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Abstract

The notion of relaxation is well understood for orthogonal projec�

tions onto convex sets� For general Bregman projections it was consid�

ered only for hyperplanes and the question of how to relax Bregman
projections onto convex sets that are not linear �i�e�� not hyperplanes

or half�spaces� has remained open� A de�nition of underrelaxation

of Bregman projections onto general convex sets is given here which

includes as special cases the underrelaxed orthogonal projections and

the underrelaxed Bregman projections onto linear sets as given by De

Pierro and Iusem� With this new de�nition we construct a block�

iterative projection algorithmic scheme and prove its convergence to a

solution of the convex feasibility problem� The practical importance

of relaxation parameters in the application of such projection algo�

rithms to real�world problems is demonstrated on a problem of image

reconstruction from projections�
Key Words� convex feasibility� projection algorithms� Bregman

functions� block�iterative algorithms� underrelaxation�
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� Introduction

The convex feasibility problem of �nding a point in the non�empty intersection
C �� �m

i��Ci �� � of a family of closed convex subsets Ci � Rn� � � i � m� of
the n�dimensional Euclidean space is fundamental in many areas of mathe�
matics and the physical sciences� see� e�g�� Stark and Yang ��	
� Combettes
���
� ���
� and references therein� It has been used to model signi�cant real�
world problems in image reconstruction from projections� see� e�g�� Herman
�	�
� in radiation therapy treatment planning� see Censor� Altschuler and
Powlis �

� and in crystallography� see Marks� Sinkler and Landree �	�
� to
name but a few� and has been used under additional names such as set the�
oretic estimation or the feasible set approach� A common approach to such
problems is to use projection algorithms� see� e�g�� Bauschke and Borwein �	
�
which employ orthogonal projections �i�e�� nearest point mappings� onto the
individual sets Ci�
Flexibility in actual use of such projection algorithms is often gained by

using relaxation parameters� If P��z� is the orthogonal projection of a point
z � Rn onto a closed convex set � � Rn� i�e��

P��z� �� argminfk z � x k� j x � �g� ���

where k � k� is the Euclidean norm in Rn� and if � is the so�called relaxation
parameter� then

P����z� �� ��� ��z � �P��z� �	�

is the relaxed projection of z onto � with relaxation �� In this paper we
restrict our attention to the case when P����z� is a convex combination of z
and P��z�� i�e�� when � � ��� �
� This is referred to as underrelaxation�
The well�known �Projections Onto Convex Sets� �POCS� algorithm for

the convex feasibility problem allows such relaxation parameters� see Breg�
man ��
� Gubin� Polyak and Raik �	�
� Youla ���
 and the review papers by
Combettes ���
� ���
� Starting from an arbitrary initial point x� � Rn� the
POCS algorithm�s iterative step is

xk�� � xk � �k�PCi�k�
�xk�� xk�� ���

where f�kgk�� are relaxation parameters and fi�k�gk�� is a control sequence�
� � i�k� � m� for all k � �� which determines the set Ci�k� onto which

	



the current iterate xk is projected� The e�ects of relaxation parameters
have been studied theoretically� see� e�g�� Censor� Eggermont and Gordon
��
� Their practical e�ect on early iterates of the POCS algorithm can be
dramatic in some real�world situations� as we describe in Section � below�
Bregman projections onto closed convex sets were introduced and uti�

lized by Censor and Lent ���
� based on Bregman�s seminal paper ��
� and
were subsequently used in a plethora of research works as a tool for building
sequential and parallel feasibility and optimization algorithms� see� e�g�� Cen�
sor and Elfving ��
� Censor and Reich ���
� Censor and Zenios ���
� De Pierro
and Iusem ��

� Kiwiel �	�
� �	�
� Bauschke and Borwein ��
 and references
therein� to name but a few�
A Bregman projection of a point z � Rn onto a closed convex set � � Rn

with respect to a� suitably de�ned �see� De�nition 
 in Section 
�� Bregman
function f is denoted by P f

��z�� It is formally de�ned as

P f
��z� �� argminfDf�x� z� j x � � � clSg� ���

where clS is the closure of the open convex set S� which is the zone of f � and
Df�x� z� is the so�called Bregman distance� de�ned by

Df �x� z� �� f�x�� f�z�� hrf�z�� x� zi� ���

for all pairs �x� z� � clS 	 S� If � � clS �� �� then ��� de�nes a unique P f
��z� �

clS� for every z � S� see ���� Lemma 	���	
� If� in addition� P f
��z� � S� for

every z � S� then f is called zone consistent with respect to ��
Orthogonal projections are a special case of Bregman projections� ob�

tained from ��� by choosing f�x� � ���	�kxk� and S � Rn �see� e�g�� ����
Example 	����
�� But in spite of this� relaxation of general �non�orthogonal�
Bregman projections has not yet been de�ned � except for a special case
when the set � is a half�space� which has been done by De Pierro and Iusem
��

 in the following manner� Let� for some a � Rn� a �� �� and b � R�

L � fx � Rn j ha� xi � bg ���

be a half�space� For a z �� L� De Pierro and Iusem ��

 de�ne the underrelaxed
Bregman projection of z onto L� with respect to a Bregman function f and
with relaxation parameter � � ��� �
 by

