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Abstract

The variational inequality problem (VIP) is considered here. We
present a general algorithmic scheme which employs projections onto
hyperplanes that separate balls from the feasible set of the VIP instead
of projections onto the feasible set itself. Our algorithmic scheme
includes the classical projection method and Fukushima’s subgradient
projection method as special cases.

1 Introduction

We consider the variational inequality problem (VIP) in the Euclidean space
Rn. Given a nonempty closed convex set X ⊆ Rn and a function f : Rn →
Rn, the VIP is to find a point x∗ such that

x∗ ∈ X and hf(x∗), x− x∗i ≥ 0, for all x ∈ X. (1)

This problem was well-studied in the last decades, see, e.g., the treatise of
Facchinei and Pang [7] and the review papers by Noor [12] and by Xiu and
Zhang [13]. In particular, algorithmic approaches were investigated, using
projections of different types, in order to generate a sequence of iterates
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that converges to a solution. See, e.g., Yang [15], Yamada and Ogura [14],
Auslender and Teboulle [3] or Censor, Iusem and Zenios [5], to name but
(very) few out of the existing vast literature. The importance of VIPs stems
from the fact that some fundamental problems can be cast in this form, see,
e.g., [7, Volume I, Subsection 1.4].
Some algorithms for solving the VIP fit into the framework of the follow-

ing general iterative scheme.

Algorithm 1
Initialization: Let {τk}∞k=0 be a user-chosen positive real sequence, select
an arbitrary starting point x0 ∈ Rn and set the iteration index k = 0.
Iterative step: Given the current iterate xk, calculate the next iterate

xk+1 = PX(x
k − τkG

−1f(xk)),

where G is a symmetric positive definite matrix, PX is the projection operator
onto X with respect to the G-norm kzkG = hz,Gzi1/2.

See, Auslender [2] and consult [7, Volume 2, Subsection 12.1] for more
details. Such methods are particularly useful when the setX is simple enough
to project on. However, in general, one has to solve at each iterative step the
minimization problem

min{kx− (xk − τkG
−1f(xk))kG | for all x ∈ X}.

The efficiency of such a projection method may be seriously affected by the
need to solve such optimization problems at each iterative step.
An orthogonal projection of a point z onto a set X can be viewed as an

orthogonal projection of z onto the hyperplane H which separates z from X,
and supports X at the closest point to z in X. But, of course, at the time of
performing such an orthogonal projection, neither the closest point to z in
X, nor the separating and supporting hyperplane H are available. In view of
the simplicity of an orthogonal projection onto a hyperplane, it is natural to
ask whether one could use other separating supporting hyperplanes instead
of that particular hyperplane H through the closest point to z. Aside from
theoretical interest, this may lead to algorithms useful in practice, provided
that the computational effort of finding such other hyperplanes favorably
competes with the work involved in performing orthogonal projections di-
rectly onto the given sets.
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To circumvent the difficulties associated with the orthogonal projections
onto the feasible set of (1) Fukushima [10] developed a method that utilizes
outer approximations of X. His method replaces the orthogonal projection
onto the set X by a projection onto a half-space containing X, which is easier
to calculate. Letting X := {x ∈ Rn | g(x) ≤ 0} where g : Rn → R is convex,
Fukushima’s algorithm is as follows.

Algorithm 2
Initialization: Let {ρk}∞k=0 be a user-chosen positive real sequence, select
an arbitrary starting point x0 ∈ Rn and set the iteration index k = 0.
Iterative step: Given the current iterate xk,
(1) choose a subgradient ξk ∈ ∂g(xk) of g at xk and let

T k := {x ∈ Rn | g(xk) + hξk, x− xki ≤ 0}.

(2) Calculate the “shifted point”

zk := xk − ρkG
−1f(xk)/kf(xk)k2,

and then the next iterate xk+1 is the projection of zk onto the half-space T k

with respect to the G-norm, namely,

xk+1 = PTk(z
k).

(3) If xk+1 = xk then stop, otherwise, set k = k + 1 and return to (1).

