STABILITY RESULT
FOR SETS WITH $3A \neq \mathbb{Z}_5^n$

VSEVOLOD F. LEV

Abstract. As an easy corollary of Kneser’s Theorem, if A is a subset of the elementary abelian group \mathbb{Z}_5^n of density $5^{-n}|A| > 0.4$, then $3A = \mathbb{Z}_5^n$. We establish the complementary stability result: if $5^{-n}|A| > 0.3$ and $3A \neq \mathbb{Z}_5^n$, then A is contained in a union of two cosets of an index-5 subgroup of \mathbb{Z}_5^n. Here the density bound 0.3 is sharp.

Our argument combines combinatorial reasoning with a somewhat non-standard application of the character sum technique.

1. Introduction

For a subset A of an (additively written) abelian group G, and a positive integer k, denote by kA the k-fold sumset of A:

$$kA := \{a_1 + \cdots + a_k : a_1, \ldots, a_k \in A\}.$$

How large can A be given that $kA \neq G$? Assuming that G is finite, let

$$M_k(G) := \max\{|A| : A \subseteq G, kA \neq G\}.$$

This quantity was introduced and completely determined by Bajnok in [B15]. The corresponding result, expressed in [B15] in a somewhat different notation, can be easily restated in our present language.

Theorem 1 (Bajnok [B15, Theorem 6]). For any finite abelian group G and integer $k \geq 1$, writing $m := |G|$, we have

$$M_k(G) = \max \left\{ \left\lfloor \frac{d-2}{k} \right\rfloor + 1 \right\} \frac{m}{d} : d | m \right\}$$

(where $\lfloor \cdot \rfloor$ is the floor function, and the maximum extends over all divisors d of m).

Once $M_k(G)$ is known, it is natural to investigate the associated stability problem: what is the structure of those $A \subseteq G$ with $kA \neq G$ and $|A|$ close to $M_k(G)$?

2010 Mathematics Subject Classification. Primary: 11P70; secondary: 20K01, 05D99, 11B75.
Key words and phrases. Sumsets, stability, finite abelian groups, Kneser’s theorem.
There are two “trivial” ways to construct large subsets \(A \subseteq G \) satisfying \(kA \neq G \). One is to simply remove elements from a yet larger subset with this property; another is to fix a subgroup \(H < G \) and a set \(\overline{A} \subseteq G/H \) with \(k\overline{A} \neq G/H \), and define \(A \subseteq G \) to be the full inverse image of \(\overline{A} \) under the canonical homomorphism \(G \to G/H \). It is thus natural to consider as “primitive” those subsets \(A \subseteq G \) with \(kA \neq G \) which are maximal subject to this property and, in addition, cannot be obtained by the lifting procedure just described.

To proceed, we recall that the period of a subset \(A \subseteq G \), denoted \(\pi(A) \) below, is the subgroup consisting of all elements \(g \in G \) such that \(A + g = A \):

\[
\pi(A) := \{ g \in G : A + g = A \}.
\]

Alternatively, \(\pi(A) \) can be defined as the (unique) maximal subgroup such that \(A \) is a union of its cosets. The set \(A \) is called aperiodic if \(\pi(A) = \{0\} \), and periodic otherwise.

It is readily seen that a set \(A \subseteq G \) with \(kA \neq G \) can be obtained by lifting if and only if it is periodic. Accordingly, motivated by the discussion above, for a finite abelian group \(G \) and integer \(k \geq 1 \), we define \(N_k(G) \) to be the largest size of an aperiodic subset \(A \subseteq G \) satisfying \(kA \neq G \) and maximal under this condition:

\[
N_k(G) := \max \{|A| : A \subseteq G, \pi(A) = \{0\}, kA \neq G \text{ and } k(A \cup \{g\}) = G \text{ for each } g \in G \setminus A \}
\]

(subject to the agreement that \(\max \emptyset = 0 \)). Clearly, we have \(N_k(A) \leq M_k(A) \), and if the inequality is strict (which is often the case), then determining \(N_k(G) \) is, in fact, a stability problem; for if \(kA \neq G \) and \(|A| > N_k(G) \), then \(A \) is contained in the set obtained by lifting a subset \(\overline{A} \subseteq G/H \) with \(k\overline{A} \neq G/H \), for a proper subgroup \(H < G \).