P f
L���z� �� P f

eL
�z�� �
�
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where

eL � fx � Rn j ha� xi � ��� ��ha� zi � �bg� ���

This means that the relaxed Bregman projection of z onto L is the unrelaxed
Bregman projection of z onto a half�space eL whose bounding hyperplane is
parallel to that of L and lies between that of L and the point z�

Rewriting ��� as

L � fx � Rn j g�x� � �g� ���

with g�x� �� ha� xi� b� we can view �
� as the unrelaxed Bregman projection

onto the in�ated set eL of ���� which can be rede�ned as
eL � fx � Rn j g�x� � �g� ����

where � � �� � ��g�z�� �Note that it is easy to show that if � � L and
f�x� � ���	�kxk�� then P����z� as de�ned by �	� is the same as P

f
L���z�

as de�ned by �
�� for any � � ��� �
 and any z � Rn�� This approach of
projecting onto an in�ated set would not necessarily work for a set � de�ned
by a nonlinear function g�x�� This can be seen by taking a planar closed
convex set � which is de�ned by an ellipse� and considering its in�ated sete� to be a confocal ellipse lying between � and the point z �� �� Obviously�
the orthogonal projection of some z �� � onto e� in this case is not a relaxed
orthogonal projection of z onto � because the two projections do not always
lie along the same line�
Thus� we ask the following questions� �i� How should one de�ne a re�

laxed Bregman projection onto a �not necessarily linear� closed convex set�
The new de�nition should� of course� include as special cases at least both
the orthogonal case for general convex sets and the underrelaxed Bregman
projections onto half�spaces of De Pierro and Iusem ��

 mentioned above�
�ii� Can such relaxed Bregman projections be incorporated into a Bregman�s
projection algorithm for the convex feasibility problem� The Bregman�s pro�
jection algorithm of ��
� see also ���� Algorithm �����
� allows only unrelaxed
projections� i�e�� its iterative step is of the form

xk�� � P f
Ci�k�

�xk�� for all k � �� ����

�iii� Is it possible to construct a block�iterative Bregman�s projection algo�
rithm that will allow relaxed Bregman projections and variable blocks� Such
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an algorithm� with dynamically changing blocks� will naturally extend earlier
block�iterative projection algorithms� such as Eggermont� Herman and Lent�s
���
 block�iterative ART �Kaczmarz� algorithm� and Aharoni and Censor�s ��

block�iterative projections �BIP� method for the convex feasibility problem�

In this paper we constructively answer these three questions� We propose
a de�nition for an underrelaxed Bregman projection onto a closed convex �not
necessarily linear� set and prove convergence of a block�iterative projection
algorithmic scheme with underrelaxed Bregman projections and dynamically
varying blocks� This block�iterative scheme contains� as a new special case�
the underrelaxed sequential Bregman�s projection algorithm for the convex
feasibility problem� generalizing the underrelaxed POCS method� The paper
is organized as follows� In Section 	 we de�ne underrelaxed Bregman pro�
jections and analyze some of their properties� In Section � we present the
new block�iterative algorithmic scheme with underrelaxed Bregman projec�
tions and prove its convergence in Section �� In Section � we demonstrate
the new block�iterative algorithmic scheme by working out in detail the case
with underrelaxed entropy projections� Computational experience with any
algorithm that uses underrelaxed� non�orthogonal� Bregman projections is
still missing� but we provide in Section � evidence of the advantages of us�
ing underrelaxation parameters when working with orthogonal projections in
the real�world application of image reconstruction from projections� For the
reader�s convenience we attach an Appendix �Section 
� with a summary of
de�nitions and results from the theory of Bregman functions which are used
in this paper�

� Underrelaxation of Bregman Projections

We consider that the underrelaxed Bregman projection with Bregman func�
tion f and relaxation parameter � � ��� �
 of a point z onto a closed convex
set �� denoted by P f

����z�� should satisfy

rf�P f
����z�� � ��� ��rf�z� � �rf�P f

��z��� ��	�

The justi�cation for this is that it makes P f
����z� the appropriate �for ��

convex combination with respect to the Bregman function f � as de�ned by
Censor and Reich ���� De�niton ���
� of z and of P f