Since the bounding hyperplanes of the subgradiental half-spaces T k, used
by Fukushima, separate the current point z from the set X, the question
again arises whether or not any other separating hyperplanes can be used in
the algorithm while retaining the overall convergence to the solution.
This question presents a theoretical challenge and we are able to offer here

answers that hold under some not too restrictive conditions. Under these
conditions, we are able to show that, as a matter of fact, the hyperplanes
need to separate not just the point z from the feasible set of (1), but rather
separate a “small” ball around z from X. This is inspired by our earlier work
[1] on the convex feasibility problem. Whether or not our current restrictions
can be relaxed or removed still remains to be seen.
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Our goal is to present the structural algorithmic discovery that both Al-
gorithm 1 and Algorithm 2 are realizations of a more general algorithmic
principle. Once we achieve this we are less concerned at the moment about
the minimal strength of the conditions under which our results hold. This
and generalizations of the new algorithmic structure to algorithms which use
two projections per iteration for the VIP are currently under investigation.
Our work is admittedly a theoretical development and no numerical advan-
tages are claimed at this point. The large “degree of freedom” of choosing
the super-sets, onto which the projections of the algorithm are performed,
from a wide family of half-spaces may include specific algorithms that have
not yet been explored. In Section 2 we present the algorithmic scheme and in
Section 3 we give our convergence analysis. Section 4 discusses special cases.

2 The Algorithmic Scheme

2.1 Assumptions

Let X := {x ∈ Rn | g(x) ≤ 0} where g : Rn → R is convex. Let G be
a symmetric positive definite matrix and denote the distance from a point
x ∈ Rn to the set X with respect to the norm k · kG by

dist(x,X) := min{kx− zkG | z ∈ X}.
For any ε > 0, we denote

Xε := {x ∈ Rn | g(x) < ε}.
Following [10], we assume that the following conditions are satisfied.

Condition 3 f is continuous on Xε for some ε > 0.

Condition 4 f is strongly monotone with constant α on Xε for some ε > 0,
i.e.,

hf(x)− f(y), x− yi ≥ αkx−yk22, for all x, y ∈ Xε and some α > 0. (2)

Condition 5 For some y ∈ X, there exist a β > 0 and a bounded set
D ⊂ Rn such that

hf(x), x− yi ≥ βkf(x)k2, for all x /∈ D.
It is well-known that under Conditions 3 and 4, the problem (1) has a

unique solution, see, e.g., Kinderlehrer and Stampacchia [11, Corollary 4.3,
p. 14].
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2.2 The algorithmic scheme

In order to present the algorithmic scheme a few definitions are needed.

Definition 6 Let G be a symmetric positive definite matrix. Given a 0 ≤
δ ≤ 1, a closed convex set X ⊆ Rn and a point x ∈ Rn,
(i) B(x,X, δ) := B(x, δ dist(x,X)) = {z ∈ Rn | kx− zkG ≤ δ dist(x,X)}

is the G-ball centered at x with radius δ dist(x,X),
(ii) for any x /∈ intX, denote by H(x,X, δ) the set of all hyperplanes

which separate B(x,X, δ) from X,
(iii) for x, y ∈ Rn, define the mapping

AX,δ(x, y) :=
½ {x}, if x ∈ intX,
{PH−(y) | H ∈ H(x,X, δ)}, if x /∈ intX,

where PH− is the projection operator, with respect to the G-norm, onto the
half-space whose bounding hyperplane is H and such that X ⊆ H−.

The mapping A defined above maps a quadruple (x, y,X, δ) onto a set.
A selection from AX,δ(x, y) means that if x /∈ intX a specific hyperplane
H ∈ H(x,X, δ) is chosen and PH−(y) is selected. If x ∈ intX then x is
selected.
Let {ρk}∞k=0 be a sequence of positive numbers satisfying

lim
k→∞

ρk = 0 and
∞X
k=0

ρk = +∞. (3)

Our algorithmic scheme for the VIP is as follows.