The quantity \(N_k(G) \) is quite a bit subtler than \(M_k(G) \) and indeed, the latter can be easily read off from the former; specifically, it is not difficult to show that

\[
M_k(G) = \max \{|H| \cdot N_k(G/H) : H \leq G \}.
\]

An invariant tightly related to \(N_k(G) \) was studied in [KL09]. To state (the relevant part of) the results obtained there, following [KL09], we denote by \(\text{diam}^+(G) \) the smallest non-negative integer \(k \) such that every generating subset \(A \subseteq G \) satisfies \(\{0\} \cup A \cup \cdots \cup kA = G \); that is, \(k(A \cup \{0\}) = G \). As shown in [KL09, Theorem 2.1],
if G is of type (m_1, \ldots, m_r) with positive integers $m_1 | \cdots | m_r$, then
\[\text{diam}^+(G) = \sum_{i=1}^{r} (m_i - 1). \tag{1} \]

Theorem 2 ([KL09, Theorem 2.5 and Proposition 2.8]). For any finite abelian group G and integer $k \geq 1$, we have
\[N_k(G) \leq \left\lfloor \frac{|G| - 2}{k} \right\rfloor + 1. \]

If G is cyclic of order $|G| \geq k + 2$ then, indeed, equality holds.

Theorem 3 ([KL09, Theorem 2.4]). For any finite abelian group G and integer $k \geq 1$, denoting by $\text{rk}(G)$ the smallest number of generators of G, we have
\[N_k(G) = \begin{cases} |G| - 1 & \text{if } k = 1, \\ \left\lfloor \frac{1}{2} |G| \right\rfloor & \text{if } k = 2 < \text{diam}^+(G), \\ \text{rk}(G) + 1 & \text{if } k = \text{diam}^+(G) - 1, \\ 1 & \text{if } k \geq \text{diam}^+(G) \text{ and } |G| \text{ is prime}, \\ 0 & \text{if } k \geq \text{diam}^+(G) \text{ and } |G| \text{ is composite.} \end{cases} \]

Theorem 4 ([KL09, Theorem 2.7]). For any finite abelian group G with $\text{diam}^+(G) \geq 4$, we have
\[N_3(G) = \begin{cases} \frac{1}{3} |G| & \text{if } 3 \text{ divides } |G|, \\ \frac{1}{3} (|G| - 1) & \text{if every divisor of } |G| \text{ is congruent to } 1 \text{ modulo } 3. \end{cases} \]

In Section 4, we explain exactly how Theorems 2–4 follow from the results of [KL09]. Theorem 4 is easy to extend to show that, in fact, the equality
\[N_3(G) = \frac{1}{3} (|G| - 1) \]
holds true for any finite abelian group G decomposable into a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3. Here the upper bound is an immediate consequence of Theorem 2, while a construction matching this bound is as follows.

Example 1. Suppose that $G = G_1 \oplus \cdots \oplus G_n$, where $G_1, \ldots, G_n \leq G$ are cyclic with $|G_i| \equiv 1 \pmod{3}$, for each $i \in [1, n]$. Write $|G_1| = 3m + 1$ and let $H := G_2 \oplus \cdots \oplus G_n$ so that $G = G_1 \oplus H$. Assuming that $N_3(H) = \frac{1}{3} (|H| - 1)$, find an aperiodic subset $S \subseteq H$ with $|S| = \frac{1}{3} (|H| - 1)$, such that $3S \neq H$ and S is maximal subject to this last condition. (If $n = 1$ and H is the trivial group, then take $S = \emptyset$.) Fix a generator $e \in G_1$, and consider the set
\[A := H \cup (e + H) \cup \cdots \cup ((m - 1)e + H) \cup (me + S) \subseteq G. \]
It is readily seen that $3A \neq G$ and A is maximal with this property. Furthermore,

$$|A| = m|H| + |S| = \frac{1}{3}(|G| - 1)$$

implying $\gcd(|A|, |G|) = 1$, whence A is aperiodic. As a result, $N_3(G) \geq |A| = \frac{1}{3}(|G| - 1)$.

Applying this construction recursively, we conclude that $N_3(G) \geq \frac{1}{3}(|G| - 1)$ whenever G is a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3.

In contrast with Theorem 3 establishing the values of $N_1(G)$ and $N_2(G)$ for all finite abelian groups G, Theorem 4 and the remark following it address certain particular groups only, and it is by far not obvious whether $N_3(G)$ can be found explicitly in the general case. In this situation it is interesting to investigate at least the most "common" families of groups not covered by Theorem 4 and Example 1, such as the homocyclic groups \mathbb{Z}_m^n with $m \equiv 2 \pmod{3}$.

An important result of Davydov and Tombak [DT89], well known for its applications in coding theory and finite geometries, settles the problem for the groups \mathbb{Z}_2^n; stated in our terms, it reads as

$$N_3(\mathbb{Z}_2^n) = 2^{n-2} + 1, \quad n \geq 4.$$

The goal of this paper is to resolve the next major open case, determining the value of $N_3(\mathbb{Z}_5^n)$. To state our main result, we need two more observations.

Example 2. If $A \subset \mathbb{Z}_5^n$ is a union of two cosets of a subgroup of index 5, then $3A \neq \mathbb{Z}_5^n$, and A is maximal with this property: that is, $3(A \cup \{g\}) = \mathbb{Z}_5^n$ for every element $g \in \mathbb{Z}_5^n \setminus A$.