��z�� In stating conditions
under which ��	� is a valid de�nition of P f

����z� we make use of a result which
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appears in Bauschke and Borwein ��� Fact 	��
 and is based on Rockafellar�s
���� Theorem 	���
� see Theorem �	 in the Appendix �Section 
� of this paper�

Proposition � Let f � Rn 
 R be a Bregman function with zone S �
int�dom f� and let � � Rn be a closed convex set such that � � clS �� �� If
f is a Legendre function� then for any z � S and any � � ��� �
 there exists
a unique x � S satisfying

rf�x� � ��� ��rf�z� � �rf�P f
��z��� ����

Proof� Since f is of the Legendre type we have� from Theorem �� below�
that it is zone consistent with respect to �� Moreover� ��� Fact 	��
� see also
Theorem �	 in the Appendix below� guarantees that rf�S� is equal to the
interior of the domain of the conjugate function f �� Since dom f � is a convex
set �see� e�g�� Luenberger �	�� Proposition �� Page ���
�� so is its interior and�
thus� the right hand side of ���� is in rf�S�� Theorem �	 now ensures the
existence and uniqueness of an x in S satisfying �����

In view of this� our de�nition of P f
����z� is that it is the x whose existence

and uniqueness is guaranteed by the proposition� The ability to invert the
gradient operator is crucial for the applicability of Proposition �� as well as for
the applicability of the algorithmic formula� see �	
� below� which describes
our proposed block�iterative algorithmic scheme� Therefore� using functions
which are both Bregman and Legendre ��� Remark ���
� secures both the
zone consistency and gradient invertibility� An anonymous referee made the
conjecture that in Proposition � it may only be necessary to assume that f
is of the Bregman�Legendre type� a less restrictive property� Examples of
Bregman and Legendre functions are provided in Bauschke and Borwein ��
�

Remark � If there exists an x � S which minimizes

��� ��Df�x� z� � �Df�x� P
f
��z�� ����

over clS� then in fact that x satis�es ����� as follows by substituting for Df

using ��� and setting the gradient to zero� This provides additional indication
of the reasonableness of our de�nition of underrelaxed Bregman projections�

For f�x� � ���	� k x k� with S � Rn� our de�nition of an underrelaxed
Bregman projection coincides with the notion of underrelaxation of orthog�
onal projections� The next proposition shows that� when � is the L of ����
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our de�nition of underrelaxation of Bregman projections coincides with the
one given by De Pierro and Iusem in ��

� provided that their assumptions
and the conditions of Proposition � are met� De Pierro and Iusem made the
additional assumption that f is not only zone consistent with respect to the
bounding hyperplane of L but also with respect to the bounding hyperplane
of any half�space eL as de�ned in ��� �this was termed in ���
 strong zone
consistency of f with respect to the bounding hyperplane of L� see� e�g�� ����
De�nition 	�	��
��

Proposition � Let f be a Bregman function with zone S and � be a half�
space L as in �	� satisfying the conditions of Proposition �� Assume also that
f is strongly zone consistent with respect to the bounding hyperplane of L�
Then� for every � �� � � � ��� there exists a � �� � � � �� such that P f

L���z�
of �
� ful�lls ���� with � � L� for every z � S�

Proof� If z � S � L� then there is nothing to prove� Therefore� let
z � S be outside the half�space L� From the well�known characterization of
Bregman projections onto hyperplanes� see ���� Lemma 	�	��
� we know that
the projection P f

H�z� onto the bounding hyperplane H of the half�space L is
uniquely determined� along with the �real� associated projection parameter
�� by the system

rf�P f
H�z�� � rf�z� � �a�D
P f
H�z�� a

E
� b�

����

We claim that P f
L�z� � P f

H�z�� To see this� �rst note that the � of ����
is negative �because z is outside L� see ���� Lemma 	�	�	� Equation �	�	
�
��
Now consider any x � L� Multiplying the inequality of ��� by the negative of
the � of ���� and then using the second line and� subsequently� the �rst line
of ���� we get thatD

rf�z��rf�P f
H�z��� x� P f

H�z�
E
� �� for all x � L � clS� ����

This uniquely characterizes P f
H�z� as the projection P

f
L�z�� see ���� Theorem

	���	
� Similarly� by letting eH be the bounding hyperplane of eL and using
strong zone consistency� we �nd that the Bregman projection P f

eL
�z� of z






onto eL of ��� is in fact P f

eH
�z� and is uniquely determined� along with the

associated projection parameter e�� by the system
rf�P f

eL
�z�� � rf�z� � e�a�D

P f

eL
�z�� a

E
� ��� ��ha� zi� �b�

��
�

Using �
� and the �rst lines of ���� and ��
�� we obtain that �recall that
� � ��

rf�P f
L���z�� � rf�z� � e�a � rf�z� �

e�
�
�rf�P f

L�z���rf�z�� ����

� ���
e�
�
�rf�z� �

e�
�
rf�P f

L�z��� ����

Since � is negative and by ���� Lemma 	�	�	
 e� is nonpositive� we have from
���� Lemma 	�	��
 that � � e�� These facts guarantee that if we de�ne � �e��� then � � � � �� which completes the proof�
If f � Rn 
 R is a Bregman function with zone S and � � Rn is a closed

convex set such that � � clS �� � and if f is zone consistent with respect to
�� then it is immediate from ��� that P f