Algorithm 7
Initialization: Let {ρk}∞k=0 be a user-chosen positive real sequence that ful-
fills (3). Choose a constant δ such that 0 < δ ≤ 1, select an arbitrary starting
point x0 ∈ Rn and set k = 0.
Iterative step: Given the current iterate xk,
(1) calculate the “shifted point”

zk :=

½
xk − ρkG

−1f(xk)/kf(xk)k2, if f(xk) 6= 0,
xk, if f(xk) = 0.

(4)
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(2) Calculate the next iterate by

xk+1 is a selection from AX,δ(xk, zk). (5)

(3) If xk+1 = xk, stop, otherwise, set k = k + 1 and return to (1).

In what follows, we shall denote by Pk the projection operator onto H−
k

where Hk is the selected hyperplane Hk ∈ H(xk, X, δ) Thus, in (5) we have

xk+1 =

½
xk, if xk ∈ intX,
Pk(z

k), if xk /∈ intX. (6)

The iterative step of this algorithmic scheme is illustrated in Figure 1.

Figure 1: Illustration of the algorithmic scheme in Algorithm 7.

Remark 8 Observe that there is no need to calculate in practice the radius
δ dist(xk, X) of the ball B(xk,X, δ). If there would have been a need to cal-
culate this then it would, obviously, amount to preforming a projection of xk
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onto X, which is the very thing that we are trying to circumvent. All that is
needed, when deriving from the algorithmic scheme a specific algorithm, is to
show that the specific algorithm indeed “chooses” the hyperplanes in concert
with the requirement of separating such B(xk,X, δ) balls from the feasible set
of (1). We demonstrate this in Section 4 below.

3 Convergence

First we show that if Algorithm 7 stops then it has reached the solution of
the VIP.

Theorem 9 If xk+1 = xk occurs for some k ≥ 0 in Algorithm 7, then xk is
the solution of problem (1).

Proof. First assume that f(xk) 6= 0, then xk+1 = xk is possible only if
the radius of B(xk, X, δ) is zero which implies that xk ∈ X since δ > 0. By
definition, Pk(y) is the solution of the problem min

©ky − wk2G | w ∈ H−
k

ª
,

where H−
k is the half-space determined by Hk and X ⊆ H−

k . Applying [4,
Theorem 2.4.2] with the Bregman function h(y) = 1

2
kyk2G, whose zone is Rn,

for the set H−
k , we get

hw − Pk(y),∇h(y)−∇h(Pk(y))i ≤ 0, for all w ∈ H−
k ,

where here ∇h(y) = Gy, ∇h(Pk(y)) = GPk(y). So, we have
hw − Pk(y), Gy −GPk(y)i ≤ 0, for all w ∈ H−

k . (7)

Taking w = x, y = zk in (7) we get­
x− Pk(zk), Gzk −GPk(zk)

® ≤ 0, for all x ∈ H−
k , (8)

which, by (4), implies that for all x ∈ H−
k­

x− xk+1, G(xk − ρkG
−1f(xk)/kf(xk)k2)−Gxk+1

®
=
­
x− xk+1, G(xk − xk+1)− ρkf(x

k)/kf(xk)k2)
®

=
­
x− xk+1, G(xk − xk+1)i− hx− xk+1, ρkf(xk)/kf(xk)k2)

® ≤ 0.
Since we assume that xk+1 = xk

hx− xk+1, G(xk − xk+1)i = 0,
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so we get

hx− xk+1, ρkf(xk)/kf(xk)k2)i ≥ 0, for all x ∈ H−
k ,

and then ρk/kf(xk)k2 > 0, X ⊆ H−
k , and x

k+1 = xk lead to

hx− xk, f(xk)i ≥ 0, for all x ∈ X.
On the other hand, if f(xk) = 0, then (8) holds with zk = xk, i.e.,­

x− Pk(xk), Gxk −GPk(xk)
® ≤ 0, for all x ∈ H−

k ,

or, by (6) and xk+1 = xk,

hx− xk, 0i ≤ 0, for all x ∈ H−
k ,

which is true for all x ∈ X since X ⊆ H−
k and the proof is complete.

In the remainder of this section we suppose that Algorithm 7 generates an
infinite sequence {xk}∞k=0 and establish the next lemmas that will be useful
in proving the convergence of our algorithmic scheme. The next lemma was
proved in [8] for G = I and under the assumption that E is compact.