We omit the (straightforward) verification.

Example 3. Let $n \geq 2$ be an integer. Fix a subgroup $H < \mathbb{Z}_5^n$ of index 5, an element $e \in \mathbb{Z}_5^n$ with $\mathbb{Z}_5^n = H \oplus \langle e \rangle$, and a set $S \subseteq H$ such that $|S| = (|H| - 1)/2$ and $0 \notin 2S$. Finally, let

$$A := (H \setminus \{0\}) \cup (e + S) \cup \{2e\}.$$

We have then $|A| = (3 \cdot 5^n - 1)/2$, and hence A is aperiodic. Also, it is easily verified that $3A = \mathbb{Z}_5^n \setminus \{4e\}$, and that $4e \in 3(A \cup \{g\})$ for any $g \in \mathbb{Z}_5^n \setminus A$.

The last example shows that

$$N_3(\mathbb{Z}_5^n) \geq \frac{1}{2} (3 \cdot 5^n - 1), \quad n \geq 2.$$

With this estimate in view, we can eventually state the main result of our paper.
Theorem 5. Suppose that \(n \) is a positive integer, and \(A \subseteq \mathbb{Z}_5^n \) satisfies \(3A \neq \mathbb{Z}_5^n \). If \(|A| > 3 \cdot 5^{n-1}/2 \), then \(A \) is contained in a union of two cosets of a subgroup of index 5. Consequently, in view of Theorem 2 and Example 3,

\[
N_3(\mathbb{Z}_5^n) = \begin{cases}
2 & \text{if } n = 1, \\
\frac{1}{2} (3 \cdot 5^{n-1} - 1) & \text{if } n \geq 2.
\end{cases}
\]

We collect several basic results used in the proof of Theorem 5 in the next section; the proof itself is presented in Section 3. In Section 4 we explain exactly how Theorems 2–4 follow from the results of [KL09].

In conclusion, we remark that any finite abelian group not addressed in Example 1 has a direct-summand subgroup of order congruent to 2 modulo 3, and Example 3 generalizes onto “most” of such groups, as follows.

Example 4. Suppose that the finite abelian group \(G \) has a direct-summand subgroup \(G_1 < G \) of order \(|G_1| = 3m + 2 \) with integer \(m \geq 1 \), and find a generator \(e \in G_1 \) and a subgroup \(H < G \) such that \(G = G_1 \oplus H \).

Assuming first that \(|H| \) is odd, fix a subset \(S \subseteq H \) with \(0 / \in 2S \) and \(|S| = \frac{1}{2} (|H| - 1) \), and let

\[
A := H \cup (e + H) \cup \cdots \cup ((m - 2)e + H) \\
\quad \cup ((m - 1)e + (H \setminus \{0\})) \cup (me + S) \cup \{(m + 1)e\}.
\]

A simple verification shows that \((3m+1)e \notin 3A\) and \(A \) is maximal with this property. Furthermore, since there is a unique \(H \)-coset containing exactly \(|H| - 1\) elements of \(A \), we have \(\pi(A) \leq H \), and since there is an \(H \)-coset containing exactly one element of \(A \), we actually have \(\pi(A) = \{0\} \). Therefore,

\[
N_3(G) \geq |A| = (m|H| - 1) + |S| + 1 = \frac{2m + 1}{6m + 4} |G| - \frac{1}{2}.
\]

Assuming now that \(|H| \) is even, fix arbitrarily an element \(g \in H \) not representable in the form \(g = 2h \) with \(h \in H \), find a subset \(S \subseteq H \) with \(g \notin 2S \) and \(|S| = \frac{1}{2} |H| \), and let

\[
A := H \cup (e + H) \cup \cdots \cup ((m - 2)e + H) \\
\quad \cup ((m - 1)e + (H \setminus \{g\})) \cup (me + S) \cup \{(m + 1)e\}.
\]

We have then \((3m+1)e + g \notin 3A\), and \(A \) is maximal with this property. Also, it is not difficult to see that \(\pi(A) = \{0\} \). Hence,

\[
N_3(G) \geq |A| = (m|H| - 1) + |S| + 1 = \frac{2m + 1}{6m + 4} |G|.
\]
2. Auxiliary Results

For subsets A and B of an abelian group, we write $A + B := \{a + b : a \in A, b \in B\}$.

The following immediate corollary from the pigeonhole principle will be used repeatedly.

Lemma 1. If A and B are subsets of a finite abelian group G such that $A + B \neq G$, then $|A| + |B| \leq |G|$.

An important tool utilized in our argument is the following result that we will refer to below as Kneser’s Theorem.

Theorem 6 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

$$|A + B| \geq |A| + |B| - |\pi(A + B)|.$$

Finally, we need the following lemma used in Kneser’s original proof of his theorem.