� is an idempotent operator� i�e��

P f
��P

f
��z�� � P f

��z�� �	��

for any z � S� For underrelaxed projections we have the result of the next
proposition� which trivially holds for orthogonal projections�

Proposition � Let f be a Bregman function with zone S and � be a closed
convex set satisfying the conditions of Proposition �� Then� for any z � S�
we have

P f
��P

f
����z�� � P f

��z�� �	��

for all � � ��� �
�

Proof� In case � � �� �	�� follows from �	��� We now assume that
� � ��� ��� The projection P f

��z� can be characterized �Theorem �� in Section

� as the unique element of � � clS for whichD

rf�z��rf�P f
��z��� x� P f

��z�
E
� �� for all x � � � clS� �		�

�



Multiplying this by �� � �� and substituting for �� � ��rf�z� using ��	�
yields that� for all x � � � clS�

hrf�P f
����z���rf�P f

��z��� x� P f
��z�i � �� �	��

Using again the characterization of Theorem �� in Section 
 we get �	���

� A Block�Iterative Algorithmic SchemeWith

Underrelaxed Bregman Projections

In this section we propose a block�iterative algorithmic scheme with underre�
laxed Bregman projections for the solution of the convex feasibility problem�
By block�iterative we mean that� at the k�th iteration� the next iterate xk��

is generated from the current iterate xk by using a subset �called a block� of
the family of sets fCig

m
i�� of the convex feasibility problem� see� e�g�� ���� Sec�

tion �����
� We use the term algorithmic scheme to emphasize that di�erent
speci�c algorithms may be derived by di�erent choices of Bregman functions�
and by various block structures� For example� if all blocks consist of a sin�
gle set� then our scheme gives rise to a sequential row�action type algorithm
�consult ���� De�nition ��	��
 for this term�� Taking the other extreme� if
we let every block contain all sets� then we obtain a fully simultaneous al�
gorithm� Such a block�iterative scheme for the convex feasibility problem
was �rst proposed by Aharoni and Censor ��
� using orthogonal projections
onto convex sets� That block�iterative projections �BIP� method generalizes
the sequential POCS method of Bregman ��
� Gubin� Polyak and Raik �	�

�see also Stark and Yang ��	
 and Censor and Zenios ���
 for many more
related references�� Our proposed block�iterative scheme extends Aharoni
and Censor�s BIP method by employing underrelaxed Bregman projections
which contain the underrelaxed orthogonal projections as a special case�
Appealing again to the de�nition of a convex combination with respect

to a Bregman function f as de�ned by Censor and Reich ���� De�niton ���
�
the natural formula for a block�iterative step using underrelaxed Bregman
projections is

rf�xk��� �
mX
i��

vkirf�P
f

Ci��
k

i

�xk��� �	��

�



where xk is the k�th iterate� �ki � ��� �
 is the relaxation parameter used
in the underrelaxed Bregman projection onto the set Ci during the k�th
iterative step and the vki are the weights of the convex combination for the
k�th iterative step �i�e�� vki � � for � � i � m and

Pm

i�� v
k
i � ��� Note

that under the assumptions of Proposition �� if xk � S then xk�� is uniquely
de�ned by �	�� and is also in S�
To simplify notation� from now on we use P f

i to abbreviate P
f
Ci
� Further�

we observe that� according to ��	��

rf�xk��� �
mX
i��

vki

�
��� �ki �rf�x

k� � �kirf�P
f
i �x

k��
�
� �	��

De�ning wk
i � vki �

k
i � for � � i � m� and introducing

wk
m�� � ��

mX
i��

wk
i and Cm�� � Rn� �	��

we get that

rf�xk��� �
m��X
i��

wk
irf�P

f
i �x

k��� �	
�

with wk
i � � for � � i � m� � and

Pm��
i�� wk

i � ��

� A Convergence Theorem

The following theorem establishes the convergence to a solution of the convex
feasibility problem of a sequence generated by any block�iterative algorithm
with underrelaxed Bregman projections� The method of proof is closely
related to previous proofs of other results in this �eld� see� e�g�� Bauschke
and Borwein ��� Theorem ���
� Censor and Reich ���� Theorem ���
� We will
make use of a further condition on the wk