Lemma 10 Let A,E and F be nonempty closed convex sets in Rn, such that
A ⊂ E ⊂ F. For any point x ∈ F, let y be the point in E closest to x. Then
we have

ky − zk2G ≤ kx− zk2G − ky − xk2G, for all z ∈ A. (9)

Furthermore,
(dist(y,A))2 ≤ (dist(x,A))2 − ky − xk2G. (10)

Proof. Since y is the optimal solution of the problemmin {ke− xk2G | e ∈ E} ,
it must satisfy the inequality (see, e.g., [4, Theorem 2.4.2])

he− y,Gx−Gyi ≤ 0, for all e ∈ E.
Thus, for all e ∈ E,

kx− ek2G − ky − xk2G − ky − ek2G = 2 hy − e,Gx−Gyi
= −2 he− y,Gx−Gyi ≥ 0,

and, since A ⊂ E, we get
kx− zk2G − ky − xk2G − ky − zk2G ≥ 0, for all z ∈ A,
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which proves (9). In order to prove (10), let ez ∈ A be the closest point to
x ∈ F. Then, using (9), we obtain

(dist(y,A))2 ≤ ky − ezk2G ≤ kx− ezk2G − ky − xk2G
= (dist(x,A))2 − ky − xk2G,

which completes the proof.

Lemma 11 Let y ∈ Rn be an arbitrary point. Then, in Algorithm 7, for all
k ≥ 0, we have the inequalities

kPk(y)− wk2G ≤ ky − wk2G − kPk(y)− yk2G, for all w ∈ X.
Proof. This follows from Lemma 10 with A = X, E = H−

k and F = R
n.

The next lemma is quoted from [10, Lemma 2].

Lemma 12 Let {ak}∞k=0 and {bk}∞k=0 be sequences of nonnegative numbers,
and let µ ∈ [0, 1) be a constant. If the inequalities

ak+1 ≤ µak + bk, k = 0, 1, . . . ,

hold and if lim
k→∞

bk = 0, then lim
k→∞

ak = 0.

Lemma 13 If Condition 5 is satisfied, then any sequence {xk}∞k=0, generated
by Algorithm 7, is bounded.

Proof. The proof is structured along the lines of [10, Lemma 3]. First
assume that f(xk) 6= 0. Let y ∈ X be a point for which Condition 5 holds
and let M > 0 be such that kx − ykG < M, for all x ∈ D, where D is a
bounded set given in Condition 5. Lemma 11 implies that, for each zk ∈ Rn,

kPk(zk)− yk2G ≤ kzk − yk2G. (11)

Therefore,

kxk+1 − yk2G ≤
°°°°xk − ρkG

−1 f(xk)

kf(xk)k2 − y
°°°°2
G

=
°°xk − y°°2

G

− 2 ρk
kf(xk)k2 hf(x

k), xk − yi+ ρ2k
kf(xk)k22

hf(xk), G−1f(xk)i.
(12)
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Thus, if kxk − ykG ≥M, then we have, by (12) and Condition 5,

kxk+1 − yk2G ≤ kxk − yk2G − 2ρkβ +
ρ2k

kf(xk)k22
hf(xk), G−1f(xk)i. (13)

From Demmel [6, Equation (5.2), page 199] we have

hf(xk), G−1f(xk)i ≤ υhf(xk), f(xk)i,
where υ is the largest eigenvalue of G−1, so that

hf(xk), G−1f(xk)i ≤ ν−1hf(xk), f(xk)i, (14)

where ν is the smallest eigenvalue of G. By (13) and (14)

kxk+1 − yk2G ≤ kxk − yk2G − ρk(2β − ρkν
−1).

Since limk→∞ ρk = 0, the last inequality implies

kxk+1 − ykG < kxk − ykG, (15)

provided that k is sufficiently large. On the other hand, since y ∈ X,°°xk+1 − y°°
G
≤ °°zk − y°°

G
=

°°°°xk − ρkG
−1 f(xk)

kf(xk)k2 − y
°°°°
G

=

°°°°(xk − y)− ρkG
−1 f(xk)

kf(xk)k2

°°°°
G

.