Lemma 2 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

$$|A \cup B| + |\pi(A \cup B)| \geq \min\{|A| + |\pi(A)|, |B| + |\pi(B)|\}.$$

3. Proof of Theorem 5

We start with a series of results preparing the ground for the proof. Unless explicitly indicated, at this stage we do not assume that A satisfies the assumptions of Theorem 5.

For subsets $A, B \subseteq \mathbb{Z}_5^n$ with $0 < |B| < \infty$, by the *density* of A in B we mean the quotient $|A \cap B|/|B|$. In the case where $B = \mathbb{Z}_5^n$, we speak simply about the *density* of A.

Proposition 1. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$ is a subset of density larger than 0.3. If $3A \neq \mathbb{Z}_5^n$, then A cannot have non-empty intersections with exactly three cosets of an index-5 subgroup of \mathbb{Z}_5^n.

Proof. Assuming that $3A \neq \mathbb{Z}_5^n$ and $F < \mathbb{Z}_5^n$ is an index-5 subgroup such that A intersects exactly three of its cosets, we obtain a contradiction.

Translating A appropriately, we assume without loss of generality that $0 \notin 3A$. Fix $e \in \mathbb{Z}_5^n$ such that $\mathbb{Z}_5^n = F \oplus \langle e \rangle$, and for $i \in [0, 4]$ let $A_i := (A - ie) \cap F$; thus, $A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3) \cup (4e + A_4)$ with exactly three of the sets A_i non-empty. Considering the action of the automorphisms of \mathbb{Z}_5 on its two-element subsets (equivalently, passing from e to $2e$, $3e$, or $4e$, if necessary), we further assume that one of the following holds:
Lemma 3. Let

(i) \(A_2 = A_3 = \emptyset \);
(ii) \(A_3 = A_4 = \emptyset \);
(iii) \(A_0 = A_4 = \emptyset \).

We consider these three cases separately.

Case (i): \(A_2 = A_3 = \emptyset \). In this case we have \(A = A_0 \cup (e + A_1) \cup (4e + A_4) \), and from \(0 \notin 3A \) we obtain \(0 \notin A_0 + A_1 + A_4 \). Consequently, \(|A_0| + |A_1 + A_4| \leq |F| \) by Lemma 1, whence

\[
|A_0| + \max\{|A_1|, |A_4|\} \leq |F|
\]

and similarly,

\[
|A_1| + \max\{|A_0|, |A_4|\} \leq |F|,
\]

\[
|A_4| + \max\{|A_0|, |A_1|\} \leq |F|.
\]

Thus, denoting by \(M \) the largest, and \(m \) the second largest of the numbers \(|A_0|, |A_1|, |A_4|\), we have \(M + m \leq |F| \). It follows that

\[
|A| = |A_0| + |A_1| + |A_4| \leq \frac{3}{2} (M + m) \leq \frac{3}{2} |F|,
\]

contradicting the density assumption \(|A| > 0.3 \cdot 5^n\).

Case (ii): \(A_3 = A_4 = \emptyset \). In this case from \(0 \notin 3A \) we get \(3A_0 \neq F \) and \(A_1 + 2A_2 \neq F \), whence also \(2A_0 \neq F \) and \(A_1 + A_2 \neq F \) and therefore \(2|A_0| \leq |F| \) and \(|A_1| + |A_2| \leq |F| \) by Lemma 1. This yields

\[
|A| = |A_0| + |A_1| + |A_2| \leq \frac{3}{2} |F|,
\]

a contradiction as above.

Case (iii): \(A_0 = A_4 = \emptyset \). Here we have \(2A_1 + A_3 \neq F \) and \(A_1 + 2A_2 \neq F \) implying \(|A_1| + |A_3| \leq |F| \) and \(2|A_2| \leq |F| \), respectively. This leads to a contradiction as in Case (ii). \(\square \)

Lemma 3. Let \(n \geq 1 \) be an integer, and suppose that \(A \subseteq \mathbb{Z}_5^n \). If \(2A \) has density smaller than 0.5, then \(A \) has density smaller than 0.25.

Proof. Write \(H := \pi(2A) \) and let \(\varphi_H : \mathbb{Z}_5^n \to \mathbb{Z}_5^n / H \) be the canonical homomorphism. Applying Kneser’s theorem to the set \(A + H \) and observing that \(2(A + H) = 2A + H = 2A \), we get \(|2A| \geq 2|A + H| = |H| \), whence \(|\varphi_H(2A)| \geq 2|\varphi_H(A)| - 1 \). If the density of \(2A \) in \(\mathbb{Z}_5^n \) is smaller than 0.5, then so is the density of \(\varphi_H(2A) \) in \(\mathbb{Z}_5^n / H \) (in fact, the two densities are equal); hence, in this case

\[
\frac{1}{2} |\mathbb{Z}_5^n / H| > |\varphi_H(2A)| \geq 2|\varphi_H(A)| - 1.
\]
This yields $|\varphi_H(A)| < \frac{1}{4}(|\mathbb{Z}_5^n/H| + 2)$ and thus, indeed, $|\varphi_H(A)| < \frac{1}{4} |\mathbb{Z}_5^n/H|$ as $|\mathbb{Z}_5^n/H| \equiv 1 \pmod{4}$. It remains to notice that the density of A in \mathbb{Z}_5^n does not exceed the density of $\varphi_H(A)$ in \mathbb{Z}_5^n/H. \hfill \square