i of �	
��

Condition � Let wk
i be real numbers for k � � and � � i � m and for each

k let

I�k� �� fi j � � i � m� wk
i � �g� �	��

�i� There exists an � � � such that wk
i � � for all k � � and i � I�k��

�ii� Each i� � � i � m� is included in in�nitely many sets I�k��

��



A practitioner might desire to rephrase Condition � in terms of the weights
vki and the relaxation parameters �

k
i using �	�� and the line above it� Condi�

tion ��i� states that� for some positive �� if vki and �
k
i are both positive� then

they are both greater or equal �� It should be noted� however� that Condition
��i� is stronger then the condition used by Aharoni and Censor ��
 regarding
the weights they used in their block�iterative projections �BIP� method� The
�weaker� condition that they use is that �for all i � �� 	� � � � � m� the seriesP�

k�� v
k
i � ���� The purpose of our condition� as well as that of the con�

dition of ��
� is to guarantee that none of sets Ci is �gradually ignored� by
ever diminishing weights� We do not know whether our convergence result�
presented below� can be strengthened by using a condition similar to that
of ��
� Notice also that if �ki � � for all i � �� 	� � � � � m and all k � �� then
no underrelaxation takes place and wk

m�� � � for all k � � leaving only
the weights vki to a�ect the algorithm�s progress� Finally� observe that the
sequential algorithm is obtained from �	
� by choosing� for every k � �� the
weights

vki �

�
�� if i � i�k��
�� otherwise�

�	��

where fi�k�gk�� is a control sequence such as� e�g�� the cyclic control de�ned
by i�k� � k�modm� � �� for all k � ��

Theorem � Let f � Rn 
 R be a Bregman function and let S � int�dom f�
be its zone� Let Ci � Rn be closed convex sets such that �m

i��Ci� clS �� ��
Assume that f is also a Legendre function� For k � �� let wk

i be nonnegative
for � � i � m�� such that

Pm��
i�� wk

i � � and Condition � is satis�ed� Then
the sequence fxkgk�� generated by ��
� from any x� � S converges to a point
x� � �m

i��Ci � clS�

Proof� The well�de�nedness of the algorithm described by �	
� can be
shown by a straightforward generalization of the proof of Proposition � �in
which �	
� is replaced by ������ Legendreness of the function f also ensures�
by Theorem �� below� zone consistency of f with respect to each set Ci � a
fact which is repeatedly used in this proof� Using Equations ��� and �	
� we
have� for every k � � and for any x � clS�

Df�x� x
k��� �

m��X
i��

wk
i

�
f�x�� f�xk���� hrf�P f

i �x
k��� x� xk��i

�
� ����

��



By repeated application of ��� to the expression inside the parentheses on
the right�hand side of ���� we obtain

Df�x� x
k��� �

m��X
i��

wk
i

�
Df �x� P

f
i �x

k���Df �x
k��� P f

i �x
k��
�
� ����

Therefore�

Df�x� x
k��Df�x� x

k��� �
m��X
i��

wk
iDf�x

k��� P f
i �x

k��

�
m��X
i��

wk
i

�
Df�x� x

k��Df �x� P
f
i �x

k��
�
� ��	�

For any point x � Ci � clS� the di�erence under the sum in the last line
ful�lls

Df�x� x
k��Df�x� P

f
i �x

k�� � Df�P
f
i �x

k�� xk� � �� ����

This follows from well�known inequalities in the theory of Bregman distances�
The left�hand inequality in ���� follows by replacing z� y and � in Theorem
� of Section 
 by x� xk and Ci� respectively� and the nonnegativity in ����
follows from ���� Lemma 	����
� Since all quantities on the right�hand side of
��	� are nonnegative� we conclude from ��	� that� for any point x � �m

i��Ci�
clS�

Df �x� x
k��� � Df�x� x

k�� for all k � �� ����

which means that the sequence fxkgk�� is Df �Fej�er�monotone with respect
to �m

i��Ci and implies that fx
kgk�� is bounded� see ���� p� ���
� Therefore�

to conclude the proof we will show the following� �i� if there exist a cluster
point x� in C � �m

i��Ci� then it is the limit of the sequence� and �ii� every
cluster point must belong to C�
We �rst make the observation that� for any x � C � clS� ���� and the

nonnegativity of fDf�x� x
k�gk�� guarantee the existence of the limit

lim
k��

Df�x� x
k� � �� ����

�	



To prove �i� let x� � C be a cluster point of fxkgk�� and assume that x
��

is another cluster point� i�e��

lim
k��
k�K�

xk � x� and lim
k��
k�K�

xk � x��� ����

with in�nite K� � N and in�nite K� � N and N �� f�� �� 	� � � � g� Since
xk � S� for all k � �� x� � clS and so ���� holds for x � x� �for some
��� Applying the property of Bregman functions given by De�nition 
�iv� in
Section 
 to the subsequence de�ned by k � K�� we get that in fact

lim
k��

Df�x
�� xk� � �� ��
�

which is true� in particular� for the subsequence de�ned by k � K�� Then�
using another property of Bregman functions� given by De�nition 
�v� in
Section 
� x� � x�� follows�

To prove �ii� assume� by way of negation� that

lim
l��

xkl � x� and x� �� C� ����

De�ne

Iin �� fi j � � i � m� x� � Cig� ����

Iout �� fi j � � i � m� x� �� Cig� ����

Because of Condition ��ii�� we may assume� without loss of generality �pass�
ing to a subsequence if necessary� that� for every l � �� 	� � � � �

I�kl� � I�kl � �� � � � � � I�kl�� � �� � fi j � � i � mg� ����

For every l � �� 	� � � � � let 	l be the smallest element in the set

fkl� kl � �� kl � 	� � � � � kl�� � �g ��	�

such that

I�	l � � Iout �� �� ����

Such an element exists by ���� and since� by ���� and ����� Iout �� ��

��



We want to show now that the sequence fx�lgl�� also converges to x
�� By

de�nition� kl � 	l for all l � �� 	� � � � � If 
 � �kl� 	l�� then

I�
� � Iin ����

and so� from ��	�� for any x � clS�

Df �x� x
���Df�x� x

���� �
X
i�Iin

w�
iDf�x

���� P f
i �x

���

�
X
i�Iin

w�
i

�
Df�x� x

���Df�x� P
f
i �x

���
�
� ����

For any point x � �i�IinCi � clS� it follows from ���� and ���� that� for

 � �kl� 	l��

Df�x� x
���� � Df�x� x

��� ����

In other words� with x replaced by x�� we have for all l � �� 	� � � � �

� � Df�x
�� x�l� � Df �x

�� x�l���

� � � � � Df�x
�� xkl��� � Df�x

�� xkl�� ��
�

Letting l
� in ��
� yields� by ���� and De�nition 
�iv� in Section 
�

lim
l��

Df �x
�� x�l� � �� ����

As a subsequence of the whole sequence fxkgk�� which is bounded� fx
�lgl��

is bounded� thus has a cluster point� Combining De�nition 
�v� in Section 

with ���� shows that any convergent subsequence of fx�lgl�� must converge
to x�� hence

lim
l��

x�l � x�� ����

From ���� it follows that there exists an index �� � Iout such that �� � I�	l�
for in�nitely many indices l� Removing from the sequence f	lgl�� all elements
	l for which �� �� I�	l�� we end up with a new in�nite sequence f	lgl��� such
that �� � I�	l� � Iout� for l � �� 	� � � � � Taking an arbitrary x � C � clS�
consider the limits of both sides of ��	� for the new sequence f	lgl��� Due to

��



����� the left�hand side converges to zero and� therefore� so must the right�
hand side� Since all quantities on the right�hand side are nonnegative and
w�l
�� � � � � �for all l � �� 	� � � � � by Condition ��i�� we obtain that

lim
l��

�Df �x� x
�l��Df�x� P

f
�� �x

�l��� � �� ����

From ���� we obtain

lim
l��

Df�P
f
�� �x

�l�� x�l� � �� ����

If we could show that fP f
�� �x

�l�gl�� is bounded then ���� and ���� would
imply� by using again De�nition 
�v� in Section 
� that

lim
l��

P f
�� �x

�l� � x�� ��	�

which means that x� � C��� yielding the sought�after contradiction with the
choice of �� made above�
Therefore� we conclude the proof by showing that fP f

�� �x
�l�gl�� is bounded�

Indeed� ���� for i � ��� with k � 	l and for x � C � clS� shows that

Df �x� P
f
�� �x

�l�� � Df�x� x
�l��Df�P

f
�� �x

�l�� x�l�� for every l � �� ����

Applying ���� and ���� to ���� shows that fDf�x� P
f
�� �x

�l��gl�� is bounded�

which� by De�nition 
�iii� in Section 
� implies that fP f
�� �x

�l�gl�� is bounded�
and this concludes the proof�

� An Example� Block�Iterative Underrelaxed

Entropy Projections

A well�known Bregman function is the negative �x logx� entropy �also called�
Shannon�s entropy� function� see ���� Example 	���	
 and the many references
given to the literature on this topic in that book or consult the book by Fang�
Rajasekera and Tsao ���
 and its references� The �x log x� entropy has been
used in numerous applications in science and engineering up to and including
recent work in the �eld of computational machine learning� see� e�g�� Collins�
Shapire and Singer ���
� It is denoted by ent x and maps the nonnegative
orthant Rn