Using the triangle inequality with G-norms and (14) we obtain°°°°(xk − y)− ρkG
−1 f(xk)

kf(xk)k2

°°°°
G

≤ °°xk − y°°
G
+ ρkν

−1/2,

so that °°xk+1 − y°°
G
≤ °°xk − y°°

G
+ ε, (16)

for all sufficiently large k, where ε > 0 is a small constant. Inequalities (15)
and (16) imply that {xk}∞k=0 is bounded. If f(xk) = 0 we have by (6) and
(11)

kxk+1 − yk2G ≤ kxk − yk2G,
which implies (16) and the rest follows.
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Lemma 14 Let X be a nonempty closed convex set X ⊆ Rn and let 0 <
δ ≤ 1. Let W ⊂ Rn be a nonempty convex compact set, let W\X :=
{x ∈W | x /∈ X} . Denote by σ(x) a selection from AX,δ(x, x), then there
exists a constant µ ∈ [0, 1) such that

dist(σ(x),X) ≤ µdist(x,X), for all x ∈W\X.

Proof. Since σ(x) is, by definition, the closest point to x in the convex set
H−, and X ⊆ H−, we get

(dist(σ(x),X))2 ≤ (dist(x,X))2 − kσ(x)− xk2G. (17)

This holds because

(dist(σ(x), X))2 ≤ kσ(x)− PX(x)k2G, (18)

and, by Lemma 10, we get

kσ(x)− PX(x)k2G ≤ kx− PX(x)k2G − kσ(x)− xk2G
= (dist(x,X))2 − kσ(x)− xk2G. (19)

(18) and (19) imply (17). On the other hand, since σ(x) is a selection from
AX,δ(x, x) and x /∈ X, we have that σ(x) = PH−(x) where H ∈ H(x,X, δ),
so

dist(x,X) · δ ≤ kσ(x)− xkG, for all x ∈ Rn, (20)

(if x ∈ X then both sides of (20) are zero.) Since δ is a positive constant
such that 0 < δ ≤ 1, we have

−δ2(dist(x,X))2 ≥ −kσ(x)− xk2G, for all x ∈W\X,
so, by (17), for all x ∈W\X

(dist(σ(x),X))2 ≤ (dist(x,X))2 − δ2(dist(x,X))2

= (1− δ2)(dist(x,X))2.

Since also 0 ≤ 1− δ2 < 1, taking µ =
√
1− δ2 ∈ [0, 1), we get

dist(σ(x),X) ≤ µdist(x,X), for all x ∈W\X,
which completes the proof.
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Lemma 15 For any sequence {xk}∞k=0, generated by Algorithm 7, we have
limk→∞ dist(xk,X) = 0.

Proof. Assume that f(xk) 6= 0, by (10) of Lemma 10 we have

(dist(Pk(x
k), X))2 ≤ (dist(xk,X))2 − kPk(xk)− xkk2G, for all k ≥ 0,

and, by Lemma 14, there exists a constant µ ∈ [0, 1) such that

dist(Pk(x
k),X) ≤ µdist(xk, X), for all k ≥ 0. (21)

On the other hand, the nonexpansiveness of the projection operator and reuse
of (14) implies

kxk+1 − Pk(xk)k2G = kPk(zk)− Pk(xk)k2G ≤ kzk − xkk2G
=

°°°°xk − ρkG
−1 f(xk)

kf(xk)k2 − x
k

°°°°2
G

=

°°°°ρkG−1 f(xk)

kf(xk)k2

°°°°2
G

≤ ρ2kν
−1.

Therefore,
kxk+1 − Pk(xk)kG ≤ ρk√

ν
. (22)

Let sk = PX
¡
Pk
¡
xk
¢¢
, namely,

kPk(xk)− skkG = dist(Pk(xk),X).

Then, by the triangle inequality, we get

kxk+1 − skkG = kxk+1 − Pk(xk) + Pk(xk)− skkG
≤ kxk+1 − Pk(xk)kG + kPk(xk)− skkG.

Now, since sk ∈ X, we have

dist(xk+1,X) ≤ kxk+1 − skkG.