Proposition 2. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$ is a subset of density larger than 0.3, such that $3A \neq \mathbb{Z}_5^n$. If A has density larger than 0.5 in a coset of an index-5 subgroup $F < \mathbb{Z}_5^n$, then A has non-empty intersections with at most three cosets of F.

Proof. Fix $e \in \mathbb{Z}_5^n$ with $\mathbb{Z}_5^n = F \oplus \langle e \rangle$, and for $i \in [0, 4]$ set $A_i := (A - ie) \cap F$; thus, $A = A_0 \cup (e + A_1) \cup \cdots \cup (4e + A_4)$. Having A replaced with its appropriate translate, we can assume that A_0 has density larger than 0.5 in F, whence $2A_0 = F$ by Lemma 1.

If now A_i is non-empty for some $i \in [1, 4]$, then $ie + F = (ie + A_i) + 2A_0 \subseteq 3A$. This shows that at least one of the sets A_i is empty. Moreover, we can assume that *exactly* one of them is empty, as otherwise the proof is over. Replacing e with one of $2e, 3e,$ or $4e$, is necessary, we assume that $A_4 = \emptyset$ while $A_i \neq \emptyset$ for $i \in [1, 3]$, and aim to obtain a contradiction. Notice, that

$A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3),$

and that $ie + F \subseteq 3A$ for each $i \in [1, 3]$ by the observation above, implying $4e + F \nsubseteq 3A$. The last condition yields

$$A_0 + ((A_1 + A_3) \cup 2A_2) \neq F,$$ \hfill (2)

and it follows from Lemma 1 that

$$|A_0| + |(A_1 + A_3) \cup 2A_2| \leq |F|. \hfill (3)$$

Notice, that the last estimate implies $|2A_2| \leq |F| - |A_0| < 0.5|F|$, whence

$$|A_2| < 0.25|F| \hfill (4)$$

by Lemma 3.

Let H be the period of the left-hand side of (2); thus, H is a proper subgroup of F, and we claim that, in fact,

$$|H| \leq 5^{-2}|F|. \hfill (5)$$

To see this, suppose for a contradiction that $|F/H| = 5$. Denote by φ_H the canonical homomorphism $\mathbb{Z}_5^n \to \mathbb{Z}_5^n/H$. From $|A_0| > 0.5|F|$ we conclude that $|\varphi_H(A_0)| \geq 3$, and then (2) along with Lemma 1 shows that

$$|\varphi_H((A_1 + A_3) \cup 2A_2)| \leq 5 - |\varphi_H(A_0)| \leq 2.$$
This gives $|\varphi_H(A_2)| = 1$, $\min\{|\varphi_H(A_1)|, |\varphi_H(A_3)|\} = 1$, and $\max\{|\varphi_H(A_1)|, |\varphi_H(A_3)|\} \leq 5 - |\varphi_H(A_0)|$. As a result,

$$|\varphi_H(A_0)| + |\varphi_H(A_1)| + |\varphi_H(A_2)| + |\varphi_H(A_3)| \leq 7,$$

implying $|A| = |A_0| + |A_1| + |A_2| + |A_3| \leq 7|H| < 1.5|F|$, contrary to the density assumption. This proves (5).

Since $\pi((A_1 + A_3) \cup 2A_2) \leq H$ by the definition of the subgroup H, applying subsequently Lemma 2 and then Kneser's theorem we obtain

$$|(A_1 + A_3) \cup 2A_2| \geq \min\{|A_1 + A_3| + |\pi(A_1 + A_3)|, |2A_2| + |\pi(2A_2)|\} - |H| \geq \min\{|A_1| + |A_3|, 2|A_2|\} - |H|. \quad (6)$$