� into R according to

ent x �� �
nX

j��

xj logxj� ����

��



where �log � denotes the natural logarithmic function and� by de�nition�
� log � � �� Its negative� f�x� �

Pn

j�� xj log xj� is a Bregman function with
zone S � intRn

�� see ���� Lemma 	����
� the j�th component of whose gradient
is �f��xj � � � log xj�

In order to derive a block�iterative algorithm with underrelaxed Bregman
entropy projections� for the iterative solution of a linear system of equations
Ax � b� we consider the sets

Ci � fx j hai� xi � big� for i � �� 	� � � � � m� ����

where ai � Rn is the i�th column of the transposed matrix AT and bi � R is
the i�th component of b � Rm� The iterative step �	
� takes the form

log xk��j �
m��X
i��

wk
i log�P

f
i �x

k��j� for j � �� 	� � � � � n� ����

Using the �rst line of ���� �with H� z� a and � replaced by Ci� x
k� ai and �ki �

respectively�� substituting into ���� and taking exponents we obtain

xk��j � xkj

mY
i��

exp�wk
i �

k
i a

i
j� for j � �� 	� � � � � n� ��
�

where �ki is the Bregman parameter associated with the �entropy projection�
of xk onto the i�th hyperplane Ci� If one replaces in the iterative step ��
�
the �ki �s with the quantities

dki �� log
bi

hai� xki
� ����

for all i and all k� then the resulting formula resembles the iterative step for�
mula of the block�iterative MART algorithm of Censor and Segman ��	
� see
also ���� Algorithm ��
��� Equation ����	��
� the di�erence being the lack of
underrelaxation parameters and of variable block structure and composition
in the latter�

� On the Practical Usefulness of Underrelax�

ation Parameters

In this section we demonstrate the importance of underrelaxation parameters
in the �eld of image reconstruction from projections� Projection algorithms

��



have been used to solve the fully discretized model in this �eld and experi�
mental work has shown again and again that there are great advantages in
using underrelaxation of the projections� For a recent example in the area of
Positron Emission Tomography �PET� see Obi et al� �	�
 and in the area of
Electron Microscopy see Marabini� Herman and Carazo �	

� Since in such
practical applications the data are physically collected and so the feasibility
condition in Theorem � cannot be guaranteed� we report here on an experi�
ment which illustrates the usefulness of underrelaxation when all conditions
of Theorem � are satis�ed�
The experiment has been performed with the algebraic reconstruction

technique �ART� described in Herman� Matej and Carvalho �	�� Equation
���
 for the purpose of image reconstruction from X�ray data obtained by
a scanner utilizing a helical cone�beam data collection geometry� In terms
of our block�iterative step formula �	��� f�x� � ���	�kxk�� the Ci are hy�
perplanes and� for every k � �� vki � � for exactly one i � i�k� and is
zero otherwise� and the relaxation parameters �ki � � are constant� We
will be comparing the values � � �� that is no relaxation� with � � �����
which amounts to quite strong underrelaxation� The number of hyperplanes is
m � �� ���� ��� and the dimensionality of the image vector x is n � ���� ��
�
To insure feasibility� we used the object reconstructed in �	�
 from the not
necessarily feasible data used in that paper� �In other words� we replaced the
system of equations Ax � b that was treated in �	�
 by the system Ax � As�
where s is the output of the algorithm reported in �	�
�� This reconstructed
object is to be interpreted as values within a rectangular region of the three�
dimensional space� a graphical representation of a single slice through this
region is shown on the left of Figure �� In this graphical representation all
values less than or equal to ���� are shown as black� all values grater than
equal to ���� are shown as white� with greyness levels representing the in�
termediate values� For our purposes� this previously reconstructed object is
the �phantom� �test image� which is the object �vector� in the intersection
of �� ���� ��� hyperplanes whose descriptions are known to our program�
Under the conditions of this special case of �	��� it is known that the algo�

rithm �provided that it is started with the same vector� should� in the limit�
converge to the same vector irrespective of which of the two investigated
values of the relaxation parameter is chosen �assuming perfect computer ac�
curacy�� this follows� e�g�� from Herman� Lent and Lutz �		� Corollary �
 or
from Bauschke et al� ��� Fact 	�	
� However� for such large problems� the
algorithm is computationally intensive and so it is important that one should

�




get to a reasonable solution in relatively fewer steps� For those who have not
had experience with such projection algorithms it may come as a surprise
that underrelaxation is actually useful for this purpose� We illustrate this in
Figure � in which the central and right images show our new reconstructions�
using no relaxation� i�e�� � � �� and underrelaxation� i�e�� � � ����� respec�
tively� The iteration index k at which the algorithm was stopped is the same
in both cases k � ��m� i�e�� we have cycled through the data �� times� The
same slice through the three�dimensional region is shown in all three images�
represented in the same way� The quality of the underrelaxed reconstruction
is so good that it is practically indistinguishable from the phantom� this is
certainly not the case for the reconstruction with no relaxation� This is also
re�ected by numerical calculations� considering only those locations in space
�not only in the slice shown in Figure �� for which the values of the phantom
are in the range ������ ����
� the Euclidean distance between the phantom
and reconstruction is 	�	 in the underrelaxed case and it is ��� in the no
relaxation case�

Thus this experiment� satisfying the conditions of Theorem �� con�rms
the previously reported results in applications� a small relaxation parameter
is likely to be very useful in allowing us to get to a high quality reconstruction
faster than it is possible with no relaxation�

Figure �� Slices of the phantom �left�� reconstruction with no relaxation
�center� and reconstruction with underrelaxation �right�� See the text for
details�

��



� Appendix� Some De	nitions and Results

from Bregman Function Theory

In this Appendix we review some de�nitions and results from the theory
of Bregman functions used in this paper�

De�nition � Let S be a nonempty open convex set in Rn with closure clS�
Let f � clS 
 R be a di
erentiable function and de�ne Df �x� z� � clS	S 

R by

Df �x� z� � f�x�� f�z�� hrf�z�� x� zi�

We say that f is a Bregman function with zone S and that Df is the Bregman
distance associated with it if the following conditions are satis�ed�

�i� f is continuous and strictly convex on clS�
�ii� f is continuously di
erentiable on S�
�iii� for any x � clS the level sets fy � S jDf�x� y� � 
g are bounded�
�iv� if yk � S and limk�� yk � y�� then limk��Df�y

�� yk� � ��
�v� if xk � clS and yk � S� with fxkg bounded� limk�� yk � y� and

limk��Df�x
k� yk� � �� then limk�� xk � y��

Remark 	 �i� It can be shown that� if the Bregman function f is separable�
then the condition that fxkg be bounded in De�nition 
�v� is redundant�
�ii� As noted by Bauschke and Borwein ���� conditions �i���v� of De�nition

 imply that for any y � S the level sets fx � clS jDf�x� y� � 
g are also
bounded�
�iii� Solodov and Svaiter ���� showed recently that Condition �v� of De�nition

 is redundant �i�e�� it follows from the remaining conditions��

Let � be a closed convex set in Rn and z � S a given point� The Bregman
projection of z onto � is the point P f

��z� � � which minimizes Df�x� z� over
all x � � � clS� Bregman projections exist and are unique provided that
the set � is closed and convex and that � � clS is nonempty �see� e�g�� ����
Lemma 	���	
�� Furthermore� we assume that P f

��z� � S whenever z � S
�this is commonly called zone consistency�� The useful inequality expressed
in the next theorem then holds� see� e�g�� ���� Theorem 	����
�

Theorem 
 Let f be a Bregman function with zone S and let � � Rn be a
closed convex set such that � � clS �� �� Assume that f is zone consistent

��



with respect to � and let z � � � clS be given� Then for any y � S the
inequality

Df�z� y��Df �z� P
f
��y�� � Df�P

f
��y�� y� ����

holds�

The next result is a characterization of Bregman projections onto convex
sets� given in ���� Theorem 	���	
�

Theorem �� Under the assumptions of Theorem �� for any y � S� the point
P f
��y� is the Bregman projection of y onto � with respect to f if and only ifD

rf�y��rf�P f
��y��� x� P f

��y�
E
� �� for all x � � � clS� ����

We make use in this paper of Legendre functions and some of their basic
properties� Therefore� we give here a de�nition from Bauschke and Borwein
��� De�nition 	��
� see also Rockafellar ���� Section 	�
�

De�nition �� Suppose that f is a closed convex proper function on Rn�
Then f is a Legendre function if it is both essentially smooth and essentially
strictly convex� i�e�� f satis�es the following properties�

�i� int�dom f��� ��
�ii� f is di
erentiable on int�dom f��
�iii� for every x �bd�dom f� and every y �int�dom f�

lim
t���

hrf�x� t�y � x��� y � xi � ��� ����

�iv� f is strictly convex on int�dom f��

The next result� characterizing and describing Legendre functions� is
quoted from ��� Fact 	��
 and based on ���� Theorem 	���
�

Theorem �� A convex function f is a Legendre function if and only if its
conjugate f � is� In this case� the gradient mapping

rf � int�domf�
 int�domf �� ��	�

is a topological isomorphism with inverse mapping �rf��� � rf ��

	�



Finally we quote from Bauschke and Borwein ��� Theorem ����
 the fol�
lowing important fact�

Theorem �� If f is a Legendre function and S � int�dom f�� then f is
zone consistent with respect to any closed convex set � such that � � clS ��
��
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