From the last three inequalities we get

dist(xk+1,X) ≤ kxk+1 − Pk(xk)kG + dist(Pk(xk),X),
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and, using (21) and (22), we have

dist(xk+1,X) ≤ ρk√
ν
+ µdist(xk, X), for all k ≥ 0.

So the result of this case is obtained by Lemma 12 and (3). In case f(xk) = 0,
(11) becomes

dist(xk+1,X) ≤ µdist(xk, X), for all k ≥ 0,
and, by Lemma 12 with {ak}∞k=0 = {dist(xk,X)}∞k=0 and bk = 0, for all k ≥ 0,
the desired result is obtained.

Lemma 16 For any iterative sequence {xk}∞k=0, generated by Algorithm 7,
limk→∞ kxk+1 − xkkG = 0.
Proof. Assume first that f(xk) 6= 0, using the triangle inequality with G-
norms we have

kxk+1 − xkkG = kxk+1 − Pk(xk) + Pk(xk)− xkkG
≤ kxk+1 − Pk(xk)kG + kPk(xk)− xkkG
≤ ρk√

ν
+ (dist(xk, H−

k )), for all k ≥ 0, (23)

where the last inequality follows from (22) and the equality

dist(xk,H−
k ) = kPk(xk)− xkkG.

Since X ⊆ H−
k , we have

dist(xk,H−
k ) ≤ dist(xk, X),

thus,
kxk+1 − xkkG ≤ ρk√

ν
+ dist(xk,X).

By Lemma 15 and (3) we now obtain the required result. In case f(xk) = 0,
(23) becomes

kxk+1 − xkkG ≤ kxk+1 − Pk(xk)kG + kPk(xk)− xkkG = kPk(xk)− xkkG
= dist(xk, H−

k ) ≤ dist(xk,X),
where the last inequality follows from X ⊆ H−

k . By Lemma 15 and taking
limits as k →∞, we get the required result.
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Theorem 17 Consider the V IP (X, f) (1) and assume that Conditions 3—5
hold. Then any sequence {xk}∞k=0, generated by Algorithm 7, converges to the
unique solution x∗ of problem (1).

Proof. By Lemma 15, xk ∈ Xε, for all sufficiently large k, where Xε is the
set given in Conditions 3 and 4. (We assume without loss of generality that
the value of ε is common in both conditions.) From Condition 4 we have

hf(xk)− f(x∗), xk − x∗i ≥ αkxk − x∗k22,
and

hf(xk)− f(x∗), xk − x∗i = hf(xk)− f(x∗), xk − xk+1 + xk+1 − x∗i
= hf(xk), xk − xk+1i+ hf(xk), xk+1 − x∗i
− hf(x∗), xk − x∗i
≥ αkxk − x∗k22.

So, we obtain

hf(xk), xk+1−x∗i ≥ αkxk−x∗k22+hf(x∗), xk−x∗i+hf(xk), xk+1−xki. (24)
Let λ be an arbitrary positive number. Since x∗ satisfies (1), it follows from
Lemmas 13 and 15 that the following inequalities hold, for all sufficiently
large k,

hf(x∗), xk − x∗i ≥ −λ. (25)

Using the Cauchy-Schwarz inequality

hf(xk), xk+1 − xki ≥ −kf(xk)k2kxk+1 − xkk2.
By Lemma 13, {xk}∞k=0 is bounded, and with Condition 3 we get that {f(xk)}∞k=0
is also bounded. Lemma 16 guarantees

hf(xk), xk+1 − xki ≥ −λ, (26)

for all sufficiently large k. Applying (25) and (26) to (24), we obtain

hf(xk), xk+1 − x∗i ≥ αkxk − x∗k22 − 2λ. (27)

Let us divide the indices of {xk}∞k=0 as follows
Γ := {k ≥ 0 | f(xk) = 0} and Γ̄ := {k ≥ 0 | f(xk) 6= 0}.
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Equation (27) implies, due to the arbitrariness of λ, that for f(xk) = 0

lim
k→∞, k∈Γ

xk = x∗.