If $|A_1| + |A_3| \leq 2|A_2|$, then from (3), (6), (4), and (5),

$$|F| \geq |A_0| + |A_1| + |A_3| - |H| = |A| - |A_2| - |H| > \frac{3}{2} |F| - \frac{1}{4} |F| - \frac{1}{25} |F| = \frac{121}{100} |F|,$$

a contradiction. Thus, we have

$$|A_1| + |A_3| > 2|A_2|$$

and then

$$|A_0| + 2|A_2| \leq |F| + |H|$$

by (3) and (6). The latter estimate gives

$$\frac{3}{2} |F| < |A| = |A_0| + |A_1| + |A_2| + |A_3| \leq \frac{|F| + |H|}{2} + \frac{|A_0|}{2} + |A_1| + |A_3|,$$

whence

$$\frac{1}{2} |A_0| + |A_1| + |A_3| > |F| - \frac{1}{2} |H|.$$

Using again (3) and applying Kneser’s theorem, we now obtain

$$|F| \geq |A_0| + |A_1 + A_3| \geq |A_0| + |A_1| + |A_3| - |\pi(A_1 + A_3)| > \frac{1}{2} |A_0| + |F| - \frac{1}{2} |H| - |\pi(A_1 + A_3)|$$

leading, in view of (5), to $|\pi(A_1 + A_3)| \geq (|A_0| - |H|)/2 > |F|/5$ and thus to $\pi(A_1 + A_3) = F$. This, however, means that $A_1 + A_3 = F$, contradicting (2).

Propositions 1 and 2 show that to establish Theorem 5, it suffices to consider sets $A \subseteq \mathbb{Z}_5^n$ with density smaller than 0.5 in every coset of every index-5 subgroup.
Lemma 4. Let \(n \geq 1 \) be an integer, and suppose that \(A, B, C \subseteq \mathbb{Z}_5^n \) are subsets of densities \(\alpha, \beta, \) and \(\gamma, \) respectively. If \(0.4 < \alpha, \beta < 0.5 \) and \(\alpha + \beta + 3\gamma > 1.5, \) then \(A + B + C = \mathbb{Z}_5^n. \)

Proof. Let \(H := \pi(A + B + C); \) assuming that \(H \neq \mathbb{Z}_5^n, \) we obtain a contradiction. As above, let \(\varphi_H : \mathbb{Z}_5^n \rightarrow \mathbb{Z}_5^n / H \) denote the canonical homomorphism.

If \(|\mathbb{Z}_5^n / H| = 5 \) then, in view of \(|A|/|H| = 5\alpha > 2 \) we have \(|\varphi_H(A)| \geq 3. \) Similarly, \(|\varphi_H(B)| \geq 3, \) and it follows that \(\varphi_H(A) + \varphi_H(B) = \mathbb{Z}_5^n / H; \) that is, \(A + B + H = \mathbb{Z}_5^n. \) Hence, \(A + B + C = (A + B + H) + C = \mathbb{Z}_5^n, \) contradicting the assumption \(H \neq \mathbb{Z}_5^n. \)

If \(|\mathbb{Z}_5^n / H| \geq 125 \) then, by Kneser’s Theorem and taking into account that

\[
\pi(A + B) \leq \pi(A + B + C) = H, \tag{7}
\]

we have

\[
|A + B + C| \geq |A + B| + |C| - |H| \\
\geq |A| + |B| + |C| - 2|H| \\
= \frac{2}{3} |A| + \frac{2}{3} |B| + \frac{1}{3}(|A| + |B| + 3|C|) - 2|H| \\
> \left(\frac{2}{3} \cdot 0.4 + \frac{2}{3} \cdot 0.4 + \frac{1}{3} \cdot 1.5 - \frac{2}{125} \right) \cdot 5^n \\
> 5^n,
\]

a contradiction.

Finally, consider the situation where \(|\mathbb{Z}_5^n / H| = 25. \) In this case \(|A|/|H| = 25\alpha > 10 \) whence \(|A + H| \geq 11|H| \) and similarly, \(|B + H| \geq 11|H|. \) In view of (7), Kneser’s Theorem gives

\[
|A + B + H| = |(A + H) + (B + H)| \geq |A + H| + |B + H| - |H| \geq 21|H|.
\]

Also,

\[
|C|/|H| = 25\gamma > \frac{25}{3} (1.5 - \alpha - \beta) > \frac{25}{6} > 4.
\]

Consequently, \(|C + H| \geq 5|H| \) and therefore

\[
|A + B + H| + |C + H| \geq 26|H| > 5^n.
\]

Lemma 1 now implies \(A + B + C = (A + B + H) + (C + H) = \mathbb{Z}_5^n, \) contrary to the assumption \(H \neq \mathbb{Z}_5^n. \)

 Proposition 3. Let \(n \geq 1 \) be an integer, and suppose that \(A \subseteq \mathbb{Z}_5^n \) is a subset of density larger than 0.3, such that \(3A \neq \mathbb{Z}_5^n. \) If \(F < \mathbb{Z}_5^n \) is an index-5 subgroup with the density of \(A \) in every \(F \)-coset smaller than 0.5, then there is at most one \(F \)-coset where the density of \(A \) is larger than 0.4.
Proof. Suppose for a contradiction that there are two (or more) \(F \)-cosets containing more than \(0.4|F| \) elements of \(A \) each. Shifting \(A \) and choosing \(e \in \mathbb{Z}_5^n \setminus F \) appropriately, we can then write \(A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3) \cup (4e + A_4) \) with \(A_0, A_1, A_2, A_3, A_4 \subseteq F \) satisfying \(\min\{|A_0|, |A_i|\} > 0.4|F| \).

