′. Since no crossing-free edge can be added to D, it follows that
the boundary of fout is a convex polygon whose vertices are the vertices of the convex hull
of D. We now consider the two cases in the statement of the theorem.

(1) Suppose that k = 1. Then a face f of size three must be incident to at least two original
vertices and therefore ch′(f) ≥ 0. Moreover, ch′(fout) ≥ |fout| − 4 + |fout|/2 ≥ 0.5. Thus,
ch′(F ′) ≥ 0.5 and |E| ≤ 4n−8.5. Since |E| is an integer, the first part of the theorem follows.

(2) Suppose that D is a RAC drawing. Then a face of size three must be incident to at least
two original vertices. Therefore, after the discharging phase every face has a non-negative
charge, and hence ch′(F ′) ≥ 0. To complete the proof it is enough to show that ch′(F ′) > k.

Call a face f 6= fout a fence face if it shares an edge (of G′) with fout. Perform a second
discharging step in which every fence face with a positive charge sends 0.5 units of charge
to fout. Denote by ch′′(·) the new charge function, and let ch′′(F ′) =

∑
f∈F ′ ch

′′(f). Clearly,

ch′(F ′) = ch′′(F ′) and ch′′(f) ≥ 0 for every f ∈ F ′. We first show that ch′′(fout) ≥ 1.5. This
clearly holds if |fout| ≥ 4, since then ch′(fout) ≥ 2. If |fout| = 3 then ch′(fout) = 0.5 and we
will use the following simple fact.

Proposition 3.1. Let 4XY Z be a triangle and let Q and P be two distinct points inside it.
If the interiors of the triangles 4XQY and 4XPZ are disjoint, then it is impossible that
both angles ∠XQY and ∠XPZ are right angles.

Proof. Suppose that ∠XQY = ∠XPZ = π/2. Then ∠XYQ+∠Y XQ+∠XZP +∠ZXP =
π. However, since4XQY and4XPZ are disjoint it follows that ∠Y XZ > ∠Y XQ+∠ZXP
and we get that the sum of angles in 4XY Z is greater than π. 2

Suppose that |fout| = 3. Since no crossing-free edges can be added to D there must be
three distinct fence faces. By Proposition 3.1 at most one of them is a triangle with exactly
two original vertices (and zero charge after the first discharging step). Therefore, at least
two fence faces contribute 0.5 units of charge each to fout and ch′′(fout) ≥ 1.5.

So far we have shown that ch′′(F ′) ≥ 1.5, therefore |E| ≤ 4n− 10, since |E| is an integer.
If k = 1, then we are done. Otherwise, consider an edge e ∈ E that is crossed k ≥ 2 times,
and suppose without loss of generality that e is horizontal. Let p1, . . . , pk be the crossing
points on e, ordered from left to right. Set e0 = (p1, p2) and let f0 be the face that lies above
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e0. Observe that |f0| ≥ 4 and that ch′(f0) = 0 if and only if all the vertices of f0 are crossing
points in D.

For i > 0 define ei = ei−1 and fi = fi−1 if ch′′(fi−1) > 0. Otherwise, fi−1 is a rectangle
whose vertices are crossing points in D. In this case we define ei to be the opposite edge
to ei−1 in fi−1, and fi to be the face that lies above ei. Since the graph is finite for some
j ≥ 0 we have fj = fj+1 (put differently, fj is the first face with a non-negative charge
that we encounter when climbing the ladder whose first step is e0). We collect 0.5 units of
charge from fj , and in a similar way obtain 0.5 units of charge from a face that lies below
e0. Similarly, we collect one unit of charge for each of the edges (p2, p3), . . . , (pk−1, pk). An
easy case analysis shows that the charge of every face remains non-negative. Therefore,
ch′′(F ′) ≥ 1.5 + k − 1 > k, and the second part of the theorem follows. 2
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