Now consider the indices in Γ̄ and suppose that there exists a ζ > 0 such
that

kxk − x∗k2 ≥ ζ, for all k ∈ Γ̄. (28)

By Lemma 11

kxk+1 − x∗k2G = kPk(zk)− x∗k2G ≤ kzk − x∗k2G − kPk(zk)− zkk2G
=

°°°°µxk − ρkG
−1 f(x

k)

kf(xk)k
¶
− x∗

°°°°2
G

−
°°°°xk+1 −µxk − ρkG

−1 f(x
k)

kf(xk)k
¶°°°°2

G

= kxk − x∗k2G − kxk+1 − xkk2G − 2
ρk

kf(xk)k2 hf(x
k), xk+1 − x∗i

≤ kxk − x∗k2G − 2
ρk

kf(xk)k2 hf(x
k), xk+1 − x∗i.

So, we get

kxk+1 − x∗k2G ≤ kxk − x∗k2G − 2
ρk

kf(xk)k2 hf(x
k), xk+1 − x∗i.

Since λ in (27) is arbitrary, we choose λ = αζ2/4,

hf(xk), xk+1 − x∗i ≥ αkxk − x∗k22 −
αζ2

2
,

provided that k are sufficiently large. So,

−2 ρk
kf(xk)k2 hf(x

k), xk+1 − x∗i ≤ −2 ρk
kf(xk)k2

µ
αkxk − x∗k22 −

αζ2

2

¶
≤ − αζ2ρk

kf(xk)k2 .

By Lemma 13, {xk}∞k=0 is bounded, thus Condition 3 implies that {f(xk)}∞k=0
is also bounded. So there exists a τ > 0 such that

− αζ2ρk
kf(xk)k2 ≤ −

αζ2ρk
τ

, for all k ∈ Γ̄,
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so that,

kxk+1 − x∗k2G ≤ kxk − x∗k2G −
αζ2ρk
τ

,

provided that k are sufficiently large. Then there exists an integer k ∈ Γ̄
such that

kxk+1 − x∗k2G ≤ kxk − x∗k2G −
αζ2ρk
τ

, for all k ∈ Γ̄ such that k ≥ k. (29)

By adding the inequalities (29) from k = k to k + `, over indices k ∈ Γ̄, we
have

kxk+`+1 − x∗k2G ≤ kxk − x∗k2G −
αζ2

τ

k+X̀
k∈Γ̄, k=k

ρk,

for any ` > 0. However, this is impossible due to (3), so there exists no
ζ > 0 such that (28) is satisfied. Thus, {xk}k∈Γ̄ contains a subsequence
{xk}k∈Γ̂, Γ̂ ⊆ Γ̄ converging to x∗, and so there is a subsequence {xk}k∈Γ∪Γ̂
of the whole sequence {xk}∞k=0 converging to x∗. In order to prove that the
entire sequence {xk}∞k=0 is convergent to x∗, suppose to the contrary that
there exists a subsequence of {xk}∞k=0 converging to x̂ ∈ X, x̂ 6= x∗. Since, by
Lemma 16, lim

k→∞
kxk+1−xkkG = 0, there must exist a ζ > 0 and an arbitrarily

large integer j ∈ Γ̄ such that

kxj − x∗kG ≥ ζ and kxj+1 − x∗kG ≥ kxj − x∗kG. (30)

However, if j is sufficiently large, we may apply an argument similar to that
used to derive (29), and obtain the inequality

kxj+1 − x∗kG < kxj − x∗kG,

which contradicts (30). Therefore, the sequence {xk}∞k=0 must converge to
the solution x∗.

4 Special Cases of the Algorithmic Scheme

Our general algorithmic scheme (Algorithm 7) includes as a special case the
classical projection method of Algorithm 1. This can be seen by using δ = 1 in
Algorithm 7, which reduces the family of potential half-spaces to a singleton

16



which includes only the half-space that supports X at the projection of zk

(of (4)) onto X.
Another important special case is obtained from Algorithm 7 if we choose

the convex function g(x) := dist(x,X). This is no restriction since any convex
set X can be presented in this way and Fukushima’s method of Algorithm 2
is obtained as a special case of our algorithmic scheme.