By Lemma 4 (applied to the group \(F \)), we have
\[
3A_0 = 2A_0 + A_1 = A_0 + 2A_1 = 3A_1 = F,
\]
implying \(F \cup (e + F) \cup (2e + F) \subseteq 3A \) and, consequently, \(4e + F \nsubseteq 3A \) by the assumption \(3A \neq \mathbb{Z}_5^n \). Furthermore, if we had \(2|A_0| + 3|A_4| > 1.5|F| \), this would imply \(2A_0 + A_4 = F \) by Lemma 4, resulting in \(4e + F \subseteq 3A \); thus,
\[
2|A_0| + 3|A_4| < 1.5|F|.
\]
Similarly,
\[
|A_0| + |A_1| + 3|A_3| < 1.5|F| \quad \text{(9)}
\]
and
\[
2|A_1| + 3|A_2| < 1.5|F| \quad \text{(10)}
\]
(as otherwise by Lemma 4 we would have \(A_0 + A_1 + A_3 = F \) and \(2A_1 + A_2 = F \), respectively, resulting in \(4e + F \subseteq 3A \)). Adding up (8)–(10) we obtain
\[
|A| = |A_0| + |A_1| + |A_2| + |A_3| + |A_4| < 1.5|F| = 0.3 \cdot 5^n,
\]
contrary to the assumption on the density of \(A \). \(\square \)

We now use Fourier analysis to complete the argument and prove Theorem 5.

Suppose that \(n \geq 2 \), and that a set \(A \subseteq \mathbb{Z}_5^n \) has density \(\alpha > 0.3 \) and satisfies \(3A \neq \mathbb{Z}_5^n \); we want to show that \(A \) is contained in a union of two cosets of an index-5 subgroup. Having translated \(A \) appropriately, we can assume that \(0 \notin 3A \). Denoting by \(1_A \) the indicator function of \(A \), consider the Fourier coefficients
\[
\hat{1}_A(\chi) := 5^{-n} \sum_{a \in A} \chi(a), \ \chi \in \hat{\mathbb{Z}_5^n}.
\]
For every character \(\chi \in \hat{\mathbb{Z}_5^n} \), find a cube root of unity \(\zeta(\chi) \) such that, letting \(z(\chi) := -\hat{1}_A(\chi)\zeta(\chi) \), we have \(\Re(z(\chi)) \geq 0 \). The assumption \(0 \notin 3A \) gives
\[
\sum_{\chi} (\hat{1}_A(\chi))^3 = 0.
\]
Consequently,
\[
\sum_{\chi \neq 1} \Re((z(\chi))^3) = \Re \left(\sum_{\chi \neq 1} (-\hat{1}_A(\chi))^3 \right) = \alpha^3,
\]
and since $\Re(z) \geq 0$ implies $\Re(z^3) \leq |z|^2 \Re(z)$ (as one can easily verify), it follows that

$$\sum_{\chi \neq 1} |z(\chi)|^2 \Re(z(\chi)) \geq \alpha^3.$$

Comparing this to

$$\sum_{\chi \neq 1} |z(\chi)|^2 = \alpha(1 - \alpha)$$

(which is an immediate corollary of the Parseval identity), we conclude that there exists a non-principal character χ such that

$$\Re(z(\chi)) \geq \frac{\alpha^2}{1 - \alpha}.$$

(11)

In view of $\alpha > 0.3$, it follows that $\Re(-\hat{1}_A(\chi)\zeta(\chi)) > \frac{9}{70}$.

Replacing χ with the conjugate character, if needed, we can assume that $\zeta(\chi) = 1$ or $\zeta(\chi) = \exp(2\pi i/3)$. Let $F := \ker \chi$, fix $e \in \mathbb{Z}_5^n$ with $\chi(e) = \exp(2\pi i/5)$, and for each $i \in [0, 4]$, let α_i denote the density of $A - ie$ in F. By Propositions 1 and 2, we can assume that $\max\{\alpha_i : i \in [0, 4]\} < 0.5$, and then by Proposition 3 we can assume that there is at most one index $i \in [0, 4]$ with $\alpha_i > 0.4$; that is, of the five conditions $\alpha_i \leq 0.4$ ($i \in [0, 4]$), at most one may fail to hold and must be relaxed to $\alpha_i < 0.5$. We show that these assumptions are inconsistent with (11). To this end, we consider two cases.

Case (i): $\zeta(\chi) = 1$. In this case we have

$$\alpha_0 + \alpha_1 \cos(2\pi/5) + \cdots + \alpha_4 \cos(8\pi/5) = 5\Re(\hat{1}_A(\chi)) < -\frac{9}{14}. \tag{12}$$

For each $k \in [0, 4]$, considering $\alpha_0, \ldots, \alpha_4$ as variables, we now minimize the left-hand side of (12) under the constrains

$$\alpha_0 + \cdots + \alpha_4 \geq 1.5, \tag{13}$$

$$\alpha_k \in [0, 0.5], \tag{14}$$

and

$$\alpha_i \in [0, 0.4] \text{ for all } i \in [0, 4], \ i \neq k. \tag{15}$$

This is a standard linear optimization problem which can be solved precisely, and computations show that for every $k \in [0, 4]$, the smallest possible value of the expression under consideration exceeds $-9/14$. This rules out Case (i).
Case (ii): $\zeta(\chi) = \exp(2\pi i/3)$. In this case we have
\[
\sum_{j=0}^{4} \alpha_j \cos \left(2\pi \left(\frac{1}{3} + \frac{j}{5}\right)\right) = 5 \Re(\tilde{1}_A(\chi) \exp(2\pi i/3)) < -\frac{9}{14}.
\] (16)

Minimizing the left-hand side of (16) under the constraints (13)–(15), we see that its minimum is larger than $-9/14$. This rules out Case (ii), completing the proof of Theorem 5.

4. FROM $t^+_\rho(G)$ TO $N_k(G)$

In Section 1, we mentioned the close relation between the quantity $N_k(G)$ and an invariant introduced in [KL09]. Denoted by $t^+_\rho(G)$ in [KL09], this invariant was defined for integer $\rho \geq 1$ and a finite abelian group G to be the largest size of an aperiodic generating subset $A \subseteq G$ such that $(\rho - 1)(A \cup \{0\}) \neq G$ and A is maximal under this condition. It was shown in [KL09] that $t^+_\rho(G) = 0$ if $\rho > \text{diam}^+(G)$, while otherwise $t^+_\rho(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $(\rho - 1)(A \cup \{0\}) \neq G$ and maximal under this condition. Our goal in this section is to prove the following simple lemma allowing one to “translate” the results of [KL09] into our present Theorems 2–4.

Lemma 5. For any finite abelian group G and integer $k \geq 1$, we have
\[
t^+_{k+1}(G) = N_k(G),
\] (17)
except if $|G|$ is prime and $k \geq |G| - 1$, in which case $t^+_{k+1}(G) = 0$ and $N_k(G) = 1$.

Proof. We show that (17) holds true unless $k \geq \text{diam}^+(G)$ and $|G|$ is prime; the rest follows easily.

Let G denote the set of all aperiodic subsets $A \subseteq G$, and let G_0 be the set of all aperiodic subsets $A \subseteq G$ with $0 \in A$.

Since translating a set $A \subseteq G$ affects neither its periodicity, nor the property $kA = G$, we have
\[
N_k(G) = \max\{|A|: A \in G_0, kA \neq G, k(A \cup \{g\}) = G \text{ for each } g \in G \setminus A\}.
\]
As a trivial restatement,
\[
N_k(G) = \max\{|A|: A \in G_0, k(A \cup \{0\}) \neq G, k(A \cup \{0\} \cup \{g\}) = G \text{ for each } g \in G \setminus A\}.
\] (18)

However, letting $g = 0$ shows that the conditions
\[
k(A \cup \{0\}) \neq G \text{ and } k(A \cup \{0\} \cup \{g\}) = G \text{ for each } g \in G \setminus A
\]
automatically imply $0 \in A$. Thus, in (18), the assumption $A \in \mathcal{G}_0$ can be replaced with $A \in \mathcal{G}$, meaning that $N_k(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $k(A \cup \{0\}) \neq G$ and maximal under this condition; consequently, taking into account the discussion at the beginning of this section, if $k < \text{diam}^+(G)$, then $N_k(G) = t_{k+1}^+(G)$.

Consider now the situation where $k \geq \text{diam}^+(G)$. In this case $t_{k+1}^+(G) = 0$, and by the definition of $\text{diam}^+(G)$, for any generating subset $A \subseteq G$ we have $k(A \cup \{0\}) = G$. Suppose that $A \in \mathcal{G}$ satisfies $kA \neq G$ and is maximal subject to this condition. (If such sets do not exist, then $N_k(G) = 0 = t_{k+1}^+(G).$) Translating A appropriately, we can assume that $0 \in A$, and then $k(A \cup \{0\}) = kA \neq G$. It follows that A is not generating; that is, $H := \langle A \rangle$ is a proper subgroup of G. Furthermore, the maximality of A shows that $H = \langle A \rangle$ is a maximal subgroup, and aperiodicity of A gives $A = H = \{0\}$. Therefore G has prime order.

\[\square\]

REFERENCES

E-mail address: seva@math.haifa.ac.il

Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, Israel