4.1 An interior anchor point algorithm

To illustrate that additional algorithms can be derived from Algorithm 7 we
present below an algorithm that uses other hyperplanes to project on. This
particular realization requires that (the interior) intX is nonempty. The idea
of using an interior point as an anchor to generate a separating hyperplane
appeared previously in [1] for the convex feasibility problem, and in [9] for
an outer approximation method.

Algorithm 18
Initialization: Let y ∈ intX be fixed and given. Select an arbitrary starting
point x0 ∈ Rn and set k = 0.
Iterative step: Given the current iterate xk,
(1) if xk ∈ X set xk = xk+1 and stop.
(2) Otherwise, calculate the “shifted point”

zk :=

½
xk − ρkG

−1f(xk)/kf(xk)k2, if f(xk) 6= 0,
xk, if f(xk) = 0.

(31)

and construct the line Lk through the points xk and y.
(3) Denote by wk the point closet to xk in the set Lk ∩X.
(4) Construct a hyperplane Hk separating xk from X and supporting X at
wk.
(5) Compute xk+1 = PH−k

(zk), where H−
k is the half-space whose bounding

hyperplane is Hk and X ⊆ H−
k , set k = k + 1 and return to (1).

The iterative step of this algorithm is illustrated in Figure 2. We show
that Algorithm 18 generates sequences that converge to a solution of problem
(1) by showing that it is a special case of Algorithm 7.

Theorem 19 Consider the V IP (X, f) (1) and assume that Conditions 3—5
hold and that intX 6= ∅. Then any sequence {xk}∞k=0, generated by Algorithm
18, converges to the solution x∗ of problem (1).
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Figure 2: Illustration of Algorithm 18: Interior anchor point

Proof. First assume that G = I, the unit matrix. Algorithm 18 is obviously
a special case of Algorithm 7 where we choose at each step a separating
hyperplane which also supports X at the point wk. The stopping criterion is
valid by Theorem 9. In order to invoke Theorem 17 we have to show that for
such an algorithm δ > 0 always holds. By Lemma 13, {xk}∞k=0 is bounded
and, since xk /∈ X, we have

kPH−k (x
k)− xkk2 = kxk − wkk2ky − PHk(y)k2

ky − wkk2 , (32)

and we also have
kxk − wkk2 ≥ dist(xk, X).

Defining d := dist(y,bdX), since y ∈ intX,

ky − PHk(y)k2 ≥ d > 0.
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From the boundedness of {xk}∞k=0 we know that there exists a positive N
such that ky − wkk2 ≤ N, for all k ≥ 0. Combining these inequalities with
(32) implies that

kPH−k (x
k)− xkk2 ≥ d

N
dist(xk,X),

which shows that the algorithm is of the same type of Algorithm 7 with
δ := d/N > 0.
To show convergence for a general symmetric positive definite matrix G

we recall that all norms are equivalent in Rn so that there exists constants
M1 and M2 such that, for all x ∈ Rn,

M1kxk2 ≤ kxkG ≤M2kxk2.

Actually,
kxkG ≤ ρ(G)kxk2,

where ρ(G) is the largest eigenvalue of G (see, e.g., [6, Equation (5.2), page
199]). So, we get

kxk − wkk2 ≥ 1

ρ(G)
kxk − wkkG ≥ 1

ρ(G)
dist(xk,X),

thus,

ky − PHk(y)k2 ≥
1

ρ(G)
ky − PHk(y)kG ≥

bd
ρ(G)

,

where bd := dist(y,bdX). Also,
ky − wkkG ≤M2ky − wkk2 ≤M2N.

So, by (32) and the last three inequalities, we get

kPH−k (x
k)− xkkG ≥M1 · kPH−k (x

k)− xkk2 =M1 · kx
k − wkk2ky − PHk(y)k2

ky − wkk2

≥M1 ·
1

ρ(G)
dist(xk, X) ·

bd
ρ(G)

M2N
= cM ·

bd
N
dist(xk,X),

(33)
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where cM :=M1/(M2(ρ(G))
2) and this completes the proof